首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
膜下滴灌是一种既节水,又能抑制土壤盐分上移的灌水技术。该文着重研究在田间条件下,滴头流量、灌水量和灌水水质对微咸水点源入渗水盐运移的影响。研究结果表明,在充分供水条件下,水平湿润锋和积水锋面随时间的推进符合幂函数关系;滴头流量越小,沿土壤深度方向上的盐分含量越小;滴头流量越大,水平方向含盐量随距离增加的趋势越不明显;灌水量是微咸水灌溉条件下控制盐分累积的一个重要因素,灌水量不足,没有足够的入渗水量以确保盐分的淋洗;灌水矿化度的升高会显著增加土壤表层的含盐量。  相似文献   

2.
为探究不同滴灌带布设方式对果农间作系统土壤酚酸类物质、酶活性和微生物分布特性影响,初步探明间作滴灌条件下,土壤酚酸类物质与土壤生物因子的相互关系。以晋西黄土区典型的苹果—大豆间作系统为研究对象,设置3种(L1、L2、L3)滴灌带间距,分析不同水分分布下土壤酚酸类物质、酶活性和微生物数量的空间分布变化,并在相关性基础上利用逐步回归模型,分析3个土壤因子之间的相互关系。结果表明:除苯甲酸和间苯三酚外,滴灌带间距对酚酸类物质分布影响显著(p<0.05),除过氧化氢酶外,滴灌带间距对酶活性、微生物数量分布有显著影响(p<0.05)。在垂直方向上,不同滴灌带布设方式使酚酸更多地分布在深层土壤,微生物数量和部分酶活性在L1、L2处理中随土层加深而先减后增;在水平方向上,不同滴灌带布设方式对土壤酚酸类物质、细菌和真菌分布影响与间作对照处理一致,随距树距离增加而增加。滴灌条件下,除对羟基苯甲酸外,酚酸类物质受脲酶、过氧化氢酶和放线菌的抑制作用显著,间作处理土壤酚酸总量较单作有所减少。L1处理土壤酶活性、微生物总量最高,L2处理土壤酚酸类物质累积量最低。其中L2处理在酚酸累积量最低的基础上,...  相似文献   

3.
The aim of the study was to elucidate the spatial distribution of soil microorganisms and enyzme activities in a long‐term wastewater treated soil. Soil was sampled from a plough layer of the Ah horizon of a sandy Haplic Luvisol which was either (1) irrigated with municipal wastewater for almost 100 years, or (2) no more irrigated since 20 years, or (3) never received wastewater. The samples were fractionated by wet sieving to obtain seven size fractions of organic and mineral soil particles, and a separate silt+clay fraction. The individual soil samples contained between 1.2% (never irrigated) and 4.1% (long‐term irrigated) organic particles by weight, but these particles harboured up to 47.8% of the total soil carbon and 41.7% of nitrogen, and thus represented an important storage of energy and nutrient for microorganisms. In total, however, the highest C and N amounts were accumulated in the silt+clay fraction, whereas coarser mineral particles which dominanted by weight in the Haplic Luvisol were low in C and N. The highest numbers of bacteria, actinomycetes and fungi per gram of the individual soil fractions were found in organic particles of the long‐term irrigated soil. Less nutrient‐dependent oligotrophic bacteria were for the most part associated with the silt+clay fraction, irrespective of the soil treatment with wastewater. Similar to microbial counts, also the ATP content, as a measure of active microbial biomass, and the activities of β‐glucosidase, β‐acetylglucosaminidase, and proteinase were higher in the long‐term irrigated soil than in that which was never irrigated. In most cases slightly enhanced values of microbiological and biochemical parameters were still detectable 20 years after the wastewater irrigation was terminated. The values of the individual parameters decreased in all soil samples under testing in general gradually with decrease in size of the organic soil particles. In conclusion, the coarse soil organic particles > 5 mm and the silt+clay fraction < 0.05 mm represent the sites with the highest microbial inhabitance, ATP contents and enzyme activities in the Ah horizon of an Haplic Luvisol. Long‐term wastewater irrigation resulted in an increase of microbial counts, total biomass and soil enzyme activities.  相似文献   

