首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Water requirements of olive orchards are difficult to calculate, since they are influenced by heterogeneous factors such as age, planting density and irrigation systems. Here we propose a model of olive water requirements, capable of separately calculating transpiration (E p), intercepted rainfall evaporation (E pd) and soil evaporation (E s) from the wet and dry fraction of the soil surface under localized irrigation. The model accounts for the effects of canopy dimension on E p and of the wetted soil surface fraction on E s. The model was tested against actual measurements of olive evapotranspiration (ET) obtained by the eddy covariance technique in a developing olive orchard during 3 years. The predicted ET and crop coefficients showed good agreement with the measured data. The model was then used to simulate the average water requirements of two mature orchards using 20-year meteorological datasets of Cordoba (Spain) and Fresno (CA, USA). Average annual ET of a 300 trees ha−1 orchard at Cordoba was 1,025 mm, while the same orchard at Fresno had an average ET of 927 mm. Transpiration losses were 602 mm at Cordoba and 612 mm at Fresno. Evaporation from the soil can have a large effect on olive ET; thus, olive crop coefficients (K c) are very sensitive to the rainfall regime.  相似文献   

2.
Prediction of annual reference evapotranspiration using climatic data   总被引:3,自引:0,他引:3  
It is important to determine how well ETo can be estimated from easily observed Epan (free water evaporation measured by a pan) measurements and the other climatic data. Our objectives are to predict annual ETo with Epan data (with a calibrated kp (=ETo/Epan)) and with a 4-variable regression function method. The significance of the trends of Epan, ETo and kp series were detected. The whole data series (ETo, Epan, mean temperature, sunlight hours, relative humidity and wind speed) were divided into the early (L-5) years for calibrating kp and coefficients of a 4-variable function and the last 5 years for predicting ETo. From the results, significance of series trends decreased when using the modified Mann-Kendall (MMK) test compared to the Mann-Kendall (MK) method. For ETo, five out of six sites showed significant trends according to the MK statistic Z, and two sites were significant in trend combining with the MMK statistic Z*(j). For Epan, two sites were significant in trends according to Z, and zero sites were significant in trends combining with Z*(j). For kp, two sites were significant in trends according to Z, and no sites were significant in trends combining with Z*(j). Thus the calibrated kp can be treated as a constant when using the Epan method. The predicted annual ETo using the Epan and the multi-variable methods showed generally good agreements with the estimated annual ETo (based on monthly PM equation) with low relative errors (RE). Mean ETo values were well predicted by both methods. When using Epan method, RE ranged from −14.7 to −3.3% for Urumqi, from 17.6 to 21.7% for Xning, from 1.8 to 10.7% for Lanzhou, from 4.7 to 17.0% for Huhehaote, from −7.4 to 9.1% for Beijing, and from −8.6 to 2.3% for Changchun. RE of predicting annual ETo with 4-variable regression function were even lower compared to Epan method. The main error source of the predictions came from the deviation between calibrated kp and the actual kp of the predicted years when using Epan method and from random fluctuations of climatic data when using the 4-varible regression function. In conclusion, the MMK test was a robust method for trend detection because it considered serial time dependence. Insignificant trend of the kp series supports the choice of a mean value as the calibrated kp and for ETo predictions. The Epan method is recommended for prediction of annual ETo.  相似文献   

3.
Crop coefficient of sesame is necessary for the water requirement estimation in irrigation water planning and management. This study has been initiated to determine the crop coefficient (Kc) of sesame in a semi-arid climate. The relationships between Kc and ETp/Ep (pan evaporation) and leaf area index (LAI), growing degree-day (GDD) and days after sowing (DAS), were also investigated. The seasonal ETp for sesame in the study area with a 5 month growth period was 910 m. The mid-season and late-season Kc values for sesame were 1.08 and 0.64, respectively. These values are somewhat lower and higher than those for other oil seed crops. The Kc value for the initial stage was close to that obtained by the procedure proposed by Allen et al. [Allen, R.G., Smith, M., Pereira, L.S., Pruitt, W.O., 1997. Proposed revision to the FAO procedure for estimating evapotranspiration. In: The Second Iranian Congress on Soil and Water Issues, 15–17 February 1997. Tehran, I.R. of Iran, pp. 1–18]. The ratio of ETp/Ep varied between 0.49–1.0 from the beginning to the middle of the growing season which is a sign of mild local advection in the region. The maximum ratios of ETp/ET0 and ETp/Ep occurred at a LAI of 3.0. Furthermore, third-order polynomials were presented to predict the Kc values from days after sowing (DAS), percent days after sowing (%DAS) and growing degree-day (GDD).  相似文献   

