首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the potential for biological control of black rot of broccoli, caused by Xanthomonas campestris pv. campestris (Xcc), using nonpathogenic Xanthomonas sp. strain 11-100-01 (npX) mixed with bacteriophage XcpSFC211 (pXS). Inoculation of intact broccoli plants in greenhouse trials with either npX or pXS did not control black rot. After injured plant inoculation, however, npX alone or npX with pXS significantly controlled black rot. When a mixed suspension of npX with pXS was placed on a membrane filter, then washed with distilled water and air-dried, a substantial amount of pXS adsorbed to the surface of npX. In a field trial, broccoli plants were sprayed with a suspension of npX with pXS, then inoculated with Xcc. A meta-analysis of the results from five field trials showed an integrated risk ratio (IRR, the ratio of disease incidence in inoculated broccoli plants to the incidence in control plants) of 0.69 after treatment with only npX and 0.59 with npX with pXS, indicating that black rot incidence was significantly reduced by each treatment. The difference between these two treatments was also significant. IRR was 1.24 when comparing suppression by npX with pXS and that by basic copper sulfate wettable powder; thus, their control was comparable. The combination of npX with pXS improved the preventive effect against black rot. This is the first report describing that a nonpathogenic Xanthomonas sp. strain mixed with a bacteriophage effectively controlled black rot of broccoli in field trials.  相似文献   

2.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc) is a severe seedborne disease of Brassica crops around the world. Nine races are recognized, being races 1 and 4 the most aggressive and widespread. The identification of Xcc races affecting Brassica crops in a target area is necessary to establish adequate control measures and breeding strategies. The objectives of this study were to isolate and identify Xcc strains from northwestern Spain by using semi-selective medium and pathogenicity tests, determine the existing races of Xcc in this area by differential series of Brassica spp., and evaluate the use of repetitive DNA polymerase chain reaction-based fingerprinting (rep-PCR) to differentiate among the nine existing Xcc races. Seventy five isolates recovered from infected fields were identified as Xcc. Race-typing tests determined the presence of the following seven pathogen races: 1, 4, 5, 6, 7, 8 and 9. Race 4 was the most frequent in Brassica oleracea and race 6 in Brassica rapa crops, therefore breeding should be focussed in obtaining resistant varieties to both races. Cluster analysis derived from the combined fingerprints showed four groups, but no clear relationship to race, crop or geographical origin was found. Rep-PCR analysis was found not to be a reliable method to discriminate among Xcc races, therefore race typing of Xcc isolates should be done by using the differential series of Brassica spp. genotypes or another alternative approach.  相似文献   

3.
Whole genome sequencing of a copper resistant (CuR) black rot strain of Xanthomonas campestris pv. campestris (Xcc) isolated from a broccoli plant in Trinidad revealed a unique operon for copper resistance. The cop genes of strain Xcc-BrA1 were determined to be present on a 160 to 180 kb plasmid shown to be non-conjugative with other xanthomonads. While nucleotide comparison of a putative 8.0 Kbp copLABMGF gene cluster identified in Xcc-BrA1 genome did not reveal any homologous region with other known CuR Xanthomonas strains from diverse origins, the comparison of the translated amino acid sequence indicated similarity with X. citri, X. c. pv. citrumelonis and X. vesicatoria Cop proteins. Cloning of the copLAB gene cluster from Xcc-BrA1 conferred copper resistance to other copper-sensitive xanthomonads. Although Xcc-BrA1 harbors copLAB genes with similar sizes and organization and is able to grow on Cu-amended medium as other CuR xanthomonads, the phylogenetic analysis of nucleotide sequences indicates that the cop cluster in Xcc-BrA1 is unique and distantly related to other copLAB genes from Xanthomonas and Stenotrophomonas. The origin of copper resistance genes in Xcc-BrA1 is likely a result of horizontal gene acquisition from a still unknown phylloplane cohabitant. The findings of this study have implications for the management of crop diseases caused by CuR xanthomonads. Future studies could focus on and determining the distribution, overall importance and appropriate control measures for strains harbouring these unique genes.  相似文献   

