首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
为探讨不同温度下土壤氮素的供应、固持和消耗损失过程,从而为农田土壤合理施用氮肥提供科学依据,以黑龙江省农田黑土为对象开展室内培养试验(15、25、35℃,60%WHC),采用15N同位素成对标记技术(~(15)NH_4NO_3和NH415NO3,15N标记丰度为5atom%,氮浓度为60 mg N·kg~(-1))及FLUAZ数值优化模型研究土壤氮初级矿化速率、初级固定速率和初级硝化速率对温度变化的响应。结果表明:在15~35℃范围内,土壤氮初级矿化速率随培养温度的增加显著增加,但25~35℃范围内的增幅小于15~25℃。在15~25℃范围内,土壤氮初级固定速率和初级硝化速率随培养温度的增加显著增加,而在25~35℃范围内土壤氮初级固定速率和初级硝化速率随培养温度的增加显著降低,但仍然显著高于15℃处理。15℃和25℃处理土壤氮初级矿化速率与初级固定速率比值(gm/gi)以及初级硝化速率与初级铵态氮固定速率比值(gn/ia)均稍大于1,两处理间没有显著差异,而35℃处理的gm/gi值和gn/ia值均远大于1。研究表明,温度在15~25℃范围内,土壤有机氮的矿化与固定过程耦联相对紧密,硝态氮累积及淋溶风险较小;而35℃高温条件下土壤有机氮矿化速率和硝化速率均显著大于铵态氮的生物固定速率,表明硝化作用是铵态氮的主要消耗过程,可能会增加硝态氮的累积、反硝化和淋溶风险。  相似文献   

2.
不同水分对半干旱地区砂壤土温室气体排放的短期影响   总被引:1,自引:2,他引:1  
为探明不同水分条件对土壤排放温室气体的短期影响,本研究以黑龙江省半干旱地区的砂壤土为对象,通过室内培养试验研究60%田间最大持水量(WHC)、100% WHC和淹水条件下土壤中N2O、CO2和CH4的排放规律。结果表明:与60% WHC处理相比,土壤水分含量增加至100% WHC对净硝化速率没有显著影响,但显著促进了N2O的排放,平均排放速率(0.109 mg N2O-N·kg-1·d-1)是60% WHC处理(0.014 mg N2O-N·kg-1·d-1)的7.8倍。淹水处理显著抑制了硝化作用的进行,但显著促进了N2O的排放,平均排放速率(0.419 mg N2O-N·kg-1·d-1)分别为60% WHC和100% WHC处理的29.9倍和3.8倍。60% WHC处理土壤CO2和CH4平均排放速率分别为9.92 mg CO2-C·kg-1·d-1和2.99 μg CH4-C·kg-1·d-1,土壤水分含量增加至100% WHC对CO2和CH4排放速率没有显著影响。淹水处理土壤CO2和CH4平均排放速率分别为12.7 mg CO2-C·kg-1·d-1和5.14 μg CH4-C·kg-1·d-1,显著高于60% WHC和100% WHC处理。研究表明,半干旱地区砂壤土应注意田间水分管理,避免短期淹涝,以减少温室气体排放。  相似文献   

3.
[目的]土壤水分变化会影响微生物介导的氮转化。探明土壤氮初级转化速率,反映土壤内部氮素动态变化,探索氮转化对土壤水分变化的响应机制。[方法]采用~(15)N成对标记技术,利用数值优化模型,量化不同水分条件(最大持水量的20%、60%、80%、100%)下,有机氮矿化、铵态氮(NH_4~+)微生物同化、自养硝化、异养硝化和硝态氮(NO_3~-)消耗等主要氮转化过程的初级转化速率。[结果]土壤不同氮转化过程对水分变化的响应不同。随土壤含水量上升(从最大持水量的20%升至100%),土壤中易分解有机氮库初级矿化速率(M_(N_(lab)))从1.757 mg·kg~(-1)·d~(-1)增加到2.598 mg·kg~(-1)·d~(-1),难分解有机氮库初级矿化速率(M_(N_(rec)))变化不显著,总初级矿化速率(M,即M_(N_(lab))和M_(N_(rec)))显著上升。初级自养硝化速率(O_(NH_4))随土壤含水量增加而增加,在最大持水量为100%时达到最大值(0.266 mg·kg~(-1)·d~(-1));初级异养硝化速率(O_(N_(rec)))随土壤含水量增加先上升后下降,在最大持水量为60%时达到最大值(0.115 mg·kg~(-1)·d~(-1));土壤在最大持水量为80%和100%时O_(NH_4)显著大于O_(N_(rec)),总初级硝化速率(N,即O_(NH_4)和O_(N_(rec)))随土壤含水量增加而增大。总初级NH_4~+微生物同化速率(I_(NH_4))随土壤含水量增加线性上升,土壤在最大持水量的100 %时达到最大值(1.941 mg·kg~(-1)·d~(-1));初级NO_3~-消耗速率(C_(NO_3))在最大持水量的80%和100%时明显增加,总无机氮消耗速率(I_(NH_4)和C_(NO_3))随土壤含水量增加显著增大,并在最大持水量的80%时超过总氮初级矿化速率。因此,随含水量增加土壤氮净矿化速率先上升到最大值,然后迅速下降为负值。[结论]红壤不同无机氮产生和消耗过程对水分变化的响应不同;适当增加土壤含水量可提高红壤氮素的可利用性。图5表1参48  相似文献   

