首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 929 毫秒
1.
该文以陕北水蚀风蚀交错区普遍发育的地表和地上两种生物结皮为研究对象,分别以3种非生物结皮(无结皮、物理结皮、去除生物结皮)为对照,使用盘式入渗仪测定其饱和导水率。结果表明:与无结皮土壤相比,两种类型生物结皮均可极显著降低土壤饱和导水率;与去除生物结皮土壤相比,两种类型生物结皮对土壤饱和导水率的降低均不显著;与有物理结皮发育的土壤相比,地表生物结皮对土壤饱和导水率的降低不显著,而地上生物结皮对土壤饱和导水率的降低显著。一方面,两种生物结皮对土壤饱和导水率均有明显降低作用,预示生物结皮在降雨活动中可能会增加径流、降低入渗,阻碍研究区水分亏缺条件下的植被恢复和生态与环境建设。另一方面,与不同的对照相比,生物结皮对土壤饱和导水率的影响截然不同,该结论可在一定程度上解释当前有关生物结皮影响土壤水分入渗方面所存在的分歧。  相似文献   

2.
This research aims to determine soil vertical saturated hydraulic conductivity (Ks) in situ from the measured steady infiltration rate (I), initial soil properties and double‐ring infiltrometer (DRI) test data. Characterizing the effects of these variables on the measured steady infiltration rate will enable more accurate prediction of Ks. We measured the effects of the ring diameter, head of ponding, ring depth, initial effective saturation and soil macroscopic capillary length on measured steady infiltration rates. We did this by simulating 864 DRI tests with the finite element program HYDRUS‐2D and by conducting 39 full‐scale in situ DRI tests, 30 Mini‐Disk infiltrometer experiments and four Guelph Permeameter tests. The M5′ model trees and genetic programming (GP) methods were applied to the data to establish formulae to predict the Ks of sandy to sandy‐clay soils. The nine field DRI tests were used to verify the computer models. We determined the accuracy of the methods with 30% of the simulated DRI data to compare I/KS values of the finite element models with estimates from the suggested formulae. We also used the suggested formulae to predict the Ks values of 30 field DRI experiments and compared them with values measured by Guelph Permeameter tests. Compared with the GP method, the M5′ model was better at predicting KS, with a correlation coefficient of 0.862 and root mean square error (RMSE) of 0.282 cm s?1. In addition, the latter method estimated Ksvalues of the field experiments more accurately, with an RMSE of 0.00346 cm s?1.  相似文献   

3.
Abstract

Irrigation is becoming a more commonly used practice on glacially derived soils of the Northern Great Plains. Threshold salinity and sodicity water quality criteria for soil‐water compatibility in these sulfatic soils are not well defined. This study was conducted to relate soil salinity and sodicity to clay dispersion and saturated hydraulic conductivity (Ksat) in four representative soils. Soil salinity (EC treatment levels of 0.1 and 0.4 S m‐1) and sodicity (SAR treatment levels of 3, 9, and 15) levels were established to produce a range of conditions similar to those that might be found under irrigation. The response of each soil to changes in salinity and sodicity was unique. In general, as sodicity increased clay dispersion also increase, but the magnitude of the increase varied among the soils. In two of the soils, clay dispersion across a range of sodicity levels was lower under the 0.4 S m‐1 treatment than under the 0.1 S m‐1 treatment and in the other two soils, clay dispersion across a range of sodicity levels was similar between the two salinity treatments. Changes in Ksat were greatest in the finer textured soil (decreasing an order of magnitude across the range of sodicity levels), but was unchanged in the coarse textured soils. Results suggest that these sulfatic soils are more susceptible to sodicity induced deterioration than chloridic soils. These results and earlier field observations suggest that sustainable irrigation may be limited to sites with a water source having a SAR <5 and an EC not exceeding 0.3 S m‐1 for these sulfatic glacially derived soils.  相似文献   

