首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Samples from field plots of silty soils in East Anglia, which were high and low in organic matter, were subjected to mild ultrasonic vibration. In soils high in organic matter particles in the 2–20 μm or 20–50 μMm size range contained most humified organic matter, whereas in soils low in organic matter, most was present in the clay sized fraction. Scanning electron micrographs of the ultrasonically separated particles showed that those from the high organic matter soils had more extensive surface coatings. Clean fragments were left after peroxide and calgon dispersion treatment.  相似文献   

2.
Structural surfaces and slickensides have been reported to be important features impacting sorption–desorption of chemicals and bypass flow of pollutants to shallow groundwater aquifers. This study provides visible, microscopic and submicroscopic characteristics of slickenside features in two Texas Vertisols of different geomorphological age. Transport of visible anionic dye and CaBr is studied as related to soil structural surfaces, root channels and slickenside planes. Macromorphic observations were coupled with thin section microscopy, scanning electron microscopy and electron microprobe analyses.Slickenside surfaces differed from subjacent micromass of the ped interiors by stronger preferred orientation of clay particles and reduction in macropores with corresponding increase in micropores. Such characteristics could make slickensides act as semi-permeable barriers to solute transport, but this phenomenon could not be confirmed from CaBr studies herein.The majority of the solute bypass flow in both soils was conducted through root channels and ped interfaces. Slickenside surfaces in these Vertisols conducted less than 1% of the flow. It was observed primarily when the dye solution was delivered to the surface of the slickenside via the adjacent root channel. In spite of the preferential orientation of clay particles along slickenside planes, the penetration of Br into the aggregate interior was not retarded like the larger organic anion dye. These results may reflect specific moisture conditions, which should be considered in future works.  相似文献   

3.
Humic acids from polar soils—cryozems (Cryosols), gleyezems (Gleysols), and peat soils (Histosols)—have been studied by electron paramagnetic resonance spectroscopy. First information was acquired on the content of free radicals in humic acids from polar soils for the northern regions of Western Siberia (Gydan Peninsula, Belyi Island). It was found that polar soils are characterized by higher contents of free radicals than other zonal soils. This is related to the lower degree of humification of organic matter and the enhanced hydromorphism under continuous permafrost conditions. The low degree of organic matter humification in the cryolithozone was confirmed by the increased content of free radicals as determined by electron paramagnetic resonance, which indicates a low biothermodynamic stability of organic matter.  相似文献   

4.
The influence of selective removal of organically bonded metals and organic matter on soil microstructure was investigated. Two samples of soils with different mineralogical, chemical and mechanical composition were treated with acetylacetone in both polar and non-polar solvents to dissolve amorphous organic iron and aluminium, and with hydrogen peroxide to destroy organic matter. Transmission electron micrographs of ultrathin sections and scanning electron micrographs of <5?μm fractions of the extracted soils showed distinct changes of microstructure of clays after successive removal of cementing agents. Although untreated soils showed flocculent or honeycomb structure, soils with organic matter and organically bonded metals removed showed turbostratic domain structure with stepped clusters. The changes in microstructure of soils following extraction were confirmed by determination of pore-size distribution and total cumulative volume of pores using the mercury porosimetry method. In addition, the surface area of the extracted soils was determined by water adsorption. The results showed that organically bonded iron and aluminium and organic matter distinctly influence the fabric of microstructure as flocculating agents.  相似文献   

5.
四种农业土壤上生物炭-土壤的交互效应   总被引:1,自引:0,他引:1  
Soils in south-western Australia are highly weathered and deficient in nutrients for agricultural production. Addition of biochar has been suggested as a mean of improving soil C storage, texture and nutrient retention of these soils.~Clay amendment in sandy soils in this region is a management practice used to improve soil conditions, including water repellence.~In this study a woody biochar (Simcoa biochar) was characterised using scanning electron microscopy before, and four weeks after, it was incorporated into each of four soils differing in clay content and organic matter. Scanning electron microscopy of Simcoa biochar after incubation in soil showed different degrees of attachment of soil particles to the biochar surfaces after 28 d. In addition, the effects of three biochars, Simcoa biochar, activated biochar and Wundowie biochar, on soil microbial biomass C and soil respiration were investigated in a short-term incubation experiment. It was hypothesised that all three biochars would have greater potential to increase soil microbial activity in the soil that had higher organic matter and clay. After 28-d incubation in soil, all three biochars had led to a higher microbial biomass C in the clayey soil, but prior to this time, less marked differences were observed in microbial biomass C among the four soils following biochar application.  相似文献   