4.
The objective of this study was to test an artificial neural network (ANN) for converting pan evaporation data (E p) to estimate reference evapotranspiration (ET0) as a function of the maximum and minimum air temperature. The conventional method that uses Pan coefficient (K p) as a factor to convert E p to ET0, is also considered for the comparison. The ANN has been evaluated under semi-arid conditions in Safiabad Agricultural Research Center (SARC) in the southwest of Iran, comparing daily estimates against those from the FAO-56 Penman–Monteith equation (PM), which was used as standard. The comparison shows that, the conventional method underestimated ET0 obtained by the PM method. The ANN method gave better estimates than the conventional method that requires wind speed and humidity data.  相似文献   

5.
Large areas of vineyards have been established in recent years in arid region of northwest China, despite limited water resources. Water to support these vineyards is mainly supplied by irrigation. Accurate estimation of vineyard evapotranspiration (ET) can provide a scientific basis for developing irrigation management. Transpiration and soil evaporation, as two main components of ET, were measured separately in a vineyard in this region by heat balance sap flow system and micro-lysimeters during the growing season of 2009. Diurnal and seasonal dynamics of sap flow and its environmental controls were analyzed. Daily sap flow rate (SRl) increased linearly with solar radiation (Rs), but showed an exponential increase to its maximum curve as a function of vapor pressure deficit (VPD). Residuals of the two regressions both depended on volumetric soil water content to a depth of 1.0 m (VWC). VWC also significantly influenced SRl. The relationship of them could be expressed by a piecewise regression with the turnover point of VWC = 0.188 cm3 cm−3, which was ∼60% of the field capacity. Conversely, soil evaporation (Es) increased exponentially with VWC. Thus, we recommended keeping VWC in such vineyards slightly above ∼60% of the field capacity to maintain transpiration while reducing soil evaporation. Vineyard transpiration (Ts) was scaled from sap flow by using leaf area (Al) as it explained 60% of the spatial variability of sap flow. Vine transpiration was 202.0 mm during the period from April 28 to October 5; while that of Es was 181.0 mm. The sum of these two components was very close to ET estimated by the Bowen ratio energy balance method (386.9 mm), demonstrating the applicability of sap flow for measuring grape water use in this region.  相似文献   

6.
《Agricultural Systems》1998,57(1):77-100
In simulations on the fate of agricultural chemicals applied to crops, accurate partitioning of rainfall between infiltration and runoff is fundamental to chemical runoff predictions. We evaluated the Root Zone Water Quality Model (RZWQM version 3.1) against measured runoff from two field plots (15×45 m with 3% slope) on a Tifton loamy sand (fine-loamy, siliceous, thermic Plinthic Kandiudult). Six simulated rainfall events, each 25 mm h−1 for 2 h, were applied to maize (Zea mays, L.) each year. In the uncalibrated mode, RZWQM under-predicted runoff by 40% on average, with the closest fit for events that occurred after full canopy. Saturated hydraulic conductivity (Ks) accounted for the majority of the uncertainty in predicted runoff. When Ks of the surface crust was back calibrated from the measured runoff, RZWQM predicted runoff closely for the remaining plots and events. Alternatively, using different Ks values for wheel track and crop beds, running the model for each and, then, proportionally assigning runoff also led to predictions that agreed with measured runoff. When spatial and temporal changes in Ks were calibrated to specific conditions at the site, RZWQM effectively predicted runoff.  相似文献   

7.
An experiment was carried out in a naturally ventilated greenhouse to study the relationship between banana (Musa sp.) plant transpiration (Tr) measured with load cells, reference crop evapotranspiration (ETo) calculated with five widely used models (i.e. the Priestley-Taylor, FAO radiation, Hargreaves, FAO Penman and FAO Penman-Monteith models) and pan evaporation (Epan) measured with a standard Chinese 20 cm pan. Microclimatic conditions were measured inside the greenhouse. Results show that vapor pressure deficit and air temperature had good linear correlations to banana Tr with R2 of 0.67 and 0.62, respectively. Among the five models tested, banana Tr and ETo calculated with the FAO-Penman model yielded the highest determination coefficient (R2 = 0.67), followed by the FAO-PM model (R2=0.63), the FAO radiation model (R2=0.52), the Hargreaves model (R2=0.49) and the Priestley-Taylor model (R2=0.47). Banana transpiration Tr vs. Epan yielded an R2 of 0.83, which is higher than the five models tested. In conclusion, the 20 cm pan can be useful for estimating banana Tr in greenhouses.  相似文献   

