首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To investigate the effect of plants on soil water repellency (SWR), two column experiments with wheat (Triticum aestivum) and alfalfa (Medicago sativa) with a growing period of three months had been carried out under constant and near‐natural climatic conditions. Model soils with defined wettability were created by mixing a natural sandy loam subsoil with different proportions of a wettable and a hydrophobized pure quartz sand, resulting in a wettable model soil and three model soils with increasing level of subcritical SWR (initial contact angle CA > 0° and < 90°). Results showed a significant decrease of the mean CA after the experiments compared to the initial CA while the mean CA was constant for plant free columns used as a reference. CA as a function of depth in some cases showed a depth dependent variation with decreased CA at the bottom or as well at top and bottom. The deviation from the initial CA was most pronounced for wheat under constant climatic conditions. Changes in CA could be related to changes in pH, i.e., CA was decreased and pH increased. Subcritical WR at the beginning of the growth period affected significantly the moisture content profiles during the entire growing season as well as plant dry mass production. We expect that plant root exudates of plants widely used for foot production cause directly or indirectly pH‐related modifications of the WR level in the root zone dependent on plant species and the ambient climatic conditions.  相似文献   

2.
Soil water repellency (SWR) has been reported to regularly occur in many soils under various climatic conditions. Despite the commonness of this soil property the mechanisms leading to the occurrence of SWR are largely unknown. The aim of this experiment was to test the hypothesis that the basidiomycete Agaricus bisporus promotes SWR, and that this fungal-induced SWR is dependent on soil moisture and temperature. We report that A. bisporus strongly induces SWR. We further show that the water content during the cultivation of A. bisporus on soil as well as drying temperature of the soil after the incubation experiment significantly affected SWR. Water drop penetration time (WDPT) of the soil ranged from 0.5 s in the samples cultivated at high soil water content (20%, w/w) and subsequently freeze dried, to more than 162 min in the soils that were kept at the low water content (13.8%, w/w) and were subsequently dried at 80 °C. These findings show that fungal activity potentially can promote dramatic SWR. The strong increase in SWR due to heating of the soil to 80 °C supports the view that SWR can be caused by a rearrangement of organic substances. For this reason, we discuss surface-active proteins produced by basidiomycetes as potential drivers of the SWR observed in our experiment.  相似文献   

3.
Soil water repellency (SWR) is a dynamic property that changes throughout the year. The objective of this work was to identify the environmental factors governing the temporal patterns in SWR in a pine plantation in northwest Spain with a view of predicting its occurrence and persistence. For this purpose, 24 samples were collected from the soil surface (0–5 cm) at 25 different times over a 1‐year period and analysed for SWR by using water drop penetration time test and soil moisture measurements. Temporal variations in SWR exhibited a well‐defined seasonal pattern. The soil surface was largely wettable from late autumn to early spring and extremely water repellent during summer and early autumn. Repellency persistence was rather variable during spring. There was highly significant correlation between SWR and soil moisture content. The moisture range defining the presence or absence of repellency under field conditions was 22–57%. There were also significant correlations with the target variables (maximum temperature, minimum temperature, precipitation and water balance during variably long antecedent periods), with coefficients that increased with increasing length of the antecedent period considered. The moisture content of soil at the time of sampling and the average maximum temperature for the 28 days before sampling are the best predictors of occurrence of SWR and its persistence in different seasons. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Time‐domain reflectometry (TDR) is being used increasingly for measuring the moisture content of porous media. However, successful application for measuring water in soil has been limited to non‐deformable soils, and it would be a valuable extension of the technique if it could be used for soils that shrink on drying. We have recently investigated its application to soils rich in clay and organic matter and peats. Here we propose a method for determining moisture content in deformable soils based on the relation between the dielectric constant, K, and the volumetric moisture content, Θ, measured by TDR. Parallel TDR probes with a length of 15 cm and a spacing of 2 cm were placed horizontally in soil cores with a diameter of 20 cm and height of 10 cm taken from a forest. The soil is very porous with large proportions of both silt and clay. The sample weight and travel time of the electromagnetic wave guided by parallel TDR probes were simultaneously measured as a function of time, from saturation to oven‐dryness during which the core samples shrank considerably. Vertical and horizontal components of shrinkage were also measured to take the air‐exposed region of TDR probe into account in the determination of K. The effect of deformation on volumetric moisture content was formulated for two different expressions, namely actual volumetric moisture content (AVMC) and fictitious (uncorrected) volumetric moisture content (FVMC). The effects of air‐exposure and expressions of volumetric moisture content on the relation between K andΘ were examined by fitting the observations with a third‐order polynomial. Neglecting the travel time in the air‐exposed part or use of the FVMC underestimated the Θ for a given K. The difference was more pronounced between AVMC and FVMC than between two different dielectric constants, i.e. accounting for air‐exposure, Kac, and not accounting for air‐exposure, Kau. When the existing empirical models were compared with the fitted results, most underestimated the relation based on the AVMC. This indicates that published empirical models do not reflect the effect of deformation on the determination of Θ in our forest soil. Correct use of the Θ expression has more impact on determining moisture content of a deformable soil than the accommodation of travel time through the air‐exposed region of TDR probe.  相似文献   

