首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
Magnetic resonance images of a screech owl ( Otus asio ) were acquired to identify the normal anatomic components of the eye'and orbit. T1-weighted, proton-density, and T2-weighted images were obtained in the straight sagittal, oblique dorsal, and oblique sagittal planes. Signal intensity for the various orbital structures differed between the three resonance techniques. T1-weighted images provided the best anatomic detail of ocular and orbital structures. The oblique dorsal and oblique sagittal planes were superior for evaluating the optic nerve in its entirety.  相似文献   

2.
Alberto  Arencibia  DVM  PhD  Jose M.  Vazquez  DVM  PhD  Juan A.  Ramirez  MD  PhD  Gregorio  Ramirez  DVM  PhD  Jose M.  Vilar  DVM  Miguel A.  Rivero  DVM  Santiago  Alayon  MD  Francisco  Gil  DVM  PhD 《Veterinary radiology & ultrasound》2001,42(5):405-408
The purpose of this investigation was to define the magnetic resonance (MR) imaging appearance of the brain and associated structures of the equine head. MR images were acquired in oblique dorsal (T2-weighted), sagittal (T1-weighted), and transverse planes (T2-weighted), using a magnet of 1.5 Tesla and a human body coil. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the cranioencephalic structures. Annotated MR images from this study are intended as a reference for clinical imaging studies of the equine head, specially in the diagnosis of brain diseases in the horse.  相似文献   

3.
Margaret A.  Blaik  DVM  R. Reid  Hanson  DVM  Steven A.  Kincaid  DVM  MS  PhD  John T.  Hathcock  DVM  MS  Judith A.  Hudson  DVM  PhD  Debra K.  Baird  DVM  PhD 《Veterinary radiology & ultrasound》2000,41(2):131-141
The objective of this study was to define the normal gross anatomic appearance of the adult equine tarsus on a low-field magnetic resonance (MR) image. Six radiographically normal, adult, equine tarsal cadavers were utilized. Using a scanner with a 0.064 Tesla magnet, images were acquired in the sagittal, transverse and dorsal planes for T1-weighted and the sagittal plane for T2-weighted imaging sequences. Anatomic structures on the MR images were identified and compared with cryosections of the imaged limbs. Optimal image planes were identified for the evaluation of articular cartilage, subchondral bone, flexor and extensor tendons, tarsal ligaments, and synovial structures. MR images provide a thorough evaluation of the anatomic relationships of the structures of the equine tarsus.  相似文献   

4.
Magnetic resonance (MR) images were acquired in five dogs and one cat with ocular and orbital disease. MR images were obtained in the dorsal or oblique dorsal, and oblique sagittal planes. Pathologic changes identified in MR images included inflammatory lesions, cystic structures, and neoplasms. All abnormalities were readily apparent in TI-weighted images. MR findings in affected animals were often similar in signal intensity, location, and growth pattern to those found in people with comparable diseases. Although no MR changes were considered pathognomonic for a given disease, MR imaging provided detailed information on the homogeneity, extent and invasiveness of the lesions.  相似文献   

5.
The purpose of the present study was to describe normal magnetic resonance (MR) imaging anatomy of the equine larynx and pharynx and to present the optimal protocol, sequences, and possible limitations of this examination technique. Using a 0.3 T unit, the laryngeal and pharyngeal regions was imaged in two horses. The protocol consisted of sagittal and transverse T2-weighted (T2w) fast spin echo, transverse T1-weighted (T1w) spin echo, and dorsal high-resolution T1w gradient echo (both pre- and postcontrast enhancement) sequences. Euthanasia was performed at the end of the imaging procedure. Macroscopic anatomy of the cadaver sections were compared with the MR images in transverse, midsagittal, and parasagittal planes. There was good differentiation of anatomic structures, including soft tissues. The laryngeal cartilages, hyoid apparatus, and upper airway muscle groups with their attachments could be clearly identified. However, it was not always possible to delineate individual muscles in each plane. Most useful were both T2w and T1w transverse sequences. Intravenous application of contrast medium was helpful to identify blood vessels. The MR images corresponded with the macroscopic anatomy of cadaver sections.  相似文献   