4.
As metropolitan areas expand, the municipal and industrial uses of freshwater increase. Therefore, water resources for irrigation become limited and wastewater reuse for irrigation becomes a good alternative. For this purpose, the effects of suspended solids in wastewater on the soil physical properties, i.e., saturated hydraulic conductivity, Ks, have to be considered. The objectives of this research were to study the effects of applying freshwater and differently treated wastewater on Ks in the surface and subsurface layers of sandy‐loam, loam, and clay‐loam soils. This effect was studied by investigating the ratio of Ks for wastewater to Ks for fresh water in soil surface as Kr1 and in soil subsurface as Kr2. The results showed that the application of freshwater did not reduce the Kr1 considerably. However, the reduction in Kr1 mainly occurred in soil depth of 0–50 mm due to the application of wastewater. This effect is more pronounced in clay‐loam soil than in loam and sandy‐loam soils. It is concluded that application of wastewater with TSS (total suspended solid) of ≥ 40 mg L–1 resulted in Kr1 reduction of >50% in different soil textures. However, the Kr2 reduction at soil depth of 100–300 mm is not considerable by application of wastewater for different soil textures. Further, it is concluded that less purified wastewater can be used in light‐texture soils resulting in less reduction in Kr1. Empirical models were developed for predicting the value of Kr1 as a function of amounts of wastewater application and TSS for different soil textures that can be used in management of wastewater application for preventing deterioration of soil hydraulic conductivity.  相似文献   

5.
《Geoderma》2006,130(1-2):1-13
Dilution of high-sodicity soil water by low-sodicity rainfall or irrigation water can cause declining soil hydraulic conductivity (K) by inducing swelling, aggregate slaking and clay particle dispersion. Investigations of sodicity-induced reduction in K are generally restricted to repacked laboratory cores of air-dried and sieved soil that are saturated and equilibrated with sodic solution before tests are conducted. This approach may not yield a complete picture of sodicity effects in the field, however, because of loss of antecedent soil structure, small sample size, detachment of the sample from the soil profile, reliance on chemical equilibrium, and differing time scales between laboratory and field processes. The objectives of this study were to: (i) compare the electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) in laboratory cores of intact field soil that had, or had not, undergone prior saturation and equilibration with sodic solution; (ii) compare the pressure infiltrometer (PI) field method with the intact laboratory soil core (SC) method for assessing sodicity effects on saturated soil hydraulic conductivity; and (iii) characterize hydraulic conductivity reduction in a salt-affected sandy loam soil and a salt-affected clay soil in Sicily as a result of diluting high-sodicity soil water with low-sodicity water.In terms of EC, ESP and SAR, quasi-equilibrium between soil and infiltrating solution was attainable in 0.08 m diameter by 0.05 m long laboratory cores of intact clay soil, regardless of whether or not the cores were previously saturated and equilibrated with solutions of SAR=0 or 30. In the sandy loam soil, the PI and SC methods produced statistically equivalent linear reductions in K as a result of diluting increasingly sodic soil water (SAR=0, 10, 20, 30) with deionised water. In the clay soil, the PI method produced no significant correlation between initial soil water SAR and K reduction, while the SC method produced a significant log-linear decline in K with increasing soil water SAR. Sodicity-induced reductions in K ranged from 3–8% (initial soil water SAR=0) to 85–94% (initial soil water SAR=30) in the sandy loam, and from 9–13% (initial soil water SAR=0) to 42–98% (initial soil water SAR=30) in the clay. The reductions in K were caused by aggregate slaking and partial blocking of soil pores by dispersed clay particles, as evidenced by the appearance of suspended clay in the SC effluent during infiltration of deionised water. As a result, maintenance of K in these two salt-affected soils will likely require procedures to prevent or control the build-up of sodicity.  相似文献   

6.
The larger the bulk density of the soil, the smaller the saturated hydraulic conductivity (Ks), however, the relationship between Ks and dry bulk density for tilled and untilled conditions is different. Ks is lower in tilled soil than in untilled soil with the same texture at the same bulk density. The purpose of this study was to compare different models for the prediction of Ks for two soil textures under both tilled and non-tilled conditions. We compred two models based on the non-similar media concept (NSMC-0, NSMC-1), a model based on the similar media concept (SMC) and a model based on the Kozeny equation and Poiseuille law for prediction of Ks (KC-1 and KC-2). This study was conducted at two areas with loam and silty clay loam soils under tilled and untilled conditions. It is concluded that the SMC model is not able to predict Ks under either tilled or untilled conditions. Further, the NSMC-0 model, along with an equation to estimate the shape factor, was able to predict Ks versus dry bulk density for tilled soils. According to our study, under untilled conditions, the KC-1 and NSMC-1 models, and under tilled conditions, the NSMC-1 and NSMC-0 models, predicted Ks accurately. It is concluded that the NSMC models together with the optimized Kozeny–Carman models could reliably be used to predict Ks in different soil textures.  相似文献   

