首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 724 毫秒
1.
Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.  相似文献   

2.
Sato M  Sato K 《Science (New York, N.Y.)》2011,334(6059):1141-1144
The mitochondrial genome is believed to be maternally inherited in many eukaryotes. Sperm-derived paternal mitochondria enter the oocyte cytoplasm upon fertilization and then normally disappear during early embryogenesis. However, the mechanism responsible for this clearance has been unknown. Here, we show that autophagy, which delivers cytosolic components to lysosomes for degradation, is required for the elimination of paternal mitochondria in Caenorhabditis elegans. Immediately after fertilization, sperm-derived components trigger the localized induction of autophagy around sperm mitochondria. Autophagosomes engulf paternal mitochondria, resulting in their lysosomal degradation during early embryogenesis. In autophagy-defective zygotes, paternal mitochondria and their genome remain even in the first larval stage. Thus, fertilization-triggered autophagy is required for selective degradation of paternal mitochondria and thereby maternal inheritance of mitochondrial DNA.  相似文献   

3.
In sexual reproduction of most animals, the spermatozoon provides DNA and centrioles, together with some cytoplasm and organelles, to the oocyte that is being fertilized. Paternal mitochondria and their genomes are generally eliminated in the embryo by an unknown degradation mechanism. We show that, upon fertilization, a Caenorhabditis elegans spermatozoon triggers the recruitment of autophagosomes within minutes and subsequent paternal mitochondria degradation. Whereas the nematode-specific sperm membranous organelles are ubiquitinated before autophagosome formation, the mitochondria are not. The degradation of both paternal structures and mitochondrial DNA requires an LC3-dependent autophagy. Analysis of fertilized mouse embryos shows the localization of autophagy markers, which suggests that this autophagy event is evolutionarily conserved to prevent both the transmission of paternal mitochondrial DNA to the offspring and the establishment of heteroplasmy.  相似文献   

4.
Cytotoxic chemotherapy targets elements common to all nucleated human cells, such as DNA and microtubules, yet it selectively kills tumor cells. Here we show that clinical response to these drugs correlates with, and may be partially governed by, the pretreatment proximity of tumor cell mitochondria to the apoptotic threshold, a property called mitochondrial priming. We used BH3 profiling to measure priming in tumor cells from patients with multiple myeloma, acute myelogenous and lymphoblastic leukemia, and ovarian cancer. This assay measures mitochondrial response to peptides derived from proapoptotic BH3 domains of proteins critical for death signaling to mitochondria. Patients with highly primed cancers exhibited superior clinical response to chemotherapy. In contrast, chemoresistant cancers and normal tissues were poorly primed. Manipulation of mitochondrial priming might enhance the efficacy of cytotoxic agents.  相似文献   

5.
嫩度是决定肉食用品质的重要指标。宰后肉的嫩度发生不连续变化,严重降低了消费者的购买意愿,因此阐明宰后嫩化机理一直是肉品科学领域的研究热点。自“凋亡”的概念引入至宰后肌肉嫩化过程后一直广受关注,动物被屠宰放血后,活性氧(reactive oxygen species,ROS)大量累积,ATP(adenosine triphosphate)逐渐耗尽,必然导致细胞死亡。宰后肌细胞死亡和肌肉嫩化都是在一系列调控因子作用下激活肌肉内源酶,并由内源酶水解蛋白质破坏细胞结构,因此这两个生化过程被认为高度相关。本文综述了宰后肌细胞主要以凋亡的形式死亡,分析了除凋亡外,宰后早期产生少量ROS时细胞会通过自噬启动自身防御系统,宰后后期ATP逐渐耗尽肌细胞可能从凋亡转变为坏死;明确了线粒体通路是宰后肌肉中细胞凋亡酶激活的关键路径,线粒体死亡因子释放是细胞内死亡级联反应的总开关,其开放状态直接决定着细胞以何种途径进行死亡,并进一步从线粒体膜通透化和内膜嵴重构两方面,讨论了宰后线粒体损伤诱导凋亡因子的释放机理;综述了线粒体损伤变化及其对嫩化过程的影响,并从线粒体通过参与能量代谢影响肌肉pH以及通过释放凋亡因子调控细胞凋亡酶活性两方面分析了其潜在机理;探讨了宰后肌肉线粒体与内质网间相互作用以影响Ca2+信号传导以及细胞凋亡过程,或与溶酶体相互作用,破坏溶酶体膜稳定性,使其释放组织蛋白酶以激活线粒体Bax和Bid而加速线粒体膜通透性;综述了细胞凋亡酶在宰后早期被激活,并参与部分肌原纤维蛋白的有限降解,但随着宰后时间的延长,ATP逐渐耗尽等因素导致细胞凋亡酶失活,因此细胞凋亡酶只参与宰后早期的嫩化过程。综述内容可为完善宰后肌肉嫩化过程提供理论参考。  相似文献   