4.
土壤水分常数是评价土壤改良效果的主要指标。文章通过研究不同掺粘量对砂壤土水分常数的影响及机理分析。旨在为内蒙古旱作农业砂壤土改良、扩蓄、提高生产力提供有力的科技支撑和理论依据。研究表明:砂壤土掺粘后土壤的饱和导水率明显下降,当掺粘量为5%时,饱和导水率降低约为砂壤土的36%;田间持水量、毛管持水量、饱和含水量和萎蔫含水量随着粘粒含量的增加而增加;土壤有效含水率随着掺粘量的增加呈现出先增加后降低的趋势。  相似文献   

5.
邢杰  张艳萍 《安徽农业科学》2013,(26):10627-10629,10631
[目的]针对我国北方砂壤土水分利用效率低的特点,通过室内模拟试验研究了砂壤土表层添加不同黏粒量对砂壤土湿润锋进程、累计入渗量、土壤剖面含水率的影响,分析了土壤中黏粒添加量对砂壤土水分运动影响和机制,旨在为砂壤土工程改良提供理论依据和实践指导.[方法]通过室内土柱模拟试验,设置常规对照(CK)以及2%、5%、10%和20%4个掺黏量,定水头条件下研究不同掺黏量对砂壤土水分入渗特征的影响.[结果]砂壤土表层掺黏后,显著减小了湿润锋进程.随着土壤表层掺黏量的增加,湿润锋下移速率、入渗速率逐渐减慢,累计入渗量减少.湿润锋、累计入渗量与时间之间符合幂函数关系.[结论]在入渗过程中,土壤表层掺黏能显著增加土壤对外界水分的蓄积量,提高土壤的储水量.  相似文献   

6.
为探讨石灰性农田土壤-水稻系统根际与非根际土的氮素转化特征差异,本研究以石灰性紫色土发育而成的水稻土为研究对象,通过采集水稻分蘖期和成熟期的根际与非根际土壤,开展15N成对标记室内好氧培养试验,并计算土壤各初级氮转化速率。结果表明:水稻分蘖期根际土初级矿化速率(4.45 mg·kg-1·d-1)和硝化速率(9.16 mg·kg-1·d-1)均显著低于非根际土(P<0.05);水稻成熟期根际土初级矿化速率(6.75 mg·kg-1·d-1)和硝化速率(16.86 mg·kg-1·d-1)与非根际土无显著差异,但显著高于分蘖期根际土的初级矿化和硝化速率(P<0.05)。水稻分蘖期NH4+-N固定速率显著高于成熟期,其中,分蘖期根际土NH4+-N固定速率为19.75 mg·kg-1·d-1,与成熟期根际土相比增加了42.21%;此外,两个生育期的水稻根际土NO3--N固定速率均显著高于非根际土。水稻分蘖期根际土无机氮总固定速率显著大于有机氮矿化速率,有利于氮素的留存和周转,相应地,初级硝化速率显著降低,减少了土壤NO3--N损失。研究表明,水稻不同生育期对石灰性水稻土主要氮转化速率的影响具有差异,且这种差异可能受水稻生育期内土壤水分、根系分泌物及无机氮含量变化的调控。  相似文献   

