首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Soybean [Glycine max (L.) Merr.] is a rich source of isoflavones that are often affected by biotic and abiotic factors. The objectives of this study were to evaluate the effect of various concentrations of three natural elicitors applied at different soybean growth stages on isoflavone content and to compare the efficiency of several solvent systems in isoflavone extraction and quantification. The isoflavones extracted from R96-3444 soybean using eight solvent systems were separated, identified, and quantified by a high-performance liquid chromatography (HPLC) procedure. The soybean plants were sprayed with salicylic acid, methyl salicylate, or ethyl acetate at 0, 10(-6), 10(-3), and 10(-1) M at R1 (blooming) or R4 (full pods) growth stage. Results showed that 10(-3) M ethyl acetate sprayed at the R1 stage significantly increased total isoflavone content and the levels of some individual isoflavones in soybean seeds. With all the elicitors that were tested, concentration was a more important factor than application time with respect to isoflavone content with lower concentrations being more effective on most isoflavones. A 53% acetonitrile solvent system was the best solvent system for extracting total isoflavone, malonyl glucosides, genistein, glycitin, genistin, acetyl-daidzin, and acetyl-genistin. The results of this study will be useful for increasing the isoflavone content in desirable soybean varieties and improving isoflavone concentration during extraction.  相似文献   

3.
Two isoflavones, daidzein (1) and genistein (2), were isolated from soybean hypocotyls. Daidzein and genistein showed a suppressive effect on umu gene expression of the SOS response in Salmonellatyphimurium TA1535/pSK1002 against the mutagen 3-amino-1, 4-dimethyl-5H-pyrido[4,3b]indole (Trp-P-1), which requires liver metabolizing enzymes. Compound 1 suppressed 73% of the SOS-inducing activity at concentrations <0.74 micromol/mL, and the ID(50) value was 0.37 micromol/mL. Compound 2 suppressed 95% of the SOS-inducing activity at concentrations <0.74 micromol/mL, and the ID(50) value was 0.17 micromol/mL. Compounds 1 and 2 were also assayed with the mutagen 2-(2-furyl)-3-(5-nitro-2-furyl)acrylamide (furylfuramide) and activated Trp-P-1. In addition to the antimutagenic activities of daidzein and genistein against Trp-P-1, frylfuramide and activated Trp-P-1 were assayed by an Ames test using S. typhimurium TA100.  相似文献   

4.
It has been previously demonstrated that lunasin is a novel and promising cancer preventive peptide from soybean. The Bowman-Birk protease inhibitor (BBI) and isoflavones are well-studied substances from soy. This study evaluated the levels and bioactivities of these three compounds as affected by stages of seed development and sprouting under light and dark conditions. BBI and lunasin appear at 7 and 6 weeks, respectively, after flowering and increase as the seed matures. Daidzein and genistein both decrease during seed maturation. During sprouting under light, BBI increases up to the 6th day and decreases thereafter, disappearing at the 9th day after soaking. Under dark conditions, BBI increases up to the 7th day after soaking and decreases thereafter, disappearing at the 10th day. Lunasin starts to decrease at 2 days after soaking and disappears completely at 7 days under light and dark conditions. Daidzein and genistein increase continuously during the 10 days of soaking, and both increase more in the dark than under light conditions. Protein extracts from early seed development (2-5 weeks after flowering) suppress cell viability to a greater degree than those from later stages (6-9 weeks). Inhibition of foci formation by protein extracts from later stages is greater than those from earlier stages. Lunasin and BBI suppress foci formation more than the isoflavones. Sprouting decreases lunasin and BBI contents but increases isoflavones. Protein extracts from early soaking times inhibit foci formation more and suppress cell viability less than those from later soaking times. Light and dark conditions have no influence on the bioactivities of protein extracts. These data are useful in the preparation of soy fractions enriched in lunasin, BBI, and isoflavones and in making dietary recommendations.  相似文献   