4.
Bacterial black spot disease of mango is caused by Xanthomonas campestris pv. mangiferaeindicae (Xcm), which consists of two genotypically and phenotypically distinct groups of strains. Monoclonal antibodies (MABs) were produced – 15 against CFBP 1717, a group I strain, and 9 against CFBP 2919 (yellow-pigmented), a group II strain – and were analyzed for their characteristics. On the avidin-biotin peroxidase complex enzyme-linked immunosorbent assay, the dilution limit of the MABs was between 100 and 200000 and was 10 times higher when measured on the corresponding ascitic fluid. All kinds of isotypes were represented among the MABs. All the Japanese Xcm strains, designated group I by hrp-restriction fragment length polymorphism (RFLP) analysis, reacted equally with MAB 1A7H12G3, which is the most specific for all but one worldwide group I strains, and to only one strain among group II. Also, to various extents, serological heterogeneity inside the two groups was consistently differentiated based on isozyme and RFLP analyses. MAB 1E2E1 against CFBP2919, because of its narrow specificity, and MAB 1A7H12G3 against CFBP1717, because of its broad specificity, will be useful for epidemiological studies or general control of the pathogen.  相似文献   

5.
Strains of Xanthomonas campestris pv. vesicatoria Dye 1978 (Xcv), the causal agent of bacterial spot, have been classified into two groups based on their ability to hydrolyze starch. Three monoclonal antibodies (MAbs), 7AH10, 5HB3, and 4AD2, were produced immunized against the living bacteria and were specific to and could distinguish Xcv strains able or unable to hydrolyze starch (Amy+ or Amy). The MAb 7AH10, obtained against strain UPB141(Amy) reacted in an enzyme-linked immunosorbent assay with all the Amy strains (n = 19) and 1 of 11 Amy+ strains. Against Xcv 2625, an Amy unusual phenotype strain, MAb 5HB3, recognized 97% of our worldwide collection of Xcvs (n = 30). Also against that strain, the MAb 4AD2 reacted with none of the homologous Amy phenotypes and with 90% (n = 11) of the heterologous Amy+ phenotypes. For all the MAbs, cross reactions with other pathovars or species were less than 4% (n = 67). By assaying a Japanese collection of strains against the three MAbs, the Amy+ strains were distinguished from the Amy strains, and their relation with other world strains could be demonstrated. All the MAbs reacted with the lipopolysaccharide fraction of the bacterial cell wall during immunoblotting.  相似文献   

6.
Xanthomonas oryzae pv. oryzicola, the causal agent of rice leaf streak disease, was found to be sensitive to streptomycin (an aminocyclitol glycoside antibiotic), by inhibition of protein synthesis resulting from interference with translational proofreading. This study aimed to determine the molecular resistance mechanism of X. oryzae pv. oryzicola to streptomycin. Seven streptomycin-resistant mutants were obtained by UV induction or streptomycin selection. These mutants can grow at 100 μg ml−1 of streptomycin while the wild-type strain (RS105) cannot grow at 5 μg ml−1. Sequencing indicated that the rpsL gene encoding ribosomal protein S12 has 375 bp encoding 125 amino acid residues. In all resistant strains, a mutation in which AAG was substituted for AGG (Lys→Arg) occurred either at codon 43 or 88. Two plasmids, pUFRRS and pUFRRX, were constructed by ligating the rpsL gene into the cosmid pUFR034. The plasmids pUFRRS and pUFRRX containing the Lys→Arg mutation of the rpsL gene conferred streptomycin resistance to the sensitive wild-type strain by electroporation. Both transformants, RS1 and RS2, could grow in the medium containing 50 μg ml−1 of streptomycin. A mutation at codon 43 or 88 in rpsL can result in resistance of Xanthomonas oryzae pv. oryzicola to streptomycin.  相似文献   

7.
The pathogenic race of 59 cultures of Xanthomonas oryzae pv. oryzae, a pathogen of bacterial leaf blight of rice, isolated from six locations in the inland mountainous area of Hiroshima Prefecture in 1999, were determined by a set of traditional differentials. Four races—I, II, V and VII—were found across the area; however, we noticed the composition of the races as well as the dominant race in each location different. All races were avirulent on differential cultivar Te-tep. Races V and VII were new to Hiroshima. The rice cultivars infected with bacterial leaf blight in Hiroshima are thought to be grouped into the Kinmaze group, which does not have any resistance genes. Apparently, a variety of races occurred unexpectedly on the cultivars contrary to stabilizing selection theory. Received 25 February 2000/ Accepted in revised form 13 July 2000  相似文献   