5.
6.
红外遥感估算春小麦农田土壤含水率的试验研究   总被引:6,自引:5,他引:1  
根据水分亏缺条件下作物蒸发蒸腾量计算公式及作物水分胁迫指标CWSI(Crop Water Stress Index)的定义,提出了基于遥感作物冠层温度和土壤水分修正系数的春小麦田土壤含水率估算公式,其中土壤水分修正系数采用了幂函数形式。用该公式对春小麦田土壤含水率在分蘖后-拔节抽穗期、抽穗开花-灌浆期和乳熟-黄熟期3个生育阶段进行了估算,并对估算值和实测值进行对比和误差分析,结果表明该模型估算春小麦根层土壤含水率误差保持在18%以内。  相似文献   

7.
A loamy sand was incubated with and without addition of carrot leaves at six different water contents ranging from 6% to 20% (g 100 g-1 dry soil) and N mineralization was monitored during 98 days. We calculated zero- and first-order rates for mineralization in the unamended soil and first-order rates for N mineralization in the residue-amended soil. Although N mineralization was strongly affected by soil moisture, rates were still important at 6% water content (corresponding to permanent wilting point), particularly in the residue-amended soil. Soil water content was recalculated as soil water tension and as percent water-filled pore space (%WFPS) and a parabolic, a logistic and a Gaussian-type function were fitted to the relation between N mineralization rates and water content, %WFPS or pF. Water potential was a less suitable parameter than either %WFPS or water content to describe the soil water influence on N mineralization, because N mineralization rates were extremely sensitive to changes in the water potential in the range of pF values between 1.5 and 2.5. In the residue-amended soil the Gaussian model yielded an optimum %WFPS of 56% for N mineralization, which is slightly lower than optimum values cited in literature. N mineralization in the unamended soil was more influenced by soil water than N mineralization from fresh crop residues. This could be explained by less water limitation of the microbial population decomposing the residues, due to the water content of the residues. The effect of the water contained in the residues was most pronounced in the lowest water content treatments. The water retention curves of both undisturbed and repacked soil were determined and suggested that extrapolation of results obtained during laboratory incubations, using disturbed soil, to field conditions will be difficult unless soil bulk density effects are accounted for, as is the case with the use of %WFPS.  相似文献   

8.
Water repellency is influenced by soil management and biological process. We carried out a 60‐day laboratory incubation experiment to evaluate the effects of straw amendment, together with the intensity and frequency of wetting and drying (W/D), on microbial processes and water repellency. One W/D cycle consisted of 1.5‐day wetting at −0.03 kPa from the soil core bottom and different drying lengths in a temperature‐controlled laboratory, resulting in different drying intensities. At a regular interval, soil respiration rate (SRR) on drying and wetting, soil microbial biomass C and N (SMB‐C and N), and soil water repellency (SWR) after the wetting were measured simultaneously. Rice straw amendment had a greater effect on SRR, but smaller influences on SMB and SMB‐C : N than W/D frequency and drying intensity. The first W/D caused the largest decrease in soil respiration and the soil respiration recovered partly in the subsequent W/D cycles. The increase in SMB and SMB‐C : N as well as metabolic quotient with W/D frequency and intensity suggested a shift of microbial community from bacterial dominance to fungal dominance. SWR was significantly related to SMB‐C (R2= 0.689, P < 0.001). However, this study was limited to these indirect measurements. Direct measurements of fungal biomass and microbial community are needed in the future. The results suggest that rice straw amendment in dry season may increase C sequestration due to reduced decomposition and stabilize soil structure due to the enhancement of microbial induced water repellency.  相似文献   