6.
Multiple death signals influence mitochondria during apoptosis, yet the critical initiating event for mitochondrial dysfunction in vivo has been unclear. tBID, the caspase-activated form of a "BH3-domain-only" BCL-2 family member, triggers the homooligomerization of "multidomain" conserved proapoptotic family members BAK or BAX, resulting in the release of cytochrome c from mitochondria. We find that cells lacking both Bax and Bak, but not cells lacking only one of these components, are completely resistant to tBID-induced cytochrome c release and apoptosis. Moreover, doubly deficient cells are resistant to multiple apoptotic stimuli that act through disruption of mitochondrial function: staurosporine, ultraviolet radiation, growth factor deprivation, etoposide, and the endoplasmic reticulum stress stimuli thapsigargin and tunicamycin. Thus, activation of a "multidomain" proapoptotic member, BAX or BAK, appears to be an essential gateway to mitochondrial dysfunction required for cell death in response to diverse stimuli.  相似文献   

7.
Wallace DC 《Science (New York, N.Y.)》1999,283(5407):1482-1488
Over the past 10 years, mitochondrial defects have been implicated in a wide variety of degenerative diseases, aging, and cancer. Studies on patients with these diseases have revealed much about the complexities of mitochondrial genetics, which involves an interplay between mutations in the mitochondrial and nuclear genomes. However, the pathophysiology of mitochondrial diseases has remained perplexing. The essential role of mitochondrial oxidative phosphorylation in cellular energy production, the generation of reactive oxygen species, and the initiation of apoptosis has suggested a number of novel mechanisms for mitochondrial pathology. The importance and interrelationship of these functions are now being studied in mouse models of mitochondrial disease.  相似文献   

8.
Hypoxic coordinate regulation of mitochondrial enzymes in mammalian cells   总被引:3,自引:0,他引:3  
The effect of hypoxic exposure on various mitochondrial enzymes and on cell mitochondrial genomic content was studied in two types of mammalian cells. Hypoxia depressed the activity of six enzymes to the same degree. The kinetics of depression and of recovery during reexposure to normoxia were statistically similar for three marker enzymes. Despite the global and symmetrical decrease in enzyme activities, mitochondrial DNA remained constant. This suggests either symmetrical loss of mitochondrial enzymes from all mitochondria or complete loss of enzymes from a subpopulation of mitochondria with retention of an intact mitochondrial genome.  相似文献   

9.
闫洪波 《安徽农业科学》2013,(12):5186-5189
逆行响应(RTG)是与线粒体功能障碍相关的一个重要信号传导途径。文中重点论述了酿酒酵母中来自线粒体压力的RTG应答机制,就该途径中的3个重要组分Rtg1、Rtg2、Rtg3的功能与调控机理进行了阐述,并概括了RTG调控的下游靶标基因在TCA循环中的位置及作用。此外,在基因调控和蛋白活性水平上阐述了RTG应答与高渗胁迫及线粒体自噬的相关性。RTG途径的研究,为人类一些重要疾病的发病机理提供了科学依据。  相似文献   

10.
Although neurodegenerative diseases such as Alzheimer's disease are not classically considered mediated by inflammation or the immune system, in some instances the immune system may play an important role in the degenerative process. Furthermore, it has become clear that the immune system itself may have beneficial effects in nervous system diseases considered neurodegenerative. Immunotherapeutic approaches designed to induce a humoral immune response have recently been developed for the treatment of Alzheimer's disease. These studies have led to human trials that resulted in both beneficial and adverse effects. In animal models, it has also been shown that immunotherapy designed to induce a cellular immune response may be of benefit in central nervous system injury, although T cells may have either a beneficial or detrimental effect depending on the type of T cell response induced. These areas provide a new avenue for exploring immune system-based therapy of neurodegenerative diseases and will be discussed here with a primary focus on Alzheimer's disease. We will also discuss how these approaches affect microglia activation, which plays a key role in therapy of such diseases.  相似文献   