7.
8.
Many empirical approaches have been developed to analyze changes in hydraulic conductivity due to concentration and composition of equilibrium solution. However, in swelling soils these approaches fail to perform satisfactorily, mainly due to the complex nature of clay minerals and soil–water interactions. The present study describes the changes in hydraulic conductivity of clay (Typic Haplustert) and clay‐loam (Vertic Haplustept) soils with change in electrolyte concentration (TEC) and sodium‐adsorption ratio (SAR) of equilibrium solution and assesses the suitability of a model developed by Russo and Bresler (1977) to describe the effects of mixed Na‐Ca‐Mg solutions on hydraulic conductivity. Four solutions encompassing two TEC levels viz., 5 and 50 mmolc L–1 and two SAR levels viz., 2.5 and 30 mmol1/2 L–1/2 were synthesized to equilibrate the soil samples using pure chloride salts of Ca, Mg, and Na at Ca : Mg = 2:1. Diluting 50 mmolc L–1 solution to 5 mmolc L–1 reduced saturated hydraulic conductivity of both soils by 66%, and increasing SAR from 2.5 to 30 mmol1/2 L–1/2 decreased saturated hydraulic conductivity by 82% and 79% in clay and clay‐loam soils, respectively. Near saturation, the magnitude of the change in unsaturated hydraulic conductivity due to the change in TEC and SAR was of 103‐ and 102‐fold, and at volumetric water content of 0.20 cm3 cm–3, it was of 1014‐ and 106‐fold in clay and clay‐loam soils, respectively. Differences between experimental and predicted values of saturated hydraulic conductivity ranged between 0.6% and 11% in clay and between 0.06% and 2.1% in clay‐loam soils. Difference between experimental and predicted values of unsaturated hydraulic conductivity widened with drying in both soils. Predicted values were in good agreement with the experimental values of hydraulic conductivity in clay and clay‐loam soils with R2 values of 0.98 and 0.94, respectively. The model can be satisfactorily used to describe salt effects on hydraulic conductivity of swelling soils in arid and semiarid areas, where groundwater quality is poor.  相似文献   

9.
Pedotransfer functions (PTFs) are widely used for hydrological calculations based on the known basic properties of soils and sediments. The choice of predictors and the mathematical calculus are of particular importance for the accuracy of calculations. The aim of this study is to compare PTFs with the use of the nonlinear regression (NLR) and support vector machine (SVM) methods, as well as to choose predictor properties for estimating saturated hydraulic conductivity (Ks). Ks was determined in direct laboratory experiments on monoliths of agrosoddy-podzolic soil (Umbric Albeluvisol Abruptic, WRB, 2006) and calculated using PTFs based on the NLR and SVM methods. Six classes of predictor properties were tested for the calculated prognosis: Ks-1 (predictors: the sand, silt, and clay contents); Ks-2 (sand, silt, clay, and soil density); Ks-3 (sand, silt, clay, soil organic matter); Ks-4 (sand, silt, clay, soil density, organic matter); Ks-5 (clay, soil density, organic matter); and Ks-6 (sand, clay, soil density, organic matter). The efficiency of PTFs was determined by comparison with experimental values using the root mean square error (RMSE) and determination coefficient (R2). The results showed that the RMSE for SVM is smaller than the RMSE for NLR in predicting Ks for all classes of PTFs. The SVM method has advantages over the NLR method in terms of simplicity and range of application for predicting Ks using PTFs.  相似文献   

10.
The saturated and near‐saturated hydraulic conductivity of soils, ku, is a sensitive indicator of soil structure and a key parameter for solute transport and soil aeration. In this contribution, we present and numerically investigate a double‐disk method to determine ku in the laboratory by steady‐state percolation at different suction steps. Tension infiltration of water takes place at the top of a soil column through a porous disk with a smaller diameter than the soil sample. This leaves part of the soil surface open and ensures a proper soil ventilation. Drainage takes place at the base through a porous disk with the full diameter of the soil column at exactly the same tension as applied to the top boundary. Since the infiltration area is less than the percolation area, the water flow diverges and the equality of steady flow rate and hydraulic conductivity, which characterizes the standard unit‐gradient experiment, is no longer valid. To develop a general relationship between observed steady flow rate and unsaturated hydraulic conductivity, the experiment was simulated with the Richards‐equation solver HYDRUS 2D/3D, for twelve different soil classes. We found for tensions in the range 1 cm < 10 cm, an infiltration disk diameter of 4.5 cm diameter and a sample diameter of 8 cm diameter that the flux rate at any given tension was about 0.7 times the respective hydraulic conductivity, with an error of less than 10%.  相似文献   