8.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

9.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

10.
Bacterial gall on trunks and twigs of cherry trees (Prunus × yedoens, Someiyoshino) was found in Miyazaki and Saga prefectures, Japan. The surface of young galls are relatively smooth and light brown, but they become rough and dark brown. Characteristics of the bacterium isolated from galls on trunks or twigs are similar to those of Pseudomonas syringae pathovars, i.e., pv. actinidiae, pv. daphniphylli, pv. dendropanacis, pv. Morsprunorum, pv. myricae, pv. rhaphiolepidis, pv. syringae and pv. tremae. This bacterium produced galls on cherry and apricot, but not on 66 other species of plants belonging to 39 families. From these results, this bacterium was classified as a new pathovar of Pseudomonas syringae, and the name Pseudomonas syringae pv. cerasicola, pv. nov., is proposed. Strain M9501(ICMP 13926) was designated as the pathotype strain. Received 10 September 1999/ Accepted in revised form 24 December 1999  相似文献   

11.
A highly virulent strain (HVS) of Xanthomonas axonopodis pv. malvacearum (Xam) was first reported in Africa in 1983, infecting all commercial cultivars of cotton including the immune cv. ‘101–102B’. The HVS was considered to be a new race of pathovar malvacearum (race 20). Here we studied a HVS (GSPB 2388) isolated in Sudan, which causes symptoms that clearly differed from the typical angular water-soaked spots of bacterial bright of cotton. Our investigations showed that extracellular cellulase activity of this HVS was higher than that of the control strain GSPB 1386 (race 18). Additionally, SDS-PAGE indicated that the HVS cell wall contained short LPS molecules with fewer O-chain repeating units, lacking in GSPB 1386. The higher cellulase activity and the distinct lipopolysaccharide of HVS are correlated with the higher virulence and deviating symptom formation. Rep-PCR fingerprinting showed that the HVS was very closely related to other strains of Xam.  相似文献   

12.
13.
The present study was conducted to determine if there is specificity in the host-pathogen relationship between the isolates of Xanthomonas oryzae pv. oryzae, the causal bacterium for rice blight and Leersia grasses, the alternative weed hosts of the disease. Plants of three species of Leersia, namely, L. sayanuka, L. oryzoides and L. japonica, were collected from various parts of Japan and were inoculated with the X. oryzae pv. oryzae isolates obtained from various locations in Japan and from 11 Asian countries. Four L. sayanuka plants were found susceptible to all Race II isolates and some Race I isolates, but were resistant to all Race III isolates. Race III is known to have a wider range pathogenicity to rice cultivar groups compared with Race I and II. Although the reactions of two L. oryzoides plants to Race I and II isolates were similar to that of L. sayanuka, the L. oryzoides plant collected from Niigata Prefecture showed a susceptible reaction to some Race III isolates. On the other hand, L. japonica plants gave reactions different those of L. sayanuka and L. oryzoides, with two plants of L. japonica found to be resistant to all test isolates collected from Japan. The Asian isolates exhibited a wide host range against the international differential rice cultivars, but almost all of them were avirulent to Leersia plants. These results indicate that the relationship between the pathogenicity of the causal bacterium and the resistance of host plants is very complex, and suggest that pathogenic diversity of X. oryzae pv. oryzae might be related to the resistance of Leersia spp.  相似文献   

14.
15.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

16.
Virus-like symptoms—red ringspots on stems and leaves, circular blotches or pale spots on fruit—were found on commercial highbush blueberry (Vaccinium corymbosum) cultivars Blueray, Weymouth, Duke and Sierra in Japan. In PCR testing, single DNA fragments were amplified from total nucleic acid samples of the diseased blueberry bushes using primers specific to Blueberry red ringspot virus (BRRV). Sequencing analysis of the amplified products revealed 95.7–97.7% nucleotide sequence identity with the BRRV genome. This paper is the first report of blueberry red ringspot disease caused by BRRV in Japan. The nucleotide sequence data reported in this paper are available in the GenBank/EMBL/DDBJ database as accessions AB469884 to AB469893 for BRRV isolates from Japan.  相似文献   