11.
陈洋洋  谢宇超 《安徽农业科学》2010,38(26):14272-14274,14294
线粒体普遍存在于高等动、植物和真菌等真核细胞中。其在人类遗传疾病的发生、发展、功能修复以及起源和进化中具有重要的功能。在植物中,与雄性不育、细胞程序死亡、果实成熟、衰老以及光合作用等多种生理功能有关。综述了线粒体基因组在人体疾病的发生、诊断、DNA突变等方面的最新研究进展,并展望了线粒体研究在热带作物生长发育和果实成熟、衰老、贮藏等方面的应用前景。  相似文献   

12.
Yaffe MP 《Science (New York, N.Y.)》1999,283(5407):1493-1497
The distribution of mitochondria to daughter cells during cell division is an essential feature of cell proliferation. Until recently, it was commonly believed that inheritance of mitochondria and other organelles was a passive process, a consequence of their random diffusion throughout the cytoplasm. A growing recognition of the reticular morphology of mitochondria in many living cells, the association of mitochondria with the cytoskeleton, and the coordinated movements of mitochondria during cellular division and differentiation has illuminated the necessity for a cellular machinery that mediates mitochondrial behavior. Characterization of the underlying molecular components of this machinery is providing insight into mechanisms regulating mitochondrial morphology and distribution.  相似文献   

13.
植物红景天对神经系统退行性病变作用的研究进展   总被引:1,自引:1,他引:0  
刘瑜琦 《安徽农业科学》2010,38(20):10679-10681
红景天植物具有抑制脑细胞凋亡,提高神经元抵抗损伤的能力,对多种慢性退行性疾病具有显著的保护效应,用于治疗脑损伤以及神经退行性疾病。红景天具有多种药理作用,其活性强,药效明确,安全低毒,并且资源丰富,值得临床深入开发应用。就红景天对中枢神经系统退行性病变的保护作用及机制方面的研究进展做一综述。  相似文献   

14.
The pathophysiology of mitochondrial cell death   总被引:3,自引:0,他引:3  
In the mitochondrial pathway of apoptosis, caspase activation is closely linked to mitochondrial outer membrane permeabilization (MOMP). Numerous pro-apoptotic signal-transducing molecules and pathological stimuli converge on mitochondria to induce MOMP. The local regulation and execution of MOMP involve proteins from the Bcl-2 family, mitochondrial lipids, proteins that regulate bioenergetic metabolite flux, and putative components of the permeability transition pore. MOMP is lethal because it results in the release of caspase-activating molecules and caspase-independent death effectors, metabolic failure in the mitochondria, or both. Drugs designed to suppress excessive MOMP may avoid pathological cell death, and the therapeutic induction of MOMP may restore apoptosis in cancer cells in which it is disabled. The general rules governing the pathophysiology of MOMP and controversial issues regarding its regulation are discussed.  相似文献   

15.
以SIRT1和线粒体为切入点,采用分子生物学技术以及多种线粒体分析技术,深入探讨SIRT1和线粒体在衰老细胞中的作用,揭示归芪多糖延缓细胞衰老的分子作用机制。结果表明,AAP显著降低细胞的衰老程度并提高细胞活力,而Ex527阻断AAP的作用。同时,发现AAP增强细胞内SIRT1和CyclinD1的表达,降低p53的表达水平,在Ex527组中未观察到类似的逆转作用。线粒体分析结果显示,AAP可显著降低细胞内的活性氧水平,降低线粒体膜电位,减轻线粒体肿胀程度和增加线粒体内ATP含量,而Ex527的预处理消除这些作用。基于上述结果,推测AAP可能通过信号通路p53/p16和CyclinD/CDK4来改善线粒体功能,从而达到延缓衰老的作用,且这些作用与SIRT1密切相关。  相似文献   