11.
Soil compaction and related changes of soil physical parameters are of growing importance in agricultural production. Different stresses (70, 230, 500, and 1000 kPa) were applied to undisturbed soil core samples of eight typical soils of a Saalean moraine landscape in N Germany by means of a confined compression device to determine the effect on (1) total porosity/pore‐size distribution, (2) saturated hydraulic conductivity, and (3) air conductivity to assess the susceptibility towards compaction. Different deformation behaviors after exceeding the mechanical strength particularly resulted from a combination of soil characteristics like texture and initial bulk density. The saturated hydraulic conductivity, as an indicator for pore continuity, was largely affected by the volume of coarse pores (r² = 0.82), whereas there was no relationship between bulk density and saturated hydraulic conductivity. Since coarsely textured soils primarily possess a higher coarse‐pore fraction compared to more finely textured soils, which remains at a high level even after compaction, only minor decreases of saturated hydraulic conductivity were evident. The declines in air conductivity exceeded those in hydraulic conductivity, as gas exchange in soils is, besides the connectivity of coarse pores, a function of water content, which increases after loading in dependence of susceptibility to compaction. A soil‐protection strategy should be focused on more finely textured soils, as stresses of 70 kPa may already lead to a harmful compaction regarding critical values of pore functions such as saturated hydraulic conductivity or air capacity.  相似文献   

12.
Saturated hydraulic conductivity (Ks) of the soil is a key variable in the water cycle. For the humid tropics, information about spatial scales of Ks and their relation to soil types deduced from soil map units is of interest, as soil maps are often the only available data source for modelling. We examined the influence of soil map units on the mean and variation in Ks along a transect in a tropical rainforest using undisturbed soil cores at 0–6 and 6–12 cm depth. The Ks means were estimated with a linear mixed model fitted by residual maximum likelihood (REML), and the spatial variation in Ks was investigated with the maximum overlap discrete wavelet packet transform (MODWPT). The mean values of Ks did not differ between soil map units. The best wavelet packet basis for Ks at 0–6 cm showed stationarity at high frequencies, suggesting uniform small‐scale influences such as bioturbation. There were substantial contributions to wavelet packet variance over the range of spatial frequencies and a pronounced low frequency peak corresponding approximately to the scale of soil map units. However, in the relevant frequency intervals no significant changes in wavelet packet variance were detected. We conclude that near‐surface Ks is not dominated by static, soil‐inherent properties for the examined range of soils. Several indicators from the wavelet packet analysis hint at the more dominant dynamic influence of biotic processes, which should be kept in mind when modelling soil hydraulic properties on the basis of soil maps.  相似文献   

13.
Due to the existence of gravelly soils and the lack of sufficient research on such soils, this study was carried out on a gravelly calcareous soil. Selected physico–chemical and hydraulic soil attributes were determined at 69 points on a nested-sampling design. Hydraulic characteristics including unsaturated hydraulic conductivity (K ψ) and sorptivity coefficient (S) at six applied tensions of 0 to 0.2 m, and sorptive number (α) and macroscopic capillary length (λ) at five applied tensions of 0.03 to 0.2 m were determined using a tension disc infiltrometer. Hydraulic and chemical soil attributes were the highest and the lowest variants, respectively. The maximum and minimum values for the coefficient of variation (CV) in all the measured physico-chemical and hydraulic soil attributes were obtained for α0.2 and soil pH, respectively. Minimum, maximum, mean and variance values of K ψ, S and α decreased as applied tension increased. Although the pattern was reversed for λ. The majority of soil attributes showed the spatial structure with dominant spherical and exponential models for physico-chemical and hydraulic attributes, respectively. Range values of semi-variograms were obtained between 4.6 m (for α0.03) and 211 m (for clay, gravel content and soluble Mg). In general, range values were 99.60, 82.05 and 40.2 m for physical, chemical and hydraulic soil attributes, respectively, indicating that the physical soil attributes influenced neighboring values over greater distances than the other soil attributes. This enables soil scientists to use measured soil physical data over greater distances to estimate attributes in the unsampled locations.  相似文献   