8.
Accurate reference evapotranspiration (ET0) data are essential to water resources project planning and farm irrigation scheduling. Evaporation pans are widely used to estimate reference ET0. Via the pan coefficient (K p), ET0 is estimated from evaporation pan data. Four common K p equations (Orang in Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables, unpublished report, 1998; Allen and Pruitt in J Irrig Drain Eng 117(5):758–773, 1991; Cuenca in Irrigation system design: an engineering approach, p 133, 1989; Snyder in J Irrig Drain Eng 118(6):977–980, 1992) to calculate daily K p coefficients to estimate ET0 were evaluated using a 10-year mean climate dataset for a subtropical climate (north of Iran). Overall results showed that ET0 calculated using the daily K p values from Orang (Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables, unpublished report, 1998) provided more accurate daily, monthly, and annual total estimates compared to the others equations.  相似文献   

9.
Evaporation and canopy conductance of citrus orchards   总被引:2,自引:0,他引:2  
Evaporation of citrus orchards has been widely studied, but differences in methodologies and management conditions have led to conflicting results, mainly due to differences in ground cover and soil evaporation. In this work the contribution of transpiration and soil evaporation has been studied in a drip-irrigated, clean cultivated mandarin (Citrus reticulata Blanco) orchard on a sandy soil in Southern Spain. Evapotranspiration (ET) was measured using eddy covariance while soil evaporation was determined with microlysimeters, during August 2000 and May 2001. Average ET was 2.6 mm day−1 in August and 2.1 mm day−1 in May. The crop coefficient (Kc) was 0.44 and 0.43 in 2000 and 2001, respectively. The coefficient of transpiration (Kp) was 0.30 in 2000 and 0.25 in 2001. The daily bulk canopy conductance (gc) ranged from 1.2 to 2.2 (average 1.8) mm s−1 in 2000 and from 1.2 to 2.7 (average 1.9) mm s−1 in 2001. A model of daily canopy conductance as a function of intercepted radiation was derived and applied to calculate the transpiration of orchards with different values of ground cover (GC). The ratio of transpiration over reference ET of mandarin orchards is linearly related to ground cover (Kp = 0.7 GC). Calculated crop coefficients agree with values suggested by FAO for mature orchards (around 0.65) but are substantially lower than FAO values for young plantations.  相似文献   

10.
Evaporation from ponded rice grown on fine-textured soils was calculated using a simple water balance equation, and compared with pan evaporation measured at a regional meteorological station. Crop/pan (Er/Ep) evaporation ratios showed seasonal trends, with values generally exceeding unity during the mid- to late-season ponding period. Mid-summer ratios of Er/Ep for two experimental fields were not significantly different from those reported in a previous study using a different experimental technique, but were higher on a third. On the average, evaporation over the whole ponding period equalled that from a Class A pan. The assumption that the infiltration or seepage term of the water balance may be neglected for fine-textured soils would seriously overestimate Er on one of the three experimental sites.  相似文献   

11.
Based on evaporation from a 20 cm diameter pan placed above the crop canopy, sprinkler irrigation scheduling of winter wheat was studied in the North China Plain (NCP) in the 2001–2004 winter wheat seasons. Results showed that pan evaporation (E pan,C) was closely related to actual evapotranspiration (ET) measured using weighing lysimeters. The combined pan–crop coefficient (K c,pan), the ratio of ET to E pan,C, was closely related to leaf area index (LAI ) and plant height. Data from the 2002–2003 season were used to establish the relationships between K c,pan and LAI (method A) or plant height (method B), and used to determine the crop coefficient (method C). ET computed by the three methods was compared with measured ET using lysimeters in the 2001–2002 and 2003–2004 seasons. Mean relative error of estimated daily ET by the three methods ranged from 20 to 30%, and the relative error in cumulative ET in the experimental periods ranged from 1 to 19%. Among the three methods, results from methods A and B were not significantly different from each other (P > 0.01), and were closer to the lysimeter data than results from method C (P < 0.001). Method B, being easier to measure, was recommended for ET estimation in NCP.  相似文献   