9.
Soil respiration and photosynthesis are the two largest carbon dioxide (CO2) fluxes between terrestrial ecosystems and the atmosphere and, therefore, the dominant processes influencing the oxygen isotopic composition of atmospheric CO2. The characterization of temporal and spatial variations of plant and soil‐related fluxes of different oxygen isotopologues of CO2 (12C16O2; 12C16O18O) is relevant to constraining the global carbon budget. The oxygen isotopic composition of soil‐respired CO2 is controlled by its release rate, the degree of isotopic equilibrium with soil water and the diffusional transport of CO2. The hypothesis of this study was that, as well as soil moisture, the soil particle size, the presence of an organic litter layer and the enzyme carbonic anhydrase (CA) would have a significant impact on the oxygen isotopic composition of soil‐released CO2. We tested this hypothesis with soil microcosm experiments on columns of medium and fine sand. Soil water content and soil texture influenced the isotopic composition of soil‐released CO2 significantly. A litter layer had a significant effect on the isotopic composition of water vapour but not on CO2 released from soil. In the absence of CA, oxygen isotope equilibration between the CO2 invasion flux and soil water was insignificant, whereas in the presence of CA about 55% of the CO2 invading the soil exchanged oxygen isotopes with soil water. Our findings highlight the importance of small‐scale variability of soil attributes for the oxygen isotopic composition of soil‐released CO2 as well as the strong impact of CA activity in soils.  相似文献   

10.
Abstract

The method described here is useful for the quick determination of soil moisture, especially when many determinations are to be made at a time. The only pieces of apparatus required are some wide‐mouthed conical flasks, a few pieces of glass rod and a balance. The principle involves recording the weight of the flask filled with water and soil sample of known weight (A). This flask weight (H), and the predetermined soil particle density (Dp) and weight of the water‐filled flask (G) are then used to calculate moisture percentage (MP) in the soil sample from the formula:

The method was compared with conventional oven‐drying technique for a wide range of soil textures, moisture contents and other contrasting soil properties. The results obtained showed that the accuracy, precision and simplicity of the method are good, particularly for rapid practical uses.  相似文献   

11.
Microbial activity is affected by changes in the availability of soil moisture. We examined the relationship between microbial activity and water potential in a silt loam soil during four successive drying and rewetting cycles. Microbial activity was inferred from the rate of CO2 accumulating in a sealed flask containing the soil sample and the CO2 respired was measured using gas chromatography. Thermocouple hygrometry was used to monitor the water potential by burying a thermocouple in the soil sample in the flask. Initial treatment by drying on pressure plates brought samples of the test soil to six different water potentials in the range -0.005 to -1.5MPa. Water potential and soil respiration were simultaneously measured while these six soil samples slowly dried by evaporation and were remoistened four times. The results were consistent with a log-linear relationship between water potential and microbial activity as long as activity was not limited by substrate availability. This relationship appeared to hold for the range of water potentials from ?0.01 to ?8.5 MPa. Even at ?0.01 MPa (wet soil) a decrease in water potential from ?0.01 to ?0.02 MPa caused a 10% decrease in microbial activity. Rewetting the soil caused a large and rapid increase in the respiration rate. There was up to a 40-fold increase in microbial activity for a short period when the change in water potential following rewetting was greater than 5 MPa. Differences in microbial activity between the wetter and drier soil treatments following rewetting to the original water potentials are discussed in terms of the availability of energy substrate.  相似文献   