7.
【目的】研究不同溶解氧含量的增氧水对壤土土壤矿化作用和硝化作用的影响,分析增氧水输入提高土壤的供氮能力的作用机制。【方法】以壤土为供试土壤,采用室内土壤培养方法,选取常规水(RCK)、自然空气供氧曝气增氧(RD1)、33%增氧供氧曝气增氧(RD2)和90%增氧供氧曝气增氧(RD3)4个不同浓度增氧水输入,测定不同培养时间下不同浓度增氧水输入下壤土土壤的 NH -N和 NO --N含量,计算土壤净氮矿化量、净氮矿化速率、硝化率和硝化速率以及拟合各处理条件下土壤 NH -N含量与培养时间t的回归公式以及模型特征值,分析不同处理的输入效果。【结果】与达到最大消耗速率所用时间的变化趋势相反,4个不同处理中初始消耗速率V0和最大消耗速率Vmax的趋势变化均为RCK123,初始消耗速率V0的最大值(8.950 1 mg/(kg・d)),最大消耗速率Vmax的最大值(13.019 8 mg/(kg・d))和达到最大消耗速率所用时间TVmax的最小值(1.502 1 d)均是RD3处理;相同增氧浓度条件下,壤土土壤净氮矿化量和硝化率随时间的增加呈现上升趋势,而壤土土壤净氮矿化速率和净硝化速率随时间的增加呈现下降趋势;在同一培养时间时期下,壤土土壤净氮矿化量、净氮矿化速率、硝化率以及净硝化速率的变化趋势均呈RCK123处理的关系。【结论】增加输入水氧浓度会加速壤土氮素转化,增强土壤的矿化作用和硝化作用,改善土壤微生物的活动及矿物质的转化,提高土壤的供氮能力。  相似文献   

8.
为探讨黑龙江省半干旱地区不同质地黑土的净氮转化速率和温室气体排放规律,以壤砂土和粉壤土为研究对象开展室内培养试验,对土壤净硝化速率和净矿化速率、N2O和CO2排放速率与累积排放量进行研究。结果表明:7d培养期间壤砂土的平均净矿化速率和CO2平均排放速率分别为0.49mgN kg-1 d-1和0.30mgCO2-C kg-1 h-1,显著低于粉壤土的平均净矿化速率(1.37 mgN kg-1 d-1)和CO2平均排放速率(0.47mgCO2-C kg-1 h-1)。壤砂土的平均净硝化速率和N2O平均排放速率分别为1.65mgN kg-1 d-1和212.6ngN2O-N kg-1 h-1,显著低于粉壤土的5.02mgN kg-1 d-1和521.3ngN2O-N kg-1 h-1。壤砂土和粉壤土的N2O排放比率分别为0.081%~0.301%和0.210%~0.254%。研究表明,土壤质地显著影响土壤净氮转化速率和温室气体排放,壤砂土较低的pH、有机碳和水溶性有机碳含量是导致其净硝化速率、净矿化速率以及N2O、CO2排放速率显著低于粉壤土的主要原因。  相似文献   

9.
研究土壤初级氮转化过程及其调控机制对评估生态系统供氮能力或氮流失潜力具有重要意义,然而目前针对喀斯特生态系统初级氮转化速率及其主控因素的研究非常有限。我们采用15N同位素稀释法研究了桂西北喀斯特和邻近非喀斯特森林0~10 cm、10~20 cm和20~40 cm三个土层初级氮转化速率,结合土壤理化性质和功能基因丰度分析了两个森林土壤初级氮转化速率的主控因素。结果表明:喀斯特森林土壤初级氮矿化速率、初级硝化速率、自养硝化速率和异养硝化速率均显著高于非喀斯特森林。喀斯特森林土壤自养硝化对初级硝化速率的贡献平均为75.04%,而非喀斯特森林自养硝化的贡献平均为28.51%。喀斯特森林土壤初级氮矿化、初级硝化和自养硝化速率随土层深度增加而下降,但非喀斯特森林仅土壤初级氮矿化速率随土层深度增加而下降。总体而言喀斯特和非喀斯特森林土壤初级氮转化速率存在显著差异,且全氮、微生物量是氮转化过程的主控因素,而功能基因的作用较小。  相似文献   

10.
不同施肥处理对黑土硝化作用和矿化作用的影响   总被引:9,自引:1,他引:9  
通过室内培养试验,研究了不同施肥处理对黑土硝化作用和矿化作用的影响。结果表明,与不施肥对照处理相比,施用氮肥显著促进了硝化作用的进行,但抑制了培养初期的氮素矿化作用,培养期间施氮处理的平均净硝化速率为4.21 mg NO3--N·kg-1·d-1,是对照处理的2.38倍;平均净矿化速率为1.18 mg N·kg-1·d-1,与对照处理没有显著差异。与对照处理相比,在施用氮肥的基础上配施猪粪进一步促进了土壤有机氮的矿化作用和硝化作用,培养期间的平均净硝化速率为8.14 mg NO3--N·kg-1·d-1,分别为对照处理和单施氮肥处理的4.59、1.93倍;平均净矿化速率为3.69 mg N·kg-1·d-1,是单施氮肥处理的3.12倍。与单施氮肥处理相比,氮肥配施秸秆处理显著抑制了硝化作用,平均净硝化速率下降62.7%,但与对照处理相比没有显著差异。氮肥配施秸秆处理的净氮矿化量在整个培养期间都是负值,平均净氮矿化速率为-1.62 mg N·kg-1·d-1,说明添加秸秆促进了土壤无机氮的同化。  相似文献   