12.
Intensification of olive cultivation by shifting a tree crop that was traditionally rain fed to irrigated conditions, calls for improved knowledge of tree water requirements as an input for precise irrigation scheduling. Because olive is an evergreen tree crop grown in areas of substantial rainfall, the estimation of crop evapotranspiration (ET) of orchards that vary widely in canopy cover, should be preferably partitioned into its evaporation and transpiration components. A simple, functional method to estimate olive ET using crop coefficients (K c=ET/ET0) based on a minimum of parameters is preferred for practical purposes. We developed functional relationships for calculating the crop coefficient, K c, for a given month of the year in any type of olive orchard, and thus its water requirements once the reference ET (ET0) is known. The method calculates the monthly K c as the sum of four components: tree transpiration (K p), direct evaporation of the water intercepted by the canopy (K pd), evaporation from the soil (K s1) and evaporation from the areas wetted by the emitters (K s2). The expression used to calculate K p requires knowledge of tree density and canopy volume. Other parameters needed for the calculation of the K c’s include the ET0, the fraction of the soil surface wetted by the emitters and irrigation interval. The functional equations for K p, K pd, K s1 and K s2 were fitted to mean monthly values obtained by averaging 20-year outputs of the daily time step model of Testi et al. (this issue), that was used to simulate 124 different orchard scenarios.  相似文献   

13.
Accurate estimation of reference evapotranspiration (ET0) is important for water resources engineering. Therefore, a large number of empirical or semi-empirical equations have been developed for assessing ET0 from numerous meteorological data. However, records of such weather variables are often incomplete or not always available for many locations, which is a shortcoming of these complex models. Therefore, practical and simpler methods are required for estimating the ET0. In this study, the efficiency of a wavelet regression (WR) model in estimating reference evapotranspiration based on only Class A pan evaporation is examined. The results of the WR model are compared with those of three pan-based equations, namely the FAO-24 pan, Snyder ET0 and Ghare ET0 equations and their calibrated versions. Daily Class A pan evaporation data from the Fresno and Bakersfield stations of the United States Environmental Protection Agency in California, USA, are used in the study. The WR model estimates are compared against those of the FAO-56 Penman–Monteith equation. Results showed that the WR model is capable of accurately predicting the ET0 values as a product of pan evaporation data.  相似文献   

14.
A field study was conducted from 2002 to 2007 to investigate the influence of row spacing of winter wheat (Triticum aestivum L.) on soil evaporation (E), evapotranspiration (ET), grain production and water use efficiency (WUE) in the North China Plain. The experiment had four row spacing treatments, 7.5 cm, 15 cm, 22.5 cm, and 30 cm, with plots randomly arranged in four replicates. Soil E was measured by micro-lysimeters in three seasons and ET was calculated from measurements of soil profile water depletion, irrigation, and rainfall. The results showed that E increased with row spacing. Compared with the 30-cm row spacing (average E = 112 mm), the reduction in seasonal E averaged 9 mm, 25 mm, and 26 mm for 22.5 cm, 15 cm, and 7.5 cm row spacings, respectively. Crop transpiration (T) increased as row spacing decreased. The seasonal rainfall interception and seasonal ET were relatively unchanged among the treatments. In three out of five seasons, the four different treatments showed similar grain yield, yield components and WUE. We conclude that for winter wheat production in the North China Plain, narrow row spacing reduced soil evaporation, but had minor improvements on grain production and WUE under irrigated conditions with adequate nutrient levels.  相似文献   

15.
Measurement and simulation of evaporation from soil in olive orchards   总被引:2,自引:2,他引:0  
Evaporation from the soil (E s) beneath an olive orchard was characterised in a semi-arid Mediterranean climate (Córdoba, Spain). First, the microlysimeter method was modified to measure accurately E s beneath tree orchards. The variability in irradiance reaching the soil beneath the orchard caused spatial variations in E s during both evaporation stages. In the first days of the drying cycle, E s was higher for high irradiance locations but the opposite occurred the subsequent days, although daily differences in E s between locations progressively declined. For the energy-limiting stage, linear relationships between E s values and incident photosynthetically active radiation were found for different times throughout the season. The slopes of the relationships were similar, but their intercepts differed substantially, showing the importance of a variable aerodynamic component in determining E s. A simple functional model was formulated to estimate E s at daily time steps. During the energy-limiting stage, E s is calculated as the sum of the equilibrium evaporation at the soil surface and an aerodynamic term, derived from the Penman equation. For the falling rate stage, Ritchie's (1972) approach is adopted for the E s calculations. The model was successfully tested in an orchard of 6×6 m spacing, typical of intensive olive orchards, under a wide range of evaporative demand conditions. Trees covered around 36% of the soil surface. The model predicted an average seasonal E s of 286 mm, which represents around one third of the estimated olive evapotranspiration and about 50% of the average seasonal rainfall of the area. Received: 3 August 1998  相似文献   