5.
6.
7.
8.
Isoflavones and carotenoids in four experimental genotypes and Hutcheson cultivar soybeans were evaluated as a function of processing treatments and maturity. Total isoflavone and carotenoid contents were affected by genotypes and maturity stages (p < 0.0001). Total isoflavones ranged from 472 microg/g (in NTCPR93-40) to 2280 microg/g (in Hutcheson). Lutein contents ranged from 895 (in NTCPR93-286) to 2119 (in Honey Brown), and beta-carotene ranged from 291 (in Hutcheson) to 491 (in NICPR92-40) microg/100 g. Mean total isoflavone retention percentages in immature Hutcheson soybeans were 46% (boiling), 53% (freezing), and 40% (freeze-drying). Mean retentions of lutein and beta-carotene, respectively, were 92 and 73% in frozen, 62 and 62% in boiled, and 34 and 27% in freeze-dried soybeans. Boiling caused a substantial increase in daidzin, genistin, and genistein. The results show that post-harvest changes in total isoflavones and carotenoids in soybeans are influenced by processing methods, but genotype has an effect on isoflavone and carotenoid profiles during seed development.  相似文献   

9.
A high-throughput method for the extraction and analysis of quercetin in human plasma using 96-well SPE and LC-(ESI)MS/MS (7 min/run) is described. Quercetin exists as a range of glycosides in foods. The dominant types of quercetin glycosides vary depending on genetics (i.e., species and cultivar). Dietary sources include onions and apples (i.e., the peel). Herein the quercetin glycoside composition was determined in a composite standard of dried apple peel and in onion powder. The predominant forms of quercetin in apple peel include quercetin O-arabinoside, 3-O-galactoside, 3-O-glucoside, and 3-O-rhamnoside. In the onion powder, quercetin occurred as the quercetin 3,4'-O-glucoside and 4'-O-glucoside. Pharmacokinetics relating to absorption (C(max), t(max), and AUC(0-24?h)) and elimination (k(el) and t(1/2)) were compared after the consumption of apple peel powder (AP), onion powder (OP), or a mixture of the apple peel and onion powder enriched applesauce (MP) by healthy volunteers (eight females and eight males). The enriched applesauce delivered ~100 mg of quercetin aglycone equivalents. Consumption of the OP resulted in C(max) = 273.2 ± 93.7 ng/mL, t(max) = 2.0 ± 1.7 h, and t(1/2) = 14.8 ± 4.8 h, whereas the AP resulted in C(max) = 63.8 ± 22.4 ng/mL, t(max) = 2.9 ± 2.0 h, and t(1/2) = 65.4 ± 80.0 h. The MP resulted in an intermediate response with C(max) = 136.5 ± 45.8 ng/mL, t(max) = 2.4 ± 1.5 h, and t(1/2) = 18.7 ± 6.8 h. Consumption of the OP led to faster absorption, higher concentration, and greater bioavailability as compared to the AP. No significant gender-related differences were observed in the absorption of quercetin, whereas significant gender-related differences in the elimination half-time (t(1/2)) were observed.  相似文献   

10.
Steamed black soybeans and black soybean koji, a potentially functional food additive, were subjected to heating at 40-100 degrees C for 30 min. It was found that steamed black soybeans and black soybean koji after heating at 80 degrees C or higher generally showed reduced contents of malonylglucoside, acetylglucoside, and aglycone isoflavone and an increased content of beta-glucoside. A lower reduction in malonylglucoside and acetylglucoside isoflavone but greater reduction in aglycone content was noted in steamed black soybeans compared to black soybean koji after a similar heat treatment. After 30 min of heating at 100 degrees C, steamed black soybean retained ca. 90.3 and 83.8%, respectively, of its original malonylglucoside and acetylglucoside isoflavone, compared to lower residuals of 80.9 and 78.8%, respectively, for black soybean koji. In contrast, the heated black soybeans showed an aglycone residual of 68.0%, which is less than the 80.0% noted with the heated black soybean koji.  相似文献   

11.
To circumvent drought conditions persisting during seed fill in the mid-south U.S. soybean production region, researchers have developed the early soybean (Glycine max [L.] Merr.) production system (ESPS), which entails early planting of short-season varieties. Because soybean supplies a preponderance of the world's protein and oil and consumption of soy-based foods has been associated with multiple health benefits, the effects of this agronomic practice on seed quality traits such as protein, oil, and isoflavones should be investigated. Four cultivars of soybean, two from maturity group IV and two from maturity group V, were planted in April (ESPS) and May (traditional) in a two-year study at Stoneville, MS. Near-infrared analysis of soybean seed was utilized to determine the percentages of protein and oil. Dependent upon variety, the oil content of the early-planted crop was increased by 3-8%, whereas protein was not significantly changed. Visualization of protein extracts fractionated by sodium dodecyl sulfate-polyacrylamide electrophoresis and fluorescence two-dimensional difference gel electrophoresis revealed that early planting did not affect the relative accumulation of the major seed-storage proteins; thus, protein composition was equal to that of traditionally cultivated soybeans. Maturity group IV cultivars contained a higher percentage of oil and a lower percentage of protein than did the maturity group V cultivars, regardless of planting date. Gas chromatographic separation of fatty acids revealed that the percentages of saturated and unsaturated fatty acids were not significantly altered by planting date. Methanol extracts of seed harvested from different planting dates when analyzed by high-performance liquid chromatography showed striking differences in isoflavone content. Dependent upon the variety, total isoflavone content was increased as much as 1.3-fold in early-planted soybeans. Irrigation enhanced the isoflavone content of both early- and late-planted soybeans as much as 2.5-fold. Accumulation of individual isoflavones, daidzein and genistein, was also elevated by irrigation. Because this cultural practice improves the quality traits of seeds, ESPS provides an opportunity for enhancing the quality of soybean.  相似文献   