6.
In structured soils, water and reactive solutes can preferentially move through larger inter‐aggregate pores, cracks, and biopores. The surface roughness of such macropores is crucial for describing microbial habitats and the exchange of water and solutes between macropores and the soil matrix together with other properties. The objective of this study was to compare the roughness of intact structural surfaces from the Bt‐horizons of five Luvisols developed on loess and glacial till and to test the applicability of confocal laser scanning microscopy. Samples of 5 to 10 cm edge length with intact structural surfaces including cracks with and without clay‐organic coatings, earthworm burrow walls, and root channels were prepared manually. The surface roughness of these structures was determined with a confocal laser scanning microscope of the type Keyence VK‐X100K. The root‐mean‐squared roughness (Rq) the curvature (Rcu) and the ratio between surface area and base area (RA) were calculated from selected surface regions of interest of 0.342 mm2 with an elevation resolution of 0.02 µm. The roughness was smaller for coated as compared to uncoated cracks and earthworm burrows of the Bt‐horizons. This reduction of roughness by the illuviation of clayey material was similar for the structural surfaces of the coarser textured till‐Bt and the finer‐textured loess‐Bt. This similarity suggested a dominant effect of pedogenesis and a minor effect of the parent material on the roughness levels of structural surfaces in the Bt‐horizons. An expected “smoothing” effect of burrow wall surfaces by earthworm activity was not reflected in the roughness values compared to those of uncoated cracks at the chosen spatial scale. However, for root channel walls from one loess‐Bt, the roughness was reduced as compared to that of other structures. These results suggest that the surface roughness of the structural surface types should separately be considered when describing preferential flow and macropore‐matrix exchange or analysing root growth, microbial habitats, and colloidal transport in structured soils. The confocal laser scanning microscopy technique was found useful for characterizing the roughness of intact structural surfaces.  相似文献   

7.
Abstract

The determination of soil organic matter by wet digestion techniques is a slow and laborious analysis. Loss‐on‐ignition (LOI) provides a simple alternative technique for the estimation of soil organic carbon in non‐calcareous A horizon soils of the Natal midlands and Zululand forestry regions. Using multiple regressional techniques, the relationships between loss‐on‐ignition, Walkley organic carbon and soil texture for 55 soils were determined over a range of ignition temperatures. The relationships hold best for soil samples with relatively low organic carbon contents (< 5%). The optimum temperature for ignition was found to occur at 450°C and resulted in the relationship: Soil organic carbon = 0.284*LOI percent. No advantage is gained through ignition at higher temperatures due to the loss of clay mineral structural water, even if the soil texture is accurately known.  相似文献   

8.
THE ORGANIC MATTER CONTENT OF THE SAVANNA SOILS OF WEST AFRICA   总被引:2,自引:0,他引:2  
Published and unpublished data on the amounts of organic matter and nitrogen in the surface soils of the West African savanna are reviewed. In general, amounts are small; the mean carbon content of soils from 605 well-drained sites was 0.68 per cent. Two important factors governing amounts of organic matter in well-drained soils appear to be the clay content and a moisture factor related to the length of the wet season and represented here by mean annual rainfall. Multiple linear regression on soil clay content and rainfall accounted for 46.5 per cent and 57.2 per cent, respectively, of the observed variability of soil carbon and nitrogen contents. These findings suggest that the low levels of organic matter in savanna soils arise from their predominantly sandy nature and from the relatively low rainfall. In poorly drained soils organic matter levels are higher but are less significantly related to clay content and rainfall. The influence of human interference and of parent material and altitude on organic matter is demonstrated in the context of geographically limited areas within the savanna for which more detailed information was available.  相似文献   