4.
研究了稻-虾共作模式对涝渍稻田土壤微生物群落功能多样性及土壤肥力的影响。结果表明,稻-虾共作模式的土壤平均颜色变化率(AWCD值)在0-50cm土层均高于中稻单作模式,其中在25-50cm土层中土壤AWCD值达到显著差异。在0-25cm土层中,相对于中稻单作模式,稻-虾共作模式的土壤微生物群落McIntosh指数显著增加,且其微生物对胺类和酸类的利用率显著提高;而在25-50cm土层中,稻-虾共作模式的土壤微生物群落Shannon指数和McIntosh指数均显著高于中稻单作模式,其土壤微生物对糖类、醇类和酸类的利用率较中稻单作模式显著提高;主成分分析表明对碳源利用主成分起异作用的碳源为糖类和酸类。稻-虾共作模式的土壤有机碳和全氮含量在25-50cm土层中显著低于中稻单作模式,其土壤有机碳和全氮含量较中稻单作模式分别下降了41.8%和34.8%,在0-25cm土层中不同模式的土壤养分无显著差异。由上可知稻-虾共作模式提高了土壤微生物的活性以及群落功能多样性,尤其对底层土壤的影响尤为显著,但降低了底层土壤的有机碳和全氮含量。  相似文献   

5.
Soil samples taken from a sewage irrigation area, a partial sewage irrigation area and a ground water irrigation area (control area) were studied with the methods of Biolog and FAME. It was found that the microbial utilization of carbon sources in sewage irrigation areas was much higher than that of control area (P < 0.05). With the increasing of the amount of sewage irrigation, microbial functional diversity slightly increased by the Biolog analysis; however, the amount of epiphyte decreased by the FAME analysis. The results also showed that the Cr, Zn contents were positively correlated with the values of AWCD and the microbial diversity, while Hg content showed negative correlation with the microbial parameters (AWCD of 72 h and Shannon index). Our studies suggested that sewage irrigation resulted in an obvious increase of heavy metals content in soil (P < 0.05), although the maximum heavy metals concentrations were much lower than the current standard of China. Other soil basic characteristics such as cation exchange capacity (CEC), total nitrogen (Nt) and organic matter in sewage irrigation areas obviously increased (P < 0.05). Therefore, it is demonstrated that long-term sewage irrigation had influenced soil microorganisms and soil quality in the studied soils. As a result, it is important to monitor the changes in agricultural soils. Furthermore, our results also confirmed that the methods of Biolog and FAME are effective tools for the assessment of soil microbial structure/function and soil health.  相似文献   

6.
滴灌模式对棉花根系分布和水分利用效率的影响   总被引:7,自引:5,他引:2  
理解膜下滴灌参数对土壤盐分运移和作物生长的影响是制定科学滴灌制度、合理利用水资源的重要环节。毛管布置方式和滴灌水质是膜下滴灌的重要参数,为研究其对土壤盐分变化、棉花根系分布及水分利用效率的影响,设计了2种毛管布置方式(一管四行(Ms)和一管两行(Md))和3个滴灌水质水平(淡水0.24?dS/m、微咸水4.68?dS/m、咸水7.42?dS/m)。结果表明,滴管布置方式对土壤盐分变化和根系分布有显著影响。在相同滴灌水质条件下,Ms处理有利于降低棉花根区土壤含盐量。所有处理根系主要分布于0~40?cm土层内,矿质水滴灌时Md中根系受抑制程度明显高于Ms,但其主要影响根系密度δR>0.5?kg/m3区域的分布范围,对δR>0.2?kg/m3区域范围分布无明显影响。生育期内棉花总耗水量随滴灌水矿化度的上升而降低,与滴管布置无关。相对淡水滴灌而言,矿质水滴灌时Ms处理产量有所降低,但其水分利用效率随灌水矿化度上升而升高;而Md处理产量和水分利用效率均随灌水矿化度上升而下降。  相似文献   

7.
Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water‐ and N‐use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe.

Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water‐use efficiencies of the drip‐fertigated treatments were in most cases 100% higher than those of the corresponding furrow‐irrigated treatments. The highest water demand was during the fruit‐setting growth stage. It was also concluded that under drip fertigation, 100–150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip‐fertigated treatments ranged between 101 and 118kg and 116 and 188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94 and 113 and 111 and 144 kg N/ha for the furrow‐irrigated treatments for 2001 and 2002, respectively.  相似文献   

8.
马铃薯的耐盐性及干旱沙地盐水滴灌试验   总被引:8,自引:0,他引:8  
马铃薯的耐盐性和盐水滴灌试验于1993年2月至7日在以色列内格夫盐水灌溉试验站进行。该试验灌溉水源为国家输水系统(1.2dS/m)和当地深层地下水(6.2dS/m),灌溉频率为每天1次、3次和6次,在试验中进行了有关生理、生长、产量以及土壤积盐的测试。根据试验结果,每天灌水1次,盐水灌溉与淡水灌溉相比产量降低12%,而每天灌水3次和6次,盐水对产量没有明显影响。然而,盐水灌溉使块茎单重和干重率有不  相似文献   

9.
土壤微生物群落功能多样性对评估土壤生态系统稳定性具有重要作用。本文采用Biolog方法,对比研究长期不同植被类型:自然恢复(GL)、农作物(AL)、人工林(FL)及无植被覆盖(BL)对表层(0~15 cm)和亚表层(15~35 cm)土壤微生物群落功能多样性的影响。结果表明:不同土层土壤微生物的平均颜色变化率(AWCD)变化均表现为GL>AL>FL>BL,且0~15 cm土层的AWCD值均高于对应植被15~35 cm土层。GL、AL和FL处理的土壤微生物Shannon指数和McIntosh指数、总的碳源利用能力均显著高于BL处理的,GL处理0~15 cm土层的Shannon指数和McIntosh指数最高,分别为3.38和6.89。在0~15 cm土层AL和FL处理土壤微生物对羧酸类利用相对较高,而GL处理对氨基酸类利用较高;在15~35 cm土层AL和FL处理土壤微生物对氨基酸类利用最高,而GL被对羧酸类利用的最高。通过主成分分析,GL、AL和FL处理在0~15 cm土层土壤微生物的碳源利用方式及代谢功能相似;15~35 cm土层下AL和FL处理的土壤微生物的碳源代谢...  相似文献   

10.
Field trials were conducted to evaluate the effects of different cropping patterns (maize monocropping, maize and potato intercropping, potato monocropping) on microbial abundance, community structure, and microbial functional diversity using plate culture and Biolog technique. Results showed that compared with monocropping, intercropping increased the abundance of soil bacteria, fungi, and actinomyces in rhizosphere surrounding maize and potato. The average well color development (AWCD) and Shannon index (H) were higher in intercropping soil than that found in monocropping soil. The ability of rhizospheric soil microorganisms in utilizing six types of carbon sources had definite differences, and the most dominant community structure was the carbohydrates metabolic groups. Principal component analysis demonstrated that intercropping changed significantly soil microbial community functional diversity depending mainly on carbohydrates and carboxylic acids. Our findings suggested that maize–potato intercropping has positive effects on the improvement of soil microbial abundances, activity, and functional diversity.  相似文献   