12.
The seeds of 322 Korean soybean varieties were collected from six different cultivated sites in Korea and classified into three groups based on the 100-seed weight as small, medium, and large. Seeds were analyzed for their concentrations of isoflavones and phenolic compounds. The total average isoflavones in soybean cultivated at Iksan (2.840 micromol g(-1)) and phenolic compounds in soybean grown at Yeoncheon (9.216 micromol g(-1)) and Iksan (9.154 micromol g(-1)) were significantly different (p<0.05). In small and medium seeds of soybeans cultivated at Yeoncheon, Yesan, and Milyang high levels of isoflavones were obtained, whereas soybeans grown in Chuncheon showed the lowest isoflavone concentrations. However, isoflavone concentrations in the large seeds of soybean cultivated at Chuncheon showed the highest level. The soybean cultivated at Yeoncheon had high levels of phenolic compounds in small, medium, and large seeds, whereas the soybean grown at Chuncheon had the lowest. On the other hand, the phenolic concentrations of large soybean cultivated at Milyang were the least. At Yeoncheon, Yesan, and Milyang, the total isoflavone and phenolic compounds levels related to their seed size was significantly different (p<0.05), whereas in the soybean of different sizes cultivated at Chuncheon, the relationship to their seed size was not significantly different. The relationships of total isoflavones and phenolic compounds of small and medium soybean seeds were significantly higher than that of large soybean seeds. The hydroxybenzoic acid group in all sizes of seeds cultivated at six sites in Korea was the major phenolic compound, followed by flavonoid and hydroxycinnamic acid. The total isoflavone concentration was positively correlated with acetylglycoside and negatively correlated with malonylglycoside in the small soybean seeds cultivated at Yeoncheon. In medium soybean seeds cultivated at Yeoncheon, a significantly positive correlation was found between acetylglycoside and glycoside, between aglycone and glycoside, and between aglycone and acetylglycoside, whereas a significantly negative correlation was shown between malonylglycoside and glycoside, between acetylglycoside and malonylglycoside, and between aglycone and malonylglycoside. In large soybean seeds cultivated at Chuncheon, significantly positive and negative correlations were similar to those of medium seeds. The results presented here can improve the understanding of the relationships among the concentrations of individual chemical compounds and each chemical compound group and total chemical compounds in soybeans of different seed sizes from different cultivated sites.  相似文献   

13.
Spring (February to June) and fall (August to December) crops of soybean grown yearly in Taiwan with reverse temperature patterns provide a novel model to assess the effect of the crop season. In this study, three soybean cultivars, namely CH 1, VS-KS 2, and HBS, were grown for 2001 fall, 2002 spring, 2003 fall, 2004 spring, 2004 fall, and 2005 spring crops. The harvested and sun-dried soybeans were lyophilized, pulverized, and stored at -25 degrees C until HPLC analyses of isoflavone compositions were performed. As affected by extraction solvent and HPLC mobile phase, the amount of isoflavones extracted by methanol-H(2)O was higher than those extracted by acetic acid-acetonitrile. In addition, when both extracts were subjected to HPLC analysis with reversed C18 column run respectively with methanol-H(2)O and acetic acid-acetonitrile mobile phases, malonyldaidzin, malonylglycitin, and malonylgenistin were not detected in the former phase. Accordingly, all harvested soybeans were subjected to methanol-H(2)O extraction and HPLC analysis with the acetic acid-acetonitrile mobile phase. Among the detected soybeans, daidzin, genistin, malonyldaidzin, and malonylgenistin were the majors and glycitin, malonylglycitin, daidzein, and genistein were the minors of isoflavones. As affected by crop season for each cultivar grown for 3 years, daidzin, genistin, malonyldaidzin, and malonylgenistin contents of soybeans of the fall crops were significantly higher than those of their spring crops ( p < 0.05).  相似文献   