9.
The adsorption of the toxin from Bacillus thuringiensis (Bt‐toxin), which is synthesized in genetically modified maize, on sterilized Na‐montmorillonite and on H2O2‐treated and untreated clay fractions of three soils from different sites were studied. All adsorption isotherms can be described by a linear isotherm. Although all clay fractions from the different soils show nearly the same mineralogical composition, we found different affinities ranging from k = 47.7 to k = 366.7 of the adsorbates for the Bt‐toxin. The H2O2‐treated clay fractions show no correlation between the adsorption affinity and the amount of soil organic matter. On the other hand, there is a correlation between the content of organic carbon and the adsorption affinity of the untreated clay fractions. This can be explained by the fact that due to the coatings of soil organic matter on aggregates, the Bt‐toxin polymers are not able to adsorb within the clay aggregates.  相似文献   

10.
Soil organic matter fractions were isolated from three soils by the application of a sequential extraction procedure employing a series of 10 mild organic solvents of different polarity. The isolated organic materials were characterized by elemental, infrared and electron spin resonance analyses. They showed different chemical and structural properties which varied according to the progression of the solvent series, with some similarities between two successive extracts. The corresponding fractions extracted from the three soils were substantially similar to each other in chemical character. Along each series of extracts aliphaticity appeared to decrease, whilst aromaticity, polar oxygenated and nitrogenated functional groups, transition metal ion content and organic free radical concentrations increased. ESR spectra were structured and were put in four different classes, according to their characteristic resonances. Although the yields of extracted organic material were not high, the fractions could be considered representative of the soil organic matter composition and furnish new chemical information on its nature and properties.  相似文献   

11.
The organic matter (OM) in biopore walls and aggregate coatings may be important for sorption of reactive solutes and water as well as for solute mass exchange between the soil matrix and the preferential flow (PF) domains in structured soil. Structural surfaces are coated by illuvial clay‐organic material and by OM of different origin, e.g., earthworm casts and root residues. The objectives were to verify the effect of OM on wettability and infiltration of intact structural surfaces in clay‐illuvial horizons (Bt) of Luvisols and to investigate the relevance of the mm‐scale distribution of OM composition on the water and solute transfer. Intact aggregate surfaces and biopore walls were prepared from Bt horizons of Luvisols developed from Loess and glacial till. The mm‐scale spatial distribution of OM composition was scanned using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The ratio between alkyl and carboxyl functional groups in OM was used as potential wettability index (PWI) of the OM. The infiltration dynamics of water and ethanol droplets were determined measuring contact angles (CA) and water drop penetration times (WDPT). At intact surfaces of earthworm burrows and coated cracks of the Loess‐Bt, the potential wettability of the OM was significantly reduced compared to the uncoated matrix. These data corresponded to increased WDPT, indicating a mm‐scaled sub‐critical water repellency. The relation was highly linear for earthworm burrows and crack coatings from the Loess‐Bt with WDPT > 2.5 s. Other surfaces of the Loess‐Bt and most surfaces of the till‐derived Bt were not found to be repellent. At these surfaces, no relations between the potential wettability of the OM and the actual wettability of the surface were found. The results suggest that water absorption at intact surface structures, i.e., mass exchange between PF paths and soil matrix, can be locally affected by a mm‐scale OM distribution if OM is of increased content and is enriched in alkyl functional groups. For such surfaces, the relation between potential and actual wettability provides the possibility to evaluate the mm‐scale spatial distribution of wettability and sorption and mass exchange from DRIFT spectroscopic scanning.  相似文献   

12.
Soil water repellency affects the hydrological functions of soil systems. Water repellency is associated with the content and the composition of soil organic matter. In the present study, we examined the effects of hydrophobic and hydrophilic organic matter contents, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content on water repellency using model sandy soils. Stearic acid and guar gum were used as the hydrophobic and hydrophilic organic compounds, respectively. Water repellency was estimated using the sessile drop method. Hydrophobic organic matter content was found to be the dominant factor affecting soil water repellency. Hydrophilic organic matter was found to increase the contact angle to some extent without the presence of hydrophobic organic matter. With the presence of both hydrophobic and hydrophilic organic matter, the effects of the hydrophilic organic matter content on contact angle were found to be dependent on the hydrophobic organic matter content of the soil. This relationship was explained by the differences in the surface free energies of different organic matter and mineral surfaces. The contact angle increased with increasing hydrophobic/hydrophilic organic matter ratio when the hydrophilic organic matter content was constant. When the hydrophobic organic matter content was constant, contact angles were roughly comparable, irrespective of the hydrophobic/hydrophilic organic matter ratio. The contact angles were not comparable at each total organic matter content. Accordingly, the hydrophobic/hydrophilic organic matter ratio and the total organic matter content in soil may not provide satisfactory information about soil water repellency.  相似文献   