6.
The technical feasibility of performing magnetic resonance imaging (MRI) in domestic pigeons was investigated. Imaging was performed with a 1.5 Tesla magnet using a human knee surface coil. The head and coelomic cavity of isoflurane-anesthetized birds were imaged in the dorsal, sagittal, and transverse planes to produce T1-weighted, T2-weighted, and contrast-enhanced T1-weighted images. The birds were then euthanatized, formalin perfused, frozen, and sectioned in the corresponding anatomic planes. The anatomy defined by MRI was correlated with gross anatomic sections made from the same birds. The following CNS structures were identified: cerebral hemispheres, cerebellum, optic chiasm, optic lobes, brain stem, and cranial spinal cord. The cornea, lens, and vitreous were also well differentiated in dorsal section MRI's. The abdominal organs identified included proventriculus, ventriculus, intestines, cloaca, liver, kidneys, spleen, testes, and ovary. The hepatic and renal vasculature were well defined.  相似文献   

7.
Magnetic resonance imaging was conducted on previously frozen left carpi from six normal dogs using a 1.5 Tesla magnet in combination with a transmit/receive wrist coil. Three-millimeter thick T1-weighted spin-echo images and 1-mm thick T2*-weighted gradient-recalled 3-D images were obtained in dorsal and sagittal planes. Carpi were embedded, sectioned, and stained. Anatomic structures on the histologic sections were correlated with the MR images. All of the carpal ligaments plus the radioulnar articular disc and the palmar fibrocartilage were identified on MR images. The accessorio-quartile ligament, which had not been well described previously in dogs, was also identified. It originated on the accessory carpal bone and inserted on the fourth carpal bone. The T2*-weighted gradient echo imaging technique provided better images than T1-weighted technique, largely because thinner slices were possible (1 mm vs. 3 mm), resulting in less volume averaging of thin ligaments with surrounding structures. Although MRI is currently the imaging modality of choice to identify ligamentous injury in humans, further studies are needed to determine if abnormalities can be detected in canine carpal ligaments using MRI.  相似文献   

8.
9.
The objective of this study was to define the anatomy of the cranioencephalic structures and associated formations in camel using magnetic resonance imaging (MRI). MR images were acquired in sagittal, transverse and oblique dorsal planes, using spin-echo techniques, a magnet of 1.5 T and a standard human body coil. MR images were compared with corresponding frozen cross-sections of the head. Different anatomic structures were identified and labelled at each level. The resulting images provided excellent soft tissue contrast and anatomic detail of the brain and associated structures of the camel head. Annotated MR images from this study are intended to be a reference for clinical imaging studies of the head of the dromedary camel.  相似文献   

10.
Magnetic resonance (MR) imaging of the canine brain is commonly acquired at field strengths ranging from 0.2 to 1.5 T. Our purpose was to compare the MR image quality of the canine brain acquired at 3 vs. 7 T in dogs. Low‐resolution turbo spin echo (TSE) T2‐weighted images (T2W) were obtained in transverse, dorsal, and sagittal planes, and high‐resolution TSE T2W and turbo spin echo proton density‐weighted images were obtained in the transverse and dorsal planes, at both 3 and 7 T. Three experienced reviewers evaluated 32 predetermined brain structures independently and without knowledge of field strength for spatial resolution and contrast. Overall image quality and evidence of artifacts were also evaluated. Contrast of gray and white matter was assessed quantitatively by measuring signal intensity in regions of interest for transverse plane images for the three pulse sequences obtained. Overall, 19 of the 32 neuroanatomic structures had comparable spatial resolution and contrast at both field strengths. The overall image quality for low‐resolution T2W images was comparable at 3 and 7 T. High‐resolution T2W was characterized by superior image quality at 3 vs. 7 T. Magnetic susceptibility and chemical shift artifacts were slightly more noticeable at 7 T. MR imaging at 3 and at 7 T provides high spatial resolution and contrast images of the canine brain. The use of 3 and 7 T MR imaging may assist in the elucidation of the pathogenesis of brain disorders, such as epilepsy.  相似文献   

11.
Janet S.  Muleya  BVM  MVM  Yasuho  Taura  DVM  Ph.D.  Munekazu  Nakaichi  DVM  PhD.  Sanenori  Nakama  DVM  Ph.D.  Akira  Takeuchi  DVM  Ph.D. 《Veterinary radiology & ultrasound》1997,38(6):444-447
The study was carried out to evaluate the applicability of magnetic resonance imaging (MRI) in detecting tumors in the abdomen of the dog. Abdominal ultrasound and MRI were performed on 8 dogs having a mass lesion on abdominal radiography. MR images were obtained in the transverse, sagittal and dorsal planes using T1- and T2-weighted spin echo pulse sequences. There was good visual correlation of the lesion site by MRI and ultrasonography (US).  相似文献   