14.
Experiments to assess the rate of absorption and translocation of foliar‐applied, isotopically labeled boric acid (BA) were carried out with lychee (Litchi chinensis Sonn.) and soybean (Glycine max [L.] Merr.) plants. Boron (B) absorption and translocation within the plant, one week after treatment, was investigated after adding to the boric acid (BA solutions 0.5 mM CaCl2 and/or 50 or 500 mM sorbitol). The contribution of stomata to the absorption process was assessed by applying the solutions either to the adaxial or to the abaxial leaf side. Both plant species differed greatly in total absorption rates. The adaxial leaf surface (lacking stomata) of lychee leaves was nearly impermeable, while the stomatous abaxial surface was permeable to BA solutions. In this species, no translocation of 10B to other leaf parts and no effect of adjuvants in increasing 10B absorption were recorded. In contrast, 10B was absorbed both by adaxial and abaxial leaf surfaces of soybean leaves. Boron concentrations measured in treated soybean leaves were sixfold higher after application to the abaxial as compared to the adaxial leaf surface. The addition of adjuvants significantly enhanced the rate of 10B absorption, but not its translocation within the plant. Treatments containing 500 mM sorbitol led to increased 10B absorption and enhanced acropetal 10B movement, whereas adding only 50 mM sorbitol had no significant effect. Application of 0.5 mM CaCl2 in combination with 500 mM sorbitol decreased the rate of 10B absorption, compared to the performance of 500 mM sorbitol alone. Basipetal 10B translocation was very limited. A distinct effect of B‐sorbitol complexes on B translocation apart from the pure adjuvant effect could not be discerned in this investigation.  相似文献   

15.
尿素缓释剂不使用HQ(氢醌),而是采用多种化合物复配成的具有复合抑制功能的新型脲酶抑制剂。培养试验结果表明,尿素缓释剂对土壤脲酶活性有一定的抑制作用,可提高尿素肥效,使土壤中有效氮贮存量提高20 4%。田间试验结果表明,使用尿素缓释剂添加到尿素中,比普通尿素有明显的增产作用,粮食作物可增产14 5%,蔬菜可增产19 5%,且可省掉追肥的工序。  相似文献   

16.
A double-coated, slow-release, and water-retention urea fertilizer (DSWU) was prepared by cross-linked poly(acrylic acid)-containing urea (PAAU) (the outer coating), polystyrene (PS) (the inner coating), and urea granule (the core). Elemental analysis results showed that the nitrogen content of the product was 33.6 wt %. The outer coating (PAAU) regulated the nitrogen release rate and protected the inner coating from damage. The slow-release property of the product was investigated in water and in soil. The possible mechanism of nitrogen release was proposed. The influences of PS coating percentage, temperature, water absorbency, and pH on the release of nitrogen were also investigated. It was found that PS coating percentage, temperature, and water absorbency had a significant influence on the release of nitrogen. However, the pH had no effect. The water-retention property of the product was also investigated. The results showed that the product not only had a good slow-release property but also excellent water-retention capacity, which could effectively improve the utilization of fertilizer and water resources. The results of the present work indicated that the DSWU would find good application in agriculture and horticulture, especially in drought-prone areas where the availability of water is insufficient.  相似文献   

17.
18.
19.
20.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a new technique having a number of advantages for food analysis. This study is the first to demonstrate the use of MALDI-TOF MS to identify isoflavones in soy samples. 2',4',6'-Trihydroxyacetophenone (THAP) and 2,5-dihydroxybenzoic acid (DHB) were both good matrices for isoflavones, but DHB was chosen as the best because it worked well for sample extracts, with good spot-to-spot repeatability. Isoflavones were predominantly ionized in a protonated form with a very small amount of sodium or potassium adduct ions. Fragmentation occurred only through loss of glycosidic residues. Daidzin showed more than twice the response of genistin using MALDI-TOF MS. A simple solid phase extraction of isoflavones from soy samples was developed for MALDI-TOF MS analysis. MALDI-TOF MS can provide an isoflavone profile in 2 min and serves as a powerful tool to identify and study processing changes of isoflavones in soy products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号