13.
Experimental data on the effect of surface fires on the organic matter transformation in the gray-humus soils of pine forests were obtained in the southwestern part of the Baikal region. The application of methods of thermal analysis (such as differential scanning calorimetry and thermogravimetry) made it possible to obtain qualitative and quantitative information about the decomposition (oxidation) of the components of the soil organic matter upon their heating. It was found that the organic matter content in the soils subjected to fires of high intensity decreased by 1.9 times in comparison with the control. In the litter horizons of the undisturbed soils, thermolabile components (mostly, oligo- and polysaccharides) comprised 61% of the organic matter, and the portion of thermostable components (aromatic compounds) was 39%. A significant decrease in the content of thermolabile components and an increase in the content of thermostable components (up to 62%) were observed in the organic matter of the postpyrogenic forest litter as a result of the charcoal formation during the fire.  相似文献   

14.
In this paper, we tried to find interrelations between water retention properties, surface characteristics, and structural features of sandy soils rich in organic matter. Raw humic, epihumic, and endohumic horizons of four acidic sandy forest soils were selected for this study. Specific areas and water adsorption energies were estimated from water vapor adsorption isotherms, micropore (nanometer range) parameters from desorption isotherms, mesopore (micrometer range) parameters from mercury intrusion porosimetry, and macropore (millimeter range) parameters from water retention curves measured using combined suction plate and pressure chamber methods. In the studied soils, pore volumes in all pore ranges were proportional to soil organic matter content. Thin column wicking technique was used to determine migration velocity vs. time dependence in the samples beds for a range of liquids of various surface tensions. From these dependencies the surface free energy and its components were estimated that were used for calculation of water contact angles and forces of interparticle interaction via a water meniscus. The dominant interactions in the studied soils were dispersive Lifshitz‐Van der Waals forces. In the two upper horizons polar acid‐base interactions were absent, however in the deepest horizons, high input of polar interactions occurred, due practically to electron‐donor component of the surface free energy. The electron‐acceptor contribution was low. The wettability of the soils was low in upper horizons as indicated by high water contact angles.  相似文献   

15.
In some soils, aggregate coatings and walls of biopores differ in the content of clay and organic carbon from that of the aggregate interiors or the soil matrix. The composition of the organic matter on aggregates and on the surfaces of biopores is largely unknown. We have compared the composition of organic matter between inner and outer parts of aggregates and between biopore walls and the soil matrix in a loamy arable soil and a sandy forest one. Hot‐water‐ and sodium‐pyrophosphate‐extractable organic matter was analysed by Fourier transform infrared (FT‐IR) spectroscopy. For the sandy forest soil, the FT‐IR spectra showed that organic matter from the walls of root channels contains fewer functional groups with absorption bands at 1740–1710 cm?1 and 1640–1600 cm?1 than that from burrow fillings. For the arable soil, the content of these functional groups in hot‐water‐soluble organic matter from the coatings is less than in that from the interiors in the topsoil, and the reverse is so in the subsoil, probably because water‐soluble organic matter containing these functional groups has moved from topsoil to subsoil. The results indicate that root channels in the forest soil have more reactive zones in an otherwise relatively inert sandy matrix, whereas aggregate coatings in the arable subsoil have a greater cation exchange capacity and a greater sorption potential for hydrophobic substances than the aggregate interiors.  相似文献   

16.
The specific features of changes in the content and mobility of organic matter in litters and cryogenic soils under heating were revealed. The thermal stability of the organic matter and litters is different. In the soils, the maximal loss of matter was recorded at a temperature of 300°C. In the litters, the maximal losses were found at 300, 400 and 550°C and depended inversely on the carbon content in them. The heating to 200°C caused insignificant changes in the mass of the litters and soils but increased the content of the water-soluble fraction of organic matter and the concentration of the water-soluble mineral nitrogen forms.  相似文献   