11.
Abstract

Soybean [Glycine max(L.) Merrill] is moderately salt tolerant, but the method of irrigation used for crop production under saline conditions may influence the uptake and distribution of potentially toxic salts. This field study was conducted to determine the effects of application of saline waters by different methods, namely, drip and above‐canopy sprinkler irrigation, on the ion relations of soybean cultivar “Manokin”. Salinity was imposed by adding NaCl and CaCl2 (1:1 by weight) to nonsaline irrigation waters. Saline treatments with electrical conductivity (EC i ) of 4 dS m?1 were compared with nonsaline controls (EC i  = 0.5 dS m?1). Ion concentrations in leaves, stems, roots, and when present, pods were determined at four stages of growth: vegetative, flowering, podding, and grain filling. Both Na+ and Cl? were excluded from the Manokin leaves and stems when plants were drip‐irrigated and the uptake of these ions occurred solely via the root pathway. However, when saline water was applied by sprinkling, the ions entered leaves by both foliar absorption and root uptake and their concentrations in the leaves were about 9‐fold higher than in those under saline drip irrigation. Regardless of treatment, leaf‐K was highest during the vegetative stage, then decreased with plant age as K+ was mobilized to meet nutrient demands of the developing reproductive structures.  相似文献   

12.
棉花是鲁北平原种植的重要经济作物,合理利用微咸水和咸水资源是解决棉花季节干旱问题的重要途径。通过田间小区试验,以淡水滴灌处理为对照,设置不同盐分梯度的咸水滴灌处理,研究2种类型咸水滴灌对棉田土壤水分和盐分的分布影响以及棉花产量的响应。结果表明,咸水滴灌条件下主要影响棉田40~100 cm土壤水分的变化,碳酸氢钠型和氯化钠型咸水处理对土壤含水量的影响没有显著差异。利用EC值低于8 d S·m~(-1)的咸水进行补灌,棉田0~40 cm土壤盐分积累不明显,灌溉水EC值为10 d S·m~(-1)的氯化钠型咸水灌溉在0~100 cm土壤盐分有明显的积累。滴灌补灌EC值不大于6 d S·m~(-1)的碳酸氢钠型咸水和不大于8 d S·m~(-1)的氯化钠型咸水对棉花产量没有明显的影响,滴灌补灌7 d S·m~(-1)碳酸氢钠型和10 d S·m~(-1)氯化钠型咸水明显降低棉花产量。从土壤盐分的积累和棉花产量来看,在鲁北平原可以利用6 d S·m~(-1)咸水滴灌对棉花进行补灌;利用咸水滴灌,要同时考虑灌溉水盐分的数量和盐分组成,碳酸氢钠型咸水要更加谨慎利用。  相似文献   

13.
土壤含水率监测位置对温室滴灌番茄耗水量估算的影响   总被引:2,自引:0,他引:2  
土壤水分传感器埋设位置的选择是局部灌溉条件下获得作物根区代表性土壤含水率数据,从而制定滴灌灌溉制度的关键。本文以日光温室滴灌番茄为对象,研究滴灌线源土壤湿润体内含水率分布状况,通过对比距滴灌带不同位置处土壤含水率监测结果估算番茄耗水量的差异,探讨土壤含水率监测的合理位置。结果表明,番茄生育期内14~25 mm的灌水定额主要用于增加0~40 cm土层的土壤含水率,湿润体内日平均土壤含水率分布在75%~100%田间持水率。作物生育期内连续多次滴灌条件下,沿滴灌带单个灌水器形成的湿润土体会充分叠加,形成近似均匀的土壤含水率带状分布,且作物生育期内沿深度方向0~40 cm土层土壤含水率均值无显著性差异,距滴灌带不同水平距离的土壤含水率随时间的变化趋势具有同步特点,无明显的滞后性。以集中80%总根量的土壤深度作为滴灌番茄水分渗漏下界面时,14~25 mm的灌水定额会导致深层渗漏,且深层渗漏量表现出一定的空间变异性。番茄生育期内深层渗漏量约占灌水量的13%。距滴灌带不同位置处的番茄耗水量除在番茄苗期和开花座果期有较大差异外,其余生育阶段的差异均在10%以内。对温室滴灌番茄来说,滴灌高频少量的灌溉特征有利于维持作物根系层适宜的土壤水分状态,监测1个含水率剖面即可满足估算作物耗水量的要求。  相似文献   