12.
13.
Magnetic resonance (MR) images were made in sagittal and transverse planes through the metacarpophalangeal joint and digit of a horse. The images accurately depicted gross anatomic structures in the leg. Soft tissue structures were defined as separate entities on the images. Histologic varlation in tissues correlated with signal intensity differences on the MR images. Magnetic resonance imaging appears to be a promising imaging modality for evaluating musculoskeletal structures in equine limbs.  相似文献   

14.
The purpose of this study was to define normal gross anatomic structures in the equine stifle with magnetic resonance images. Magnetic resonance (MR) images were made in sagittal, 15° supinated, transverse, and dorsal planes of two equine stifles. The MR images were scrutinized by comparing MR images to dissection specimens and frozen cross sections of stifle joints. Sagittal and 15° supinated images were the most valuable in assessing articular cartilage, subchondral bone, and soft tissue structures within the joint. Cranial and caudal cruciate ligaments, medial and lateral menisci, meniscotibial and meniscofemoral ligaments, long digital extensor tendon, and patellar ligaments were easily evaluated. MR images provided substantially more gross anatomical information than the currently available imaging modalities.  相似文献   

15.
16.
17.
18.
The purpose of this study was to produce an magnetic resonsnce (MR) image atlas of clinically relevant brain anatomy and to relate this neuroanatomy to clinical signs. The brain of a large mixed breed dog was imaged in transverse, sagittal, and dorsal planes using a 1.5 T MR unit and the following pulse sequences: Turbo (fast) spin echo (TSE) T2, T1, and T2- weighted spatial and chemical shift-encoded excitation sequence. Relevant neuroanatomic structures were identified using anatomic texts, sectioned cadaver heads, and previously published atlases. Major subdivisions of the brain were mapped and the neurologic signs of lesions in these divisions were described. TSE T2-weighted images were found to be the most useful for identifying clinically relevant neuroanatomy. Relating clinical signs to morphology as seen on MR will assist veterinarians to better understand clinically relevant neuroanatomy in MR images.  相似文献   

19.
Biomechanical models that compute the lengths and forces of muscle-tendon units are broadly applicable to the study of factors that promote injury and the planning and effects of orthopedic surgical procedures in equine athletes. A three-dimensional (3D) generic musculoskeletal model of the equine forelimb comprised of bony segment, muscle-tendon, and ligament information, was developed based on high-resolution computed tomographic (CT) and T1-weighted magnetic resonance (MR) images from an isolated forelimb of a Thoroughbred racehorse. Image fusion was achieved through coregistration of CT and MR images with an image analysis program (Analyze) by adjustment of the relative position and orientation of fiducial markers visible in both modalities until the mutual information between the images was maximized. 3D surfaces of the bones and origin/insertion sites, centroid paths and volumes of the muscle-tendon and ligamentous structures were obtained from the multimodal (CT/MR) images using semiautomated and manual segmentation combined with sagittal and transverse color-cryosection anatomic images obtained from three other cadaveric equine forelimbs. Once bony and soft-tissue structures were reconstructed in the same coordinate system, data were imported to a software package for interactive musculoskeletal modeling (SIMM). The combination of integrated CT and MR acquisitions and anatomical images provided an accurate and efficient means of generating a 3D model of the musculoskeletal structures of an average-sized equine adult horse.  相似文献   

20.
Alberto  Arencibia  DVM  PhD  Jose M.  Vázquez  DVM  PhD  Raduán  Jaber  DVM  Francisco  Gil  DVM  PhD  Juan A.  Ramiírez  MD  PhD  Miguel  Rivero  DVM  Nelson  González  DVM  PhD  Erik R.  Wisner  DVM 《Veterinary radiology & ultrasound》2000,41(4):313-319
The purpose of this investigation was to define the magnetic resonance imaging anatomy of the rostral part of the equine head. 10 mm-thick, T1-weighted images of two isolated equine cadaver heads were obtained using a 1.5 Tesla magnet and a body coil. MR images were compared to corresponding frozen cross-sections of the cadaver head. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the oral and nasal cavities, paranasal sinuses and associated structures. Annotated MR images from this study are intended as a reference for clinical MR imaging studies of the equine head.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号