16.
Summary Investigations were carried out in 1989 to determine the evapotranspiration (ET) of alfalfa when irrigated with saline waste water coming from the evaporation of fresh water in the cooling towers of Utah Power and Light Company Electrical Power Plant at Huntington in central Utah, U.S.A. The primary goal is to dispose of the waste water from the power plant by irrigation and to maximize salt deposition in the soil, maximize crop ET, minimize runoff from the soil surface, and minimize leaching to the ground water. Using the Bowen ratio-energy balance method, alfalfa evapotranspiration was measured at an experimental site for each 20-minute period during the 1989 irrigation season. Using a simplified seasonal water balance, the results showed that cumulative irrigation plus rain was less than evapotranspiration for the 1989 irrigation season. This means that for the long term in addition to irrigation and precipitation some water was withdrawn from the soil for alfalfa crop water requirements (ETa). Short term evaluations showed that because of unforeseen heavy rain (thunder showers) in this mountainous area between irrigations, ETa was occasionally less than irrigation plus rain. This means the excess water was stored in the soil for later use. The average value for ETa/ETp (potential ET) for the 1989 irrigation season was 0.47 but occasionally the ratio was greater than unity. Short-term studies (Hanks et al. 1990 a) indicate that yield and ETa are likely to decrease only slightly for the coming years if saline irrigation water is applied. This method of investigation can be applied to any industrial processes which produce waste water.  相似文献   

17.
The North China Plain (NCP) is one of the main productive regions for winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) in China. However, water-saving irrigation technologies (WSITs), such as sprinkler irrigation technology and improved surface irrigation technology, and water management practices, such as irrigation scheduling have been adopted to improve field-level water use efficiency especially in winter wheat growing season, due to the water scarcity and continuous increase of water in industry and domestic life in the NCP. As one of the WSITs, sprinkler irrigation has been increasingly used in the NCP during the past 20 years. In this paper, a three-year field experiment was conducted to investigate the responses of volumetric soil water content (SWC), winter wheat yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) to sprinkler irrigation regimes based on the evaporation from an uncovered, 20-cm diameter pan located 0-5 cm above the crop canopy in order to develop an appropriate sprinkler irrigation scheduling for winter wheat in the NCP. Results indicated that the temporal variations in SWC for irrigation treatments in the 0-60-cm soil layer were considerably larger than what occurred at deeper depths, whereas temporal variations in SWC for non-irrigation treatments were large throughout the 0-120-cm soil layer. Crop leaf area index, dry biomass, 1000-grains weight and yield were negatively affected by water stress for those treatments with irrigation depth less than 0.50E, where E is the net evaporation (which includes rainfall) from the 20-cm diameter pan. While irrigation with a depth over 1.0E also had negative effect on 1000-grains weight and yield. The seasonal ET of winter wheat was in a range of 206-499 mm during the three years experiments. Relatively high yield, WUE and IWUE were found for the irrigation depth of 0.63E. Therefore, for winter wheat in the NCP the recommended amount of irrigation to apply for each event is the total 0.63E that occurred after the previous irrigation provided total E is in a range of 30-40 mm.  相似文献   

18.
Crop scientists are often interested in canopy rather than leaf water estimates. Comparing canopy fluxes for multiple treatments using micrometeorological approaches presents limitations because of the large fetch required. The goal of this study was to compare leaf-scale to field-scale data by summing soil water evaporation (E) and leaf transpiration (T) versus ET using tower eddy covariance (EC) and scaling leaf transpiration to the canopy level using a two-step scaling approach in soybean [Glycine max (L.) Merr.]. Soybean transpiration represented 89-96% of E + T when combining the soil water evaporation with leaf transpiration on the five measurement days during reproductive growth. Comparing E + T versus ET from the EC system, the E + T method overestimated ET from 0.68 to 1.58 mm. In terms of percent difference, the best agreement between the two methods was 15% on DOY 235 and the worst agreement occurred on DOY 234 (41%). A two-step scaling method predicted average ET within 0.01 mm of the EC ET between 10:00 and 14:15 on an hourly time-step on DOY 227 under uniform sky conditions and average ET within 0.03 mm of the EC ET on DOY 235 under intermittent sky conditions between 10:00 and 15:15. Pooling the scaled-leaf data and comparing them with the measured EC ET data exhibited a strong linear relationship (r = 0.835) after accounting for bias (6%). Findings from this study indicate satisfactory results comparing absolute differences are likely not obtainable by summing leaf transpiration with soil water evaporation to calculate canopy water fluxes. However, scaling leaf transpiration provided a robust measure of canopy transpiration during reproductive growth in soybean under these conditions and merits additional study under different climatic and crop conditions.  相似文献   