11.
沙壤土种植优质小麦配方施肥试验   总被引:1,自引:0,他引:1  
通过在沙壤土上进行8种不同施肥处理的试验,探讨施肥对优质小麦产量和品质的影响.结果显示,底肥施氮(N)82.5kg/hm^2,磷(P2O5)60kg/hm^2,钾(K2O)60kg/hm^2,拔节期追施尿素145.5kg/hm^2,为最优施肥处理,小麦每公顷产量6143.28kg,优质率97%.适宜推广应用。  相似文献   

12.
沙地衬膜小麦土壤水分动态的研究   总被引:3,自引:0,他引:3  
通过对景电二期灌区衬膜沙地土壤水分动态监测,分析其土壤水分剖面变化及土壤水分动态变化规律,得出沙地衬膜能显著起到节水保墒作用,且随衬膜深度的增加而提高。在作物牛长初期,村膜沙地土壤水分在垂直分布差异上不明显,这是由于幼苗阶段、小麦植株矮小,植物蒸腾耗水员较小的缘故;而在植物生长中后期,小麦地上部分牛长旺盛,根系庞大,蒸腾耗水最大,从而造成土壤含水最上层高于下层。衬膜沙地因土层变浅,限制了土壤的储水深度,因此,在衬膜沙地栽培作物时,需要通过农田水分调控技术来实现水源的合理利用,其技术原则是:a少量多灌,并严格按照小麦各牛育期需水量的多少决定灌溉量;b应以当地资源条件和农m水分状况为依据,建众适宜的作物种植方式、耕作体系和轮作制度;c通过培肥地力调节农田水分关系.提高作物光合作用强度和水分利用率.以调节土壤的持久供水能力。  相似文献   

13.
不同硝化抑制剂对尿素转化的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
【目的】比较不同硝化抑制剂在石灰性土壤上对氮素转化的抑制效果,旨在选择石灰性土壤上较理想的硝化抑制剂,为进一步提高氮素利用率、减少环境污染提供依据。【方法】以单纯施用尿素为对照,采用室内土壤培养试验法,将硝化抑制剂3,4-二甲基吡唑磷酸(DMPP)、双氰胺(DCD)、2-氨基-4-氯-6-甲基嘧啶(AM)和硫脲(TU)施入土壤,在培养一定时间(1~50 d)后采样,测定土壤的NH4+-N、NO3--N、NO2--N含量及pH和电导率(EC)。【结果】硝化抑制剂DMPP、DCD和AM不仅能够有效延缓尿素的水解,显著抑制土壤中NH4+-N的氧化作用,而且能够较长时间保持较高的NH4+-N含量,使硝化作用延滞35~38 d。各硝化抑制剂(TU除外)处理明显推迟了NO3--N的释放高峰期,对硝化过程均表现出明显的抑制作用。各硝化抑制剂处理的NO3--N、NH4+-N、电导率和pH之间有显著的相关性,土壤NO3--N含量与EC值呈显著正相关(P<0.05),而与pH值呈显著负相关(P<0.05);土壤NH4+-N含量与EC值和pH值的相关性则与NO3--N相反。【结论】在本试验条件下,TU未表现出对石灰性土壤氮损失的抑制效果,其他3种硝化抑制剂的抑制能力强弱顺序为DMPP>DCD>AM(P<0.05)。  相似文献   