17.
In many Gram-negative plant pathogenic bacteria the type III secretion system (TTSS), encoded by hrp genes, is essential for pathogenicity in the host and induction of a hypersensitive reaction (HR) in nonhost plants. The expression of hrp genes has been suggested to be repressed in complex media, whereas it is induced in planta and under certain in vitro conditions. We recently reported that XOM2 medium allows efficient hrp expression by Xanthomonas oryzae pv. oryzae. In this study, we investigated hrp-dependent secretion of proteins by the bacteria in vitro. Using modified XOM2, in which bovine serum albumin was added and the pH was lowered to 6.0, we detected at least 10 secreted proteins and identified one as Hpa1. This is the first evidence of protein secretion via TTSS in X. oryzae pv. oryzae.  相似文献   

18.
Aphanomyces euteiches Drechsler is an oomycete pathogen of leguminous crops that causes root rot, a severe disease of pea (Pisum sativum L.) worldwide. An improved understanding of the genetic structure of A. euteiches populations would increase knowledge of pathogen evolution and assist in the design of strategies to develop pea cultivars and germplasm with stable disease resistance. Twenty six primers pairs were used to amplify Sequence Related Amplified Polymorphisms (SRAP) among 49 A. euteiches isolates sampled from pea. A total of 190 polymorphic SRAP bands were generated, of which 82 were polymorphic between all the A. euteiches isolates. The percentage of polymorphic bands per primer pair ranged from 22 to 75%. According to the PIC value estimated for each marker, 60% of the SRAP markers were highly to reasonably informative (PIC > 0.25). Genetic structure of A. euteiches populations sampled in different American and French locations showed low to high genetic diversity within populations. The largest variation occurred within countries, with a total estimated genetic diversity of 0.477 and 0.172 for American and French populations, respectively. This was particularly evident from a principal component analysis (PCA) and a Minimum Spanning Networks (MSN) based on genetic profiles of isolates, which generated two different clusters, one corresponding to the French isolates and four American isolates (MV1, MV5, MV7, Ath3), and the other to American isolates. A. euteiches populations from cultivated pea in France appeared as a single unstructured population, whereas American isolates of A. euteiches diverged into three different populations.  相似文献   

19.
Organic management of soils is generally considered to reduce the incidence and severity of plant diseases caused by soil-borne pathogens. In this study, take-all severity on roots of barley and wheat, caused by Gaeumannomyces graminis var. tritici, was significantly lower in organically-managed than in conventionally-managed soils. This effect was more pronounced on roots of barley and wheat plants grown in a sandy soil compared to a loamy organically-managed soil. Fluorescent Pseudomonas spp. and in particular phlD+ pseudomonads, key factors in the take-all decline phenomenon, were represented at lower population densities in organically-managed soils compared to conventionally-managed soils. Furthermore, organic management adversely affected the initial establishment of introduced phlD+ P. fluorescens strain Pf32-gfp, but not its survival. In spite of its equal survival rate in organically- and conventionally-managed soils, the efficacy of biocontrol of take-all disease by introduced strain Pf32-gfp was significantly stronger in conventionally-managed soils than in organically-managed soils. Collectively, these results suggest that phlD+ Pseudomonas spp. do not play a critical role in the take-all suppressiveness of the soils included in this study. Consequently, the role of more general mechanisms involved in take-all suppressiveness in the organically-managed soils was investigated. The higher microbial activity found in the organically-managed sandy soil combined with the significantly lower take-all severity suggest that microbial activity plays, at least in part, a role in the take-all suppressiveness in the organically-managed sandy soil. The significantly different bacterial composition, determined by DGGE analysis, in organically-managed sandy soils compared to the conventionally-managed sandy soils, point to a possible additional role of specific bacterial genera that limit the growth or activity of the take-all pathogen.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号