16.
应用DAPI、DiOC荧光法与激光共聚焦电镜技术,观察白杨派树种毛白杨、毛新杨、银腺杨、中国山杨花粉发育中生殖细胞的细胞质DNA及其在精细胞形成过程中的动态。结果表明:不同发育时期的生殖细胞、精细胞中不存在具有DNA的细胞器,为白杨派树种具有母系遗传的潜能提供了细胞学证据;其中,线粒体在花粉发育过程中一直存在,但其DNA发生了降解,从而使父系线粒体DNA的传递中断,导致了线粒体的母系遗传。细胞学观察发现,银腺杨少数质体及其DNA被排除和降解的时期相对迟缓。本文还对被子植物线粒体遗传的机理进行了讨论。  相似文献   

17.
多囊卵巢综合征(Polycystic ovary syndrome,PCOS)是导致女性月经不调、排卵障碍性不孕的主要原因,确切发病机制尚未阐明。自噬可以发生在卵泡发育的各个阶段,卵泡颗粒细胞自噬相对活跃,具有促性腺激素依赖性和细胞特异性。卵泡颗粒细胞自噬稳态平衡以维持卵巢功能,调控卵泡发育,影响胚胎质量和妊娠结局。PCOS卵泡颗粒细胞自噬活性过高,自噬相关基因表达过强,与PCOS卵泡发育异常、内分泌代谢紊乱、临床自然流产率高和辅助生殖中发生卵巢过度刺激综合征风险增高密切相关,可能是PCOS发病的重要机制。补肾中药通过下调PCOS卵泡颗粒细胞过度自噬,改善卵巢功能,维持机体阴阳平衡,但具体作用机制亟待进一步阐明,为PCOS、不孕症等妇科疑难病症临床诊疗提供新思路。  相似文献   

18.
Two human cell lines (termed rho 0), which had been completely depleted of mitochondrial DNA (mtDNA) by long-term exposure to ethidium bromide, were found to be dependent on uridine and pyruvate for growth because of the absence of a functional respiratory chain. Loss of either of these two metabolic requirements was used as a selectable marker for the repopulation of rho 0 cells with exogenous mitochondria by complementation. Transformants obtained with various mitochondrial donors exhibited a respiratory phenotype that was in most cases distinct from that of the rho 0 parent or the donor, indicating that the genotypes of the mitochondrial and nuclear genomes as well as their specific interactions play a role in the respiratory competence of a cell.  相似文献   

19.
Autophagy and metabolism   总被引:2,自引:0,他引:2  
Autophagy is a process of self-cannibalization. Cells capture their own cytoplasm and organelles and consume them in lysosomes. The resulting breakdown products are inputs to cellular metabolism, through which they are used to generate energy and to build new proteins and membranes. Autophagy preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. In starvation, it provides an internal source of nutrients for energy generation and, thus, survival. A powerful promoter of metabolic homeostasis at both the cellular and whole-animal level, autophagy prevents degenerative diseases. It does have a downside, however--cancer cells exploit it to survive in nutrient-poor tumors.  相似文献   

20.
牛-山羊异种体细胞克隆胚胎线粒体形态超微结构观察#br#   总被引:2,自引:1,他引:1  
 【目的】通过对正常受精胚胎、山羊同克隆胚胎(山羊去核卵与布尔山羊耳皮肤成纤维细胞重组)以及牛-山羊异种克隆胚胎(山羊去核卵与布尔山羊耳皮肤成纤维细胞重组)中线粒体超微结构的观察与比对,从亚细胞水平揭示异种克隆胚胎出现异常的原因,为异种克隆技术的进一步研究提供新思路。【方法】利用透射电镜分别对山羊正常受精胚胎、山羊同种克隆胚胎及牛-山羊异种克隆胚胎的原核、2-细胞、4-细胞、8-细胞及桑椹胚阶段的早期胚胎进行线粒体超微结构观察。【结果】山羊自然受精胚胎、山羊同种克隆胚胎的线粒体均为帽状,随着胚胎的发育,线粒体由电子密度高、嵴少的未成熟状态发育为电子密度低、嵴丰富的成熟线粒体,而牛-山羊异种克隆胚胎从2-细胞胚胎至桑椹胚都存在一种具有多个分叶的线粒体,但这种形态异常的线粒体同样也能够形成电子密度低、嵴丰富的成熟线粒体。【结论】牛卵母细胞与山羊体细胞之间不能有效的进行核-质互作,本研究中具体表现为出现多分叶形线粒体,从而影响牛-山羊异种克隆胚胎的发育。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号