14.
模拟氮沉降对滨海湿地土壤微生物功能多样性的影响   总被引:1,自引:0,他引:1  
吴松芹  汪成忠  李梦莎 《土壤》2017,49(6):1153-1158
为全面了解大气氮沉降条件下滨海湿地土壤微生物碳源利用特点,本研究在江苏盐城滨海湿地建立模拟氮沉降实验平台,设置N1(N,0 g/(hm~2·a),对照)、N2(N,3 g/(hm~2·a),低氮)和N3(N,6 g/(hm~2·a),高氮)3个处理,采用Biolog微平板法,分析了土壤微生物功能多样性在不同氮处理下的变化规律和特点。结果表明:不同氮沉降处理间土壤微生物功能多样性差异显著,AWCD值随培养时间延长而增加;Shannon和Mc Intosh多样性指数也随施氮增加呈现升高的趋势,且不同处理间多样性指数差异显著;物种多样性和功能多样性表现出相同的变化规律。土壤微生物对6大类碳源利用强度存在差异,各处理间土壤微生物对碳水化合物类碳源利用率最高,为优势碳源;主成分分析结果显示,不同处理间土壤微生物在碳源利用上有明显的空间分异,土壤微生物功能多样性的差异主要体现在对羧酸类、酚酸类和胺类碳源的利用上,其中胺类尤为突出;此外,对不同施氮处理土壤微生物群落功能多样性与土壤理化因子进行相关分析,结果显示全氮、铵态氮、全磷会对滨海湿地土壤微生物组成和功能活性产生重要影响。  相似文献   

15.

Background

Little is known about the effects of gypsum application to remediate saline–sodic soils in the tropics and the role of microbial indicators in soil reclamation.

Aims

Our study aimed at (1) remediating a highly weathered, irrigated sodic Lixisol under prolonged urban crop production by clean water and gypsum application and (2) to determine the remediation effects on soil microbial indices.

Methods

A three-factorial on-farm experiment with maize (Zea mays L.) was used to study effects on soil microbial biomass of (1) soil degradation at two levels of salinity, (2) irrigation with clean water and wastewater, and (3) the impact of added gypsum during a typical growing season.

Results

At the high-degradation site, the 0.5 M K2SO4 extractable carbon (C) content was 40% higher than at the low-degradation site. In addition, microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) were 20% lower than at the low-degradation site, while fungal ergosterol was even 40% lower, leading to a 33% lower ergosterol/MBC ratio. Wastewater irrigation increased MBN but decreased ergosterol content at the low-degradation site while having no effect at the high-degradation site. Gypsum amendment led to higher MBN at the low-degradation site but to lower MBN at the high-degradation site. Gypsum amendment always increased the ergosterol content whereby this increase was stronger at the low-degradation site, especially in combination with wastewater irrigation.

Conclusions

From a microbial perspective, high soil degradation levels should be avoided by treatment of a saline–sodic wastewater prior to its use for irrigation rather than relying on future remediation strategies of affected field sites.  相似文献   

16.
The present study investigated the impact of irrigation with wastewater on nutritional property and heavy‐metal concentrations in the soil and consequent accumulation in vegetables at sites having long‐term uses of wastewater for irrigation. Samples of irrigation water, soil, and root and shoot parts of palak plants were analyzed to determine the concentration of heavy metals. Wastewater irrigation led to increases in the total and phytoavailable heavy‐metal concentrations in the soil at all the sites. Heavy‐metal concentrations in soil under wastewater irrigation were negatively and positively correlated with soil hydrogen potential (pH) and organic carbon (OC), respectively. The enrichment factor and metal pollution index were higher at wastewater‐irrigated sites as compared to the clean water–irrigated ones. The study concludes that wastewater irrigation modified the physicochemical properties of the soil, leading to more availability of heavy metals in the soil and consequently to the plant.  相似文献   