12.
An understanding of soil moisture content variability is fundamental in hydrological studies of peat soils, whose preservation depend on water‐related processes. Dehydration of fens and adapting them for agricultural production have contributed to the degradation of peat soils. The goal of this study was to determine how the critical soil moisture content (CSMC) and soil water repellency (SWR) affect soil moisture patterns in a degraded peat‐muck soil profile. SWR was measured under laboratory conditions using the water drop penetration time test, and then the CSMC was assessed. An investigation of moisture patterns was based on soil moisture data collected over short distances in a grass‐covered peat‐muck soil profile on seven dates. Observed differences in moisture patterns demonstrate that the CSMC can be used for the prediction of preferential flow occurrences in peat‐muck soils. Lower values of the CSMC and lower levels of SWR persistence in muck layers than in peat layers indicate that degradation of peat soils improves their wettability. The relatively low values of CSMC and the low shrinkage potential in the muck layer suggest that preferential water flow in the degraded organic soils can occur when heavy rains are preceded by long periods of summer drought. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The effects of repeated soil drying and rewetting on microbial biomass N (Nbio) and mineral N (Nmin) were measured in incubation experiments simulating typical moisture and temperature conditions for soils from temperate climates in the post‐harvest period. After application of in vitro 15N‐labeled fungal biomass to a silty loam, one set of soils was exposed to two drying‐rewetting cycles (treatment DR; 14 days to decrease soil moisture to 20 % water‐holding capacity (WHC) and subsequently 7 days at 60 % WHC). A control set (treatment CM) was kept at constant moisture conditions (60 % WHC) throughout the incubation. Nbio and Nmin as well as the 15N enrichment of these N pools were measured immediately after addition of 15N‐labeled biomass (day 0) and after each change in soil moisture (day 14, 21, 35, 42). Drying and rewetting (DR) resulted in higher Nmin levels compared to CM towards the end of the incubation. Considerable amounts of Nbio were susceptible to mineralization as a result of soil drying (i.e., drying enhanced the turnover of Nbio), and significantly lower Nbio values were found for DR at the end of each drying period. Immediately after biomass incorporation into the soil (day 0), 22 % of the applied 15N was found in the Nmin pool. Some of this 15Nmin must have been derived from dead cells of the applied microbial biomass as only about 80 % of the microbes in the biomass suspension were viable, and only 52 % of the 15Nbio was extractable (using the fumigation‐extraction method). The increase in 15Nmin was higher than for unlabeled Nmin, indicating that added labeled biomass was mineralized with a higher rate than native biomass during the first drying period. Overall, the effect of drying and rewetting on soil N turnover was more pronounced for treatment DR compared to CM during the second drying‐rewetting cycle, resulting in a higher flush of mineralization and lower microbial biomass N levels.  相似文献   

14.
This study investigated the potential of visible/near‐infrared reflectance spectroscopy (Vis‐NIRS) to predict soil water repellency (SWR). The top 40 mm of soils (n = 288) across 48 sites under pastoral land‐use in the North Island of New Zealand, which represented 10 soil orders and covered five classes of drought proneness, were analysed by standard laboratory methods and Vis‐NIRS. Soil WR was measured by using the molarity of ethanol droplet (MED) and the water drop penetration time (WDPT) tests. Soil organic carbon content (%C) was also measured to examine a possible relationship with SWR. A partial least squares regression (PLSR) model was developed by using Vis‐NIRS spectral data and the reference laboratory data. In addition, we explored the power of discrimination based on WDPT classes using partial least squares discriminant analysis (PLS‐DA). The PLSR of the processed spectra produced moderately accurate prediction for MED (R2val = 0.61, RPDval = 1.60, RMSEval = 0.59) and good prediction for %C (R2val = 0.82, RPDval = 2.30, RMSEval = 2.72). When the data from the 10 soil orders were considered separately and based on soil order rather than being grouped, the prediction of MED was further improved except for the Allophanic, Brown, Organic and Ultic soil orders. The PLS‐DA was successful in classifying 60% of soil samples into the correct WDPT classes. Our results indicate clearly that Vis‐NIRS has the potential to predict SWR. Further improvement in the prediction accuracy of SWR is envisaged by increasing the understanding of the relationship between Vis‐NIRS and the SWR of all New Zealand soil orders as a function of their physical properties and chemical constituents such as hydrophobic compounds.  相似文献   