14.
A new empirical-based scaling method is introduced to predict saturated hydraulic conductivity (K s ) of compacted soils. This method is an improvement of the former non-similar media concept (NSMC) model that is generalized for tilled and untilled conditions. In this method, geometric mean particle size diameter (dg ), geometric standard deviation (σ g ) and saturated soil water content (total porosity) are successfully incorporated in the empirical-based scaling factor of K s . Results showed that the scaled model overestimated K s by ~18%, whereas the NSMC model underestimated K s by ~21%. However, the scaled model based on the similar media concept (SMC) failed to predict K s . Because of the complexity and high uncertainty in determining the shape factor parameter in the NSMC model, it is suggested that the new scaled model might be used reliably in practical cases to predict K s in the various layers of compacted soils irrespective of the tillage condition. Further assessment of the new scaling model in other areas, in which new collected data are available, is recommended.  相似文献   

15.
Irrigation with treated wastewater (TWW) may affect soil structure and stability and the characteristics of dissolved organic matter (DOM) of the soil solution. The objectives of our study were (i) to evaluate the impact of TWW irrigation, as compared with fresh water (FW) irrigation, on aggregate stability and saturated hydraulic conductivity (indices of soil structure stability) and (ii) to determine whether these indices can be associated with the chromophoric indicators of water‐extractable DOM in TWW‐ and FW‐irrigated soils. We studied aggregate stability and soil hydraulic conductivity (HC) of four different soil types irrigated with either TWW (for at least 5 years) or FW. The results were linked to earlier published data on the concentration scores of fluorescent chromophoric DOM components (obtained from excitation‐emission matrices of flouorescence coupled with parallel factor analysis), dissolved organic carbon (DOC) concentration and absorbance at 254 nm (Abs254). These were all obtained from water extracts of the same soils as those used in the current study. Irrigation with TWW decreased aggregate stability, in comparison to irrigation with FW, in the sandy clay and clay soils, while in the loamy sand TWW increased aggregate stability. The apparent steady state HCs in the TWW‐irrigated samples in the loamy sand, sandy clay and clay soils were similar to, or significantly less than, those obtained in the FW‐irrigated samples. In the sandy loam the opposite trend was noted. Results of principal component and classification analyses showed that the aggregate stability indices were directly associated with soil organic matter and DOM attributes in the coarse‐textured soils, while in the fine‐textured soils inverse associations were noted. Only in the fine‐textured soils were the HC attributes associated (directly) with some of the DOM characteristics. Our results suggest that structural indices of fine‐textured soils are more sensitive than those of coarse‐textured soils to the composition of water extractable DOM.  相似文献   

16.
选取黄土丘陵区12种典型植被样地,通过测定各样地不同土层植物残体生物量、土壤容重、毛管孔隙度、非毛管孔隙度及饱和导水率,研究各指标随土层深度和植被类型的变化规律及其对土壤饱和导水率的影响。结果表明:(1)除容重随土层深度增加外,植物残体、毛管孔隙度、非毛管孔隙度和饱和导水率均随土层深度减少,其中植物残体大多集中于表层土壤(0—10 cm),占总残体生物量的51.4%~85.7%。(2)不同植被类型其植物残体及土壤物理性质存在显著差异,乔木林地植物残体、农耕地土壤容重、灌木林地非毛管孔隙度及饱和导水率均最大,而毛管孔隙度与不同土地利用类型间无显著差异。(3)饱和导水率随植物残体生物量密度(0—10 cm)和土壤容重呈幂函数减小,随毛管孔隙度和非毛管孔隙度呈幂函数增大;土壤容重(BD)和非毛管孔隙度(NCP)是影响土壤饱和导水率(K_s)的主要因素,且土壤饱和导水率可表示为两者的综合非线性方程(K_s=0.6BD~(-4.717)NCP~(0.203),P0.01,R~2=0.63,NSE=0.50)。此外,沙棘灌木林地平均饱和导水率最大,有利于降雨过程中土壤水分入渗,具有较强的水土保持功能。本研究结果可为黄土高原植被恢复生态水文效益评价提供理论依据。  相似文献   