19.
Seasonal partitioning of evapotranspiration (ET) between transpiration by grapevines (Vitis vinifera) (T gp) and by cover crops of a ryegrass/clover mixture (T cc), and soil evaporation (E s) was performed for a furrow-irrigated vineyard during the 1994/1995 and 1995/1996 growing seasons in south-eastern Australia. ET, determined with a water balance approach, averaged 622 mm. The ET rate averaged over the two seasons increased from 2 mm day–1 in spring (September to November), when it was dominated by T cc, to peak rates of around 5 mm d–1 in summer (December to February) when it was dominated by E s. T gp, determined with either heat-pulse sensors or the Penman-Monteith equation, attained peak rates of 0.75 and 0.98 mm d–1, or 6.2 and 8.1 l vine–1 day–1 in the first and second seasons, respectively. Total seasonal T gp of 109.1 mm (900 l vine–1) in 1994/1995 and 118.8 mm (980 l vine–1) in 1995/1996 constituted just 18 – 19% of total ET. T cc totalled 214 mm (34% of ET) in the first season, when pasture cover was sparse and present for 5 months of the growing season (September to February), and 196 mm (30% of ET) in the second season when pasture cover was heavy but present for only 3 months (September to November). E s averaged 49% of total ET over both seasons. At least 30% of water used for ET was contributed by antecedent soil water in both seasons. The crop factor (K c) was largely constant throughout the season with an average value of 0.48. The depletion pattern of soil water indicated that the vine explored the soil profile well beyond 1.0 mm depth and almost evenly up to a distance of 1.5 m from the trunk. Water use efficiencies for fresh fruit yield (WUE), i. e., the ratio of fruit weight to total water use at harvest,were 13.3 and 40.5 kg ha–1 mm–1 when based on ET in 1994/1995 and 1995/1996, respectively, and 84.0 and 211.1 kg ha–1 mm–1, respectively, when based on T gp. The T gp data were used to verify three models of vine transpiration developed in an earlier study. Models based on the green area index or on fraction of incident radiation intercepted by the vine canopy produced good agreement with T gp. The model based on canopy resistance performed poorly, indicating the difficulty of extrapolating the stomatal response to environmental variables from one set of experimental conditions to another. Received: 23 September 1996  相似文献   

20.
Maize (Zea mays L.) is an important food crop for irrigated regions in the world. Its growth and production may be estimated by different crop models in which various relationships between growth and environmental parameters are used. For simulation of maize growth and grain yield, a simulation model was developed (Maize Simulation Model, MSM). Dynamic flow of water, nitrogen (N) movement, and heat flow through the soil were simulated in unsteady state conditions by numerical analysis in soil depth of 0–1.8 m. Hourly potential evapotranspiration [ETp(t)] for maize field was estimated directly by Penman–Monteith method. Hourly potential evaporation [Ep(t)] was estimated based on ETp(t) and canopy shadow projection. Actual evaporation of soil surface was estimated based on its potential value, relative humidity of air, water pressure head and temperature at soil surface layer. Actual transpiration (Ta(t)) was estimated based on soil water content and root distribution at each soil layer. Hourly N uptake by plant was simulated by N mass flow and diffusion processes. Hourly top dry matter production (HDMAj + 1, where j is number of hours after planting) was estimated by hourly corrected intercepted radiation (RSLTj + 1) by plant leaves [determined from leaf area index (LAIj + 1)] with air temperature, the maximum and minimum plant top N concentration and the amounts of nitrogen uptake. The value of LAIj + 1 at each hour was estimated by the accumulated top dry matter production at previous hour using an empirical equation. Maize grain yield was estimated by a relationship between harvest index and seasonal plant top dry matter production. The model was calibrated using data obtained under field conditions by a line source sprinkler irrigation. When the values of water and nitrogen application were optimum, grain yield (moisture content of 15.5%) was 16.2 Mg ha−1. Model was validated using two independent experimental data obtained from other experiments in the Badjgah (Fars province). The experimental results validated the proposed simulation model fairly well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号