15.
Abstract

Effect of two moisture levels (22.5 and 13.5%, w/w) and wetting‐drying cycles on manganese solubility was studied in NaCl‐amended soil. During 6 d incubation, higher moisture level released 40‐fold more water‐soluble Mn and 60‐fold more NH4OAc‐exchangeable‐Mn in non‐salinized soil. In NaCl‐treated soil, 50 to over 200% greater soluble and exchangeable Mn was recovered from samples incubated at 22.5% compared to 13.5% water levels. Wetting‐drying cycles significantly (P0.05) decreased water‐soluble Mn, which accounted for 50 to 60% increases in the exchange‐able Mn. Since other non‐oxidizing/reducing cations (Ca, Mg, Na, K) also demonstrated similar behavior, it is proposed that in addition to oxidation upon drying and reduction upon wetting, the increases in exchangeable Mn and simultaneous decreases in soluble Mn concentration are due to sorption processes. These results suggest that under field conditions, the insolubility of Mn due to continued wetting‐drying cycles may eventually lead to Mn deficiency in soils low in Mn.  相似文献   

16.
We conducted a survey of the occurrence of soil water repellency (SWR) in the top 40 mm of soils across 50 sites under pastoral land use in the North Island of New Zealand. The sites represented ten soil orders and covered five classes of proneness to drought. We found at least a moderate persistence of SWR in 35 out of 50 sites (70%) in summer 2009/2010 and a moderate potential persistence of SWR in 49 out of 50 sites (98%) after drying the soils. The soil orders had an influence on the degree and persistence of SWR. Both the degree and persistence of SWR were greatest for the soil orders Podzol, Organic and Recent, and least for the soil order Allophanic. On average, all soil orders had contact angles larger than 94°, with the exception of the soil order Allophanic. We found no relationship between SWR and drought‐proneness. The degree of SWR and its persistence for air‐dried samples were positively correlated with soil carbon and nitrogen contents and negatively with soil bulk density. The persistence of SWR for field‐fresh samples was additionally negatively correlated with the soil water content. We identified a close relationship (R2 = 0.84) between the degree and persistence of SWR. The survey results indicate that SWR is at least moderately persistent in a soil with a contact angle larger than 93.8°. Using a water‐drop penetration time of 60 s as the threshold for SWR being moderately persistent, we found that moderately persistent SWR occurred only for volumetric water contents below 45% or a relative saturation of 60%. The latter can be considered to be a generic value of the critical water content for the onset of SWR at the scale of the North Island of New Zealand.  相似文献   

17.
The site‐specific cultivation as part of the precision‐agriculture concept is more and more introduced into practical farming. However, soil information is often not available in a spatial resolution intrinsically needed for precision farming or other site‐specific soil use and management purposes. One approach to obtain spatially high‐resolution soil data is the non‐invasive measurement of the apparent electrical conductivity (ECa). In this study, we recorded the ECa on three fields with an EM38 (Geonics, Canada). The ECa data were compared with (1) ground truth data obtained by conventional drilling, (2) traditional soil maps (large scale, ≤1:5,000), (3) the growth and yield of corn. The temporal variability of the ECa due to varying soil moisture and temperature was taken into account by repeated measurements of the same fields and subsequent averaging of the ECa values. Significant correlations (r² = 0.76) were found between the mean weighted clay content (0–1.5 m) and the ECa. Furthermore, in soils with differently textured layers, ECa was used to estimate the thickness of the uppermost loess layer. A comparison of ECa and large‐scale soil maps reveals some pros and cons of ECa measurements. The main advantages of ECa recordings are the high spatial resolution in combination with low efforts. Yet, the ECa signal is no direct measure for a soil type or unit. Depending on the variability of substrates and layering, the ECa pattern can be a precise indicator for the spatial distribution of different soils. A strong conformity of the spatial variability of plant growth (derived from orthophotos and yield maps) and ECa patterns within a field indicates that the ECa signal per se—without conversion to traditional soil parameters—integrates the effects of various soil variables that govern soil fertility. Altogether, ECa surveys can be a powerful tool to facilitate and improve conventional soil mapping.  相似文献   