17.
干粉PAM溶解时间对土壤饱和导水率的动态影响   总被引:1,自引:0,他引:1  
韩冬  魏占民  于健  宋日权 《土壤》2016,48(2):368-373
本试验选取两种质地土壤(黏壤土和砂壤土),采用3种干粉PAM施用水平(0、22.5 kg/hm~2和45 kg/hm~2),测定土样在10.25 mm/h入渗速度下的土壤饱和导水率(KS),然后根据土样团聚体含量和稳定性及团聚结构的微观图片,分析干粉PAM影响下土壤结构的变化特征,进而说明干粉PAM溶解时间对KS的影响机理。结果表明:施用PAM后,KS随干粉PAM在水中溶解时间的延长而逐渐减小,最终趋于稳定;干粉PAM溶解时间较短时,PAM处理的KS高于对照,其中PAM施用水平45 kg/hm~2时砂壤土KS提高幅度最大,较对照提高26.87%,但不同PAM施用量处理间的KS差异不显著。干粉PAM溶解时间足够长时,PAM处理的KS均显著低于对照,其中PAM施用水平45 kg/hm~2时黏壤土KS降低幅度最大,较对照降低10.86%,但是不同施用量处理间KS差异不显著。从影响机理上分析,PAM主要是通过增加土壤团聚体含量及稳定性来提高KS;而干粉PAM溶解时间足够长时,由于PAM易吸附土壤颗粒,水解后的PAM分子链不断伸张延长,堵塞了土壤孔隙,加上PAM本身的黏滞特性,从而降低了KS。研究干粉PAM溶解时间对KS的动态影响,可以为PAM在改善土壤导水能力方面的应用提供理论依据。  相似文献   

18.
利用圆盘入渗仪推求含碎石土壤饱和水力传导度(英)   总被引:1,自引:0,他引:1  
在模拟土柱中,利用圆盘入渗仪对碎石对土壤饱和水力传导度的影响进行了分析。结果表明:含碎石土壤饱和水力传导度可以通过对不同负压下土壤稳定入渗速率进行非线性回归获得。含碎石土壤饱和水力传导度与去除碎石后的土壤饱和水力传导度及碎石形状指数密切相关。试验中含碎石土壤的饱和水力传导度随碎石含量的增加而呈指数降低趋势。  相似文献   

19.
The addition of zeolites to soil modifies soil physical and chemical properties. The objectives of this research were to study the effect of zeolite on saturated hydraulic conductivity, K s, and crack behavior in a silty clay paddled soil. Soil samples were mixed with 0, 4, 8 and 12 g kg?1 of zeolite for K s determination, and 0, 2, 4, 8 and 12 g kg?1 for soil crack measurements. Saturated hydraulic conductivity was measured using the constant head method. The results indicated that K s was significantly increased at a zeolite application rate of 8 g kg?1. Furthermore, an increase in zeolite content up to 8 g kg?1 decreased soil crack area after paddling and first rewetting. Higher amounts of zeolite (e.g. 12 g kg?1) increased crack density after the second rewetting. However, a 50% reduction in crack depth occurred with zeolite application rates of 8 and 12 g kg?1 in comparison with controls. Thus, a zeolite application rate of 8 g kg?1 is recommended for soil crack reduction in intermittent-flood irrigation. Furthermore, a relationship was obtained between crack area density (Ln), gravimetric soil water content and zeolite application rate. After the second irrigation, a relationship was also obtained between crack depth, gravimetric soil water content and zeolite application rate. Crack depth showed a positive and highly significant linear correlation with crack width.  相似文献   

20.
The saturated hydraulic conductivity (Ks) of the soil is one of the main soil physical properties. Indirect estimation of this parameter using pedo-transfer functions (PTFs) has received considerable attention. The Purpose of this study was to improve the estimation of Ks using fractal parameters of particle and micro-aggregate size distributions in smectitic soils. In this study 260 disturbed and undisturbed soil samples were collected from Guilan province, the north of Iran. The fractal model of Bird and Perrier was used to compute the fractal parameters of particle and micro-aggregate size distributions. The PTFs were developed by artificial neural networks (ANNs) ensemble to estimate Ks by using available soil data and fractal parameters. There were found significant correlations between Ks and fractal parameters of particles and microaggregates. Estimation of Ks was improved significantly by using fractal parameters of soil micro-aggregates as predictors. But using geometric mean and geometric standard deviation of particles diameter did not improve Ks estimations significantly. Using fractal parameters of particles and micro-aggregates simultaneously, had the most effect in the estimation of Ks. Generally, fractal parameters can be successfully used as input parameters to improve the estimation of Ks in the PTFs in smectitic soils. As a result, ANNs ensemble successfully correlated the fractal parameters of particles and micro-aggregates to Ks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号