17.
Twenty-five soils, having a wide range of organic matter contents, were extracted with anhydrous formic acid containing 10 per cent acetylacetone, and the extracted material precipitated in two fractions with diisopropyl ether. Precipitates comprised from 5.1 to 51.1 per cent of the original soil organic matter, the proportion extracted tending to be greatest from acid soils of fairly high organic matter content and least from neutral or slightly alkaline soils of low organic matter content. Soil clay content appeared to have no effect on the efficiency of organic matter extraction, but was the most important soil factor governing the proportion of the total soil-N extracted. Amounts of N extracted ranged from 10.2 to 57.8 per cent of the original soil N content, extraction efficiency being greatest with soils of low clay content and low pH. There was evidence to suggest that soil clay afforded some protection to N compounds against extraction. The results indicate that formic acid/acetylacetone is most effective with soils in which much of the organic matter is only partly humified.  相似文献   

18.
G. Stoops 《Geoderma》1983,30(1-4):179-186
Soft bog-ore deposits are frequently present in alluvial soils of the Nete Valley, Province of Antwerp, Belgium. A profile was studied consisting of four layers of which the upper three were analyzed with the light microscope and SEM (scanning electron microscope). The top layer consisted mainly of clay and fragmented diatom shells. Isotropic Fe-oxihydrates and radiating goethite needles were present in the underlying limonitic layer. Siderite and vivianite were found in the third layer, the former often present in the wall of root channels, whereas the latter was frequently found within the channels. Vivianite was also found associated with decaying roots or alone inside root channels. Pyrite framboids were also found in the lower part of the profile.

The presence, close to each other, of different minerals such as goethite, pyrite, siderite and vivianite cannot be explained by macroenvironmental mineral equilibria alone. It requires the existence of different microenvironments which can vary in time and place. The study of such microenvironments, however, requires additional in situ microchemical submicroscopic techniques.  相似文献   


19.
Location and stability of a recombinant prion protein (recPrP) and its interaction with humic-like complexes were investigated by low-temperature ashing (LTA), thermal gravimetric (TG), and scanning electron microscopy (SEM) analyses. Humic-like complexes were obtained by abiotic polymerization of catechol, one of the possible precursors of soil humic matter, through the catalysis of birnessite, a manganese oxide common in soil environment. The recPrP was immobilized in organomineral complexes via sorption or entrapment. Complexes were treated by LTA, allowing the controlled removal of organic matter layer by layer, from the external to the internal side, with minimal disturbance of mineral constituents. Thermal gravimetric and SEM analyses were performed on specimens before and after LTA treatment. Entrapped recPrP, compared with sorbed, resulted less easily accessible to LTA treatment and showed a higher thermal stability by TGA analyses. On the basis of these findings, we hypothesize that the processes leading to newly formed organic complexes can enhance prion stability in soil and thus influence the environmental diffusion of infectivity.  相似文献   

20.
Rapid turnover of organic matter leads to a low efficiency of organic fertilizers applied to increase and sequester C in soils of the humid tropics. Charcoal was reported to be responsible for high soil organic matter contents and soil fertility of anthropogenic soils (Terra Preta) found in central Amazonia. Therefore, we reviewed the available information about the physical and chemical properties of charcoal as affected by different combustion procedures, and the effects of its application in agricultural fields on nutrient retention and crop production. Higher nutrient retention and nutrient availability were found after charcoal additions to soil, related to higher exchange capacity, surface area and direct nutrient additions. Higher charring temperatures generally improved exchange properties and surface area of the charcoal. Additionally, charcoal is relatively recalcitrant and can therefore be used as a long-term sink for atmospheric CO2. Several aspects of a charcoal management system remain unclear, such as the role of microorganisms in oxidizing charcoal surfaces and releasing nutrients and the possibilities to improve charcoal properties during production under field conditions. Several research needs were identified, such as field testing of charcoal production in tropical agroecosystems, the investigation of surface properties of the carbonized materials in the soil environment, and the evaluation of the agronomic and economic effectiveness of soil management with charcoal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号