18.
沂蒙山区桃园棕壤斥水性对理化性质的空间响应   总被引:1,自引:0,他引:1  
以沂蒙山区典型土地利用桃园棕壤为例,在分析降雨前后桃园棕壤斥水性与理化性质空间变异的基础上,探讨了棕壤斥水性对土壤含水量、有机质含量和土壤质地的空间响应特征。按照1 m×1 m网格等间距测定降雨前后土壤实际斥水性与含水量,同时采集表层0~3 cm土壤样品,分析其有机质含量与砂粒、粉粒、黏粒含量,并借助经典统计学、地统计学与空间自相关理论对土壤斥水性及理化性质进行空间格局与空间相关性分析。结果表明:沂蒙山区桃园棕壤的斥水程度强烈,雨后斥水性显著降低;降雨前后棕壤斥水性均具有中等变异水平和较强的空间自相关性,且呈指数模型分布,各向异性显著。受结构变异和随机变异作用,斥水性空间格局沿耕作方向呈条带状分布,在其垂直方向上最小变程为1.4 m。土壤质地是影响棕壤斥水性空间变异的主要因素,斥水性与粉粒含量呈空间正相关,与砂粒和黏粒含量呈空间负相关,相关程度粉粒砂粒黏粒;棕壤斥水性与含水量呈空间负相关,相关度雨前较弱,雨后显著。  相似文献   

19.
1H NMR relaxometry is used in earth science as a non‐destructive and time‐saving method to determine pore size distributions (PSD) in porous media with pore sizes ranging from nm to mm. This is a broader range than generally reported for results from X‐ray computed tomography (X‐ray CT) scanning, which is a slower method. For successful application of 1H NMR relaxometry in soil science, it is necessary to compare PSD results with those determined from conventional methods. The PSD of six disturbed soil samples with various textures and soil organic matter (SOM) content were determined by conventional soil water retention at matric potentials between −3 and −390 kPa (pF 1.5–3.6). These PSD were compared with those estimated from transverse relaxation time (T2) distributions of water in soil samples at pF 1.5 using two different approaches. In the first, pore sizes were estimated using a mean surface relaxivity of each soil sample determined from the specific surface area. In the second and new approach, two surface relaxivities for each soil sample, determined from the T2 distributions of the soil samples at different matric potentials, were used. The T2 distributions of water in the samples changed with increasing soil matric potential and consisted of two peaks at pF 1.5 and one at pF 3.6. The shape of the T2 distributions at pF 1.5 was strongly affected by soil texture and SOM content (R2 = 0.51 − 0.95). The second approach (R2 = 0.98) resulted in good consistency between PSD, determined by soil water retention, and 1H NMR relaxometry, whereas the first approach resulted in poor consistency. Pore sizes calculated from the NMR data ranged from 100 μm to 10 nm. Therefore, the new approach allows 1H NMR relaxometry to be applied for the determination of PSD in soil samples and for studying swelling of SOM and clay and its effects on pore size in a fast and non‐destructive way. This is not, or only partly, possible by conventional soil water retention or X‐ray CT.  相似文献   

20.
ABSTRACT

To understand the response of grape (Hutai No.8) quality and soil respiration (Rs) to different soil relative water contents (SRWCs), this study was designed with three soil moisture levels (A: 80–95%, B: 60–75%, and C: 40–55% of SRWC) for grape cultivation. Meanwhile, environmental factors, including air temperature (Ta), air relative humidity, and light intensity, were also recorded. The results showed the following: (1) Through the comprehensive analysis of fruit quality by the method of subordinate function, we concluded that the optimum soil moisture treatment was 60–75% SRWC, and the soluble sugars, proanthocyanidin, and resveratrol were most abundant. In addition, vitamin C (Vc) content was the largest under C treatment. (2) Photosynthetic characteristic under high soil moisture was better than those under low soil moisture condition during grape coloring periods, and it was largest under A treatment in 2015. Rs rate was in accordance with the trend of grape photosynthesis. High soil moisture could accelerate the photosynthetic rate of grape leaves and increase Rs. (3) Correlation analysis showed that higher soil moisture and air humidity and lower soil temperature (Ts) and Ta could promote the accumulation of more nutrients in grape berries; it also could increase photosynthetic rate and Rs during grape coloring periods. In conclusion, 60–75% SRWC was the optimum soil moisture condition, which could improve the nutrient contents and accumulate more bioactive substances. Of course, keeping a lower Ts and Ta, as well as higher air humidity, was also necessary.

Abbreviations: SRWC: soil relative water content; A, 90-95% SRWC; B, 70-75% SRWC; C, 40-55% SRWC; Rs: soil respiration; Ta: air temperature; Ts: soil temperature; OPC: proanthocyanidin; TSS: total soluble solids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号