14.
利用膜进样质谱仪测定水稻土几种厌氧氮转化速率   总被引:2,自引:1,他引:2  
为了在同一体系下区分和测定水稻土反硝化、厌氧氨氧化(Anammox)和硝酸根异化还原成铵(DNRA)过程发生速率和相互关系,并获取近似原位情况下的净脱氮速率,本研究通过将~(15)NH_4~+化学氧化法测定DNRA速率和添加尿素模拟原位土柱测定净脱氮速率与膜进样质谱法(MIMS)进行联用,完善了一套基于膜进样质谱法(MIMS)的稻田硝态氮转化测定方法体系,利用该方法测定了5种典型的水稻土[辽宁营口(YK)、江苏宜兴(YX)、浙江金华(JH)、广西桂林(GL)和四川广安(GA)]的反硝化、Anammox、DNRA和净脱氮4种氮转化速率。结果显示:基于MIMS的方法体系可实现对水稻土中反硝化、Anammox、DNRA和净脱氮速率的测定,5种水稻土反硝化、Anammox、DNRA和净脱氮速率范围分别为(358.63±25.37)~(479.96±22.12)、(-14.81±0.22)~(5.29±1.22)、(25.76±12.71)~(109.87±3.88)g N·hm~(-2)·h~(-1)和(33.33±11.16)~(72.74±14.18)g N·hm~(-2)·h~(-1),相关结果与其他方法研究结果具有可比性。相关性分析显示:水稻土NO_3~-、可溶性有机碳(DOC)和土壤Fe~(2+)含量是反硝化过程的主要限制因素;NO_3~-是Anammox的关键限制因素;而土壤DOC和Fe~(2+)含量是DNRA过程的主要限制因素。基于MIMS的方法体系可以在短时间内(1周)测定水稻土四种厌氧氮转化速率,且所需样品量低、精确度高,在稻田或湿地土壤厌氧氮转化过程研究中有很好的应用前景。  相似文献   

15.
不同覆盖措施对土壤水分和当年造林成活率的影响   总被引:2,自引:0,他引:2  
为了研究覆盖措施在干旱陡坡造林中对土壤水分蒸发量、土壤含水量及当年造林成活率的影响,并筛选出效果最佳的覆盖措施,在山西吉县蔡家川流域布设试验,分析了地表覆膜、地表覆草、土中覆草3种覆盖措施对土壤蒸发量、含水量、密度和孔隙度及当年造林成活率的影响。结果表明:造林初期连续蒸发20d后,地表覆膜、地表覆草、土中覆草处理的栽植穴土壤累积水分蒸发量分别比对照减少11.50、5.64、20.96mm。不同覆盖处理的栽植穴土壤含水量,4—6月减少量:对照>地表覆草>地表覆膜>土中覆草;6—8月增加量:土中覆草>地表覆草>地表覆膜>对照;8—10月减少量:对照>地表覆草>地表覆膜>土中覆草。生长季结束后,对照、地表覆膜、地表覆草、土中覆草土壤密度分别减少了0.79%、1.59%、3.17%、9.26%,总孔隙度分别增加了0.04%、0.31%、1.57%、3.58%。地表覆膜、地表覆草、土中覆草处理的苗高生长量分别是对照的3.52、4.11、4.44倍;当年新枝生长量分别是对照的1.50、1.65、1.90倍;当年造林成活率较对照分别提高了10.3%、6.8%、12.9%。可见在晋西黄土区干旱陡坡造林中,土中覆草是一种更有效的覆盖措施。   相似文献   

16.
以华北平原石灰性潮土为对象,采用室内静态培养方法,在土壤中添加不同类型的抑制剂(硝化抑制剂、脲酶抑制剂),监测N_2O和无机氮随时间变化的特征,对比分析何种添加剂减排N_2O效果明显,为其在农业生产中的应用提供科学依据。试验设置7个处理:不施肥(CK);只施尿素(U);尿素和2-氯-6-三氯甲基吡啶(Nitrapyrin,由中化集团公司代理)同时施用(U+NP);尿素和推荐用量2-氯-6-三氯甲基吡啶(Nitrapyrin,由陶氏化学公司代理)同时施用(U+NPD);尿素和2倍推荐用量2-氯-6-三氯甲基吡啶(Nitrapyrin,由陶氏化学公司代理)同时施用(U+2NPD);尿素和双氰胺同时施用(U+DCD);尿素和N-丁基硫代磷酰三胺同时施用(U+n BPT),共培养56 d。在培养第1、2、3、5、7、10、14、19 d采气测定N_2O和CO_2,气体监测到培养第19 d为止;在培养的第0、1、3、7、14、21、28、42、56 d进行破坏性取样,监测土壤氮素转化。结果表明:供试硝化抑制剂能够降低87.4%~99.6%的N_2O排放,脲酶抑制剂降低30.0%N_2O排放;氮素转化过程中,硝化抑制剂处理只有0.03%~0.84%的铵态氮转化为N_2O,脲酶抑制剂处理有4.69%的铵态氮转化为N_2O。DCD和陶氏公司Nitrapyrin产品在抑制N_2O排放的效果上无显著差异,与推荐用量陶氏公司Nitrapyrin相比,施用2倍推荐量并没有显著降低N_2O排放。综上,供试硝化抑制剂能够显著降低石灰性土壤N_2O的排放,减排效果最好的处理为U+NP,陶氏公司Nitrapyrin产品按推荐用量施用即可。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号