17.
在内蒙古河套灌区长胜试验站进行了蜜瓜的微咸水滴灌适宜性试验研究。灌溉水源为地下微咸水,水质的电导率从生育初期的3.3 dS/m到收获期的6.3 dS/m。该试验采用4种灌溉处理:按蒸发量的30%、60%、90%灌水(一行作物分别铺1、2、3条滴灌带)及不灌水的对照处理。各处理的灌溉水质和灌溉时间、灌水次数相同。试验结果表明:用微咸水滴灌灌溉的蜜瓜与不灌溉的蜜瓜相比,产量和品质都有较大的提高。60%处理的西瓜产量最高。4种处理(对照,30%,60%和90%)的水分生产效率分别为:25,20.5,18和11.37 kg/m3。在微咸水滴灌情况下,各处理土壤剖面盐分分布基本相似,表层土壤(0~10 cm)盐分积累高于下层土壤。各处理距离滴头50 cm处各剖面的盐渍度要高于距离滴头10 cm处各剖面的盐渍度。3种处理在灌溉结束后,土壤剖面的平均盐渍度和灌溉初期相比,基本没有形成土壤盐分的累积。  相似文献   

18.
The development of an organic matter (OM) based on mixed sheep manure and peat, when it was incorporated into soils as fertilizer, was studied. The experiment was carried out in soils under almond tree culture, with drip irrigation and non irrigation regimes. Two doses, 10 and 4.5 kg tree–1, were assayed. Changes in the humic acid fraction one year after incorporation into soils showed oxidation and enrichment in condensed structures, as observed by an increase of the O*:H* ratio and a decrease of the H*:C* ratio, and also by FTIR spectra. The oxidative process was more significant in the coarser textured and also in the non‐irrigated soil. The evolution of the ratios Cext:Cox and CHA:CFA throughout the culture cycle was followed by sampling and chemical analysis of different forms of organic carbon. Evolution of Cext:Cox showed a uniform humification state in the irrigated soil, and a significant decrease in the non‐irrigated soil, at the beginning of the experiment. Curves of CHA:CFA evolution showed changes attributed to mineralization or drainage of the fulvic acids fraction, giving a maximum in spring in both soils and a final increase at the end of the cycle by drainage only in the irrigated soil.  相似文献   

19.
膜下滴灌棉花的土壤干旱诊断指标与灌水决策   总被引:15,自引:5,他引:15  
通过利用烘干法和中子仪法对膜下滴灌棉花和常规沟灌棉花的土壤干旱情况进行诊断试验,该文对所选的两种干旱诊断指标—作物适宜土壤含水率和作物缺水指标CWSI的特点进行了研究。试验和分析表明,两种灌水方式下的棉花生长对土壤水分环境的要求是一致的。另外,两种指标所反映出的规律也基本相同。但是,因膜下滴灌棉花的耐旱性弱,受旱风险大,在生产中进行灌水决策时,其干旱诊断指标应比常规灌时灌水量稍大  相似文献   

20.
以多氯联苯(Polychlorinated biphenyls,PCBs)自然污染的农田土壤为材料,分析土壤中微生物区系组成、生物量C、N、土壤基础呼吸以及微生物群落功能多样性的变化。研究结果表明,在以4-氯、5-氯同系物为主的PCBs污染土壤中,污染程度对土壤细菌、放线菌的数量影响不明显,而真菌的数量除与土壤污染程度有关,可能还受到土壤pH等性状的影响;土壤微生物C、N与土壤基础呼吸随污染程度的加剧呈下降趋势,但微生物C/N基本没有变化;Biolog分析显示,土壤微生物代谢剖面(AWCD)及Simpson指数在污染程度相差较大的两组土壤样品中差异均达到了显著性水平,表明PCBs污染引起了土壤微生物群落功能多样性下降,降低了微生物对不同单一碳源底物的利用能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号