首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributions of freshwater mussels are controlled by landscape factors operating at multiple spatial scales. Changes in land use/land cover (LULC) have been implicated in severe population declines and range contractions of freshwater mussels across North America. Despite widespread recognition of multiscale influences few studies have addressed these issues when developing distribution models. Furthermore, most studies have disregarded the role of landscape pattern in regulating aquatic species distributions, focusing only on landscape composition. In this study, the distribution of Rabbitsfoot (Quadrula cylindrica) in the upper Green River system (Ohio River drainage) is modeled with environmental variables from multiple scales: subcatchment, riparian buffer, and reach buffer. Four types of landscape environment metrics are used, including: LULC pattern, LULC composition, soil composition, and geology composition. The study shows that LULC pattern metrics are very useful in modeling the distribution of Rabbitsfoot. Together with LULC compositional metrics, pattern metrics permit a more detailed analysis of functional linkages between aquatic species distributions and landscape structure. Moreover, the inclusion of multiple spatial scales is necessary to accurately model the hierarchical processes in stream systems. Geomorphic features play important roles in regulating species distributions at intermediate and large scales while LULC variables appear more influential at proximal scales.  相似文献   

2.
Urbanization is one of the most important driving forces for land use and land cover change. Quantifying urban landscape pattern and its change is fundamental for monitoring and assessing ecological and socioeconomic consequences of urbanization. As the largest city in the country, Shanghai is now the fastest growing city in China. Using land use data set of 2002 and combining gradient analysis with landscape metrics, we analyzed landscape pattern of Shanghai with increasing grain size to study the impacts of road corridors on urban landscape pattern. Landscape metrics were computed along a 51×9 km2 transect cutting across Shanghai with a moving window. The results showed that the urban landscape pattern of Shanghai was greatly changed when road corridors were merged with urban patches and the variation of patch density would alter when grain size changed. As a linear land use type, road corridors exhibited a different spatial signature comparing with other land use types and distinctive behavior with increasing grain size. Merging road and urban patches resulted in a sharp reduction in patch density, mainly caused by segmentation of roads corridors. The results suggested that grain size around 7.5 m might be optimal for urban landscape analysis. Landscape patch density is significantly correlated with road percent coverage and the most important effect of road corridors in urban landscape is increased habitat fragmentation.  相似文献   

3.
A factor analysis of landscape pattern and structure metrics   总被引:92,自引:1,他引:91  
Fifty-five metrics of landscape pattern and structure were calculated for 85 maps of land use and land cover. A multivariate factor analysis was used to identify the common axes (or dimensions) of pattern and structure which were measured by a reduced set of 26 metrics. The first six factors explained about 87% of the variation in the 26 landscape metrics. These factors were interpreted as composite measures of average patch compaction, overall image texture, average patch shape, patch perimeter-area scaling, number of attribute classes, and large-patch density-area scaling. We suggest that these factors can be represented in a simpler way by six univariate metrics - average perimeter-area ratio, contagion, standardized patch shape, patch perimeter-area scaling, number of attribute classes, and large-patch density-area scaling.  相似文献   

4.
Widespread and increasing urbanization has resulted in the need to assess, monitor, and understand its effects on stream water quality. Identifying relations between stream ecological condition and urban intensity indicators such as impervious surface provides important, but insufficient information to effectively address planning and management needs in such areas. In this study we investigate those specific landscape metrics which are functionally linked to indicators of stream ecological condition, and in particular, identify those characteristics that exacerbate or mitigate changes in ecological condition over and above impervious surface. The approach used addresses challenges associated with redundancy of landscape metrics, and links landscape pattern and composition to an indicator of stream ecological condition across a broad area of the eastern United States. Macroinvertebrate samples were collected during 2000–2001 from forty-two sites in the Delaware River Basin, and landscape data of high spatial and thematic resolution were obtained from photointerpretation of 1999 imagery. An ordination-derived ‘biotic score’ was positively correlated with assemblage tolerance, and with urban-related chemical characteristics such as chloride concentration and an index of potential pesticide toxicity. Impervious surface explained 56% of the variation in biotic score, but the variation explained increased to as high as 83% with the incorporation of a second land use, cover, or configuration metric at catchment or riparian scales. These include land use class-specific cover metrics such as percent of urban land with tree cover, forest fragmentation metrics such as aggregation index, riparian metrics such as percent tree cover, and metrics related to urban aggregation. Study results indicate that these metrics will be important to monitor in urbanizing areas in addition to impervious surface.  相似文献   

5.
基于研究区7个国家监测站点的PM2.5、PM10数据,运用ArcGIS、Fragstats软件对徐州市主城区的遥感影像进行解译和绿地景观格局指数的计算,结合Excel、SPSS软件分析城市绿地景观格局在不同尺度上与PM2.5、PM10浓度之间的相关性,探寻绿地景观格局与PM2.5、PM10的关系,以期为进一步研究PM2.5、PM10的影响因素提供参考依据。结果表明:绿地、农业用地和水域与PM2.5呈负相关关系;建设用地、交通用地和未利用土地与PM2.5呈正相关关系;农业用地与PM10浓度具有季节性差异,冬季和春季农地会使PM10浓度降低,夏季和秋季会使PM10浓度增大。绿地斑块所占景观面积比、绿地最大斑块指数、面积加权平均斑块形状指数与PM2.5和PM10具有明显的负相关性,景观分离度指数与其呈正相关关系。  相似文献   

6.
Estimating landscape pattern metrics from a sample of land cover   总被引:2,自引:0,他引:2  
Although landscape pattern metrics can be computed directly from wall-to-wall land-cover maps, statistical sampling offers a practical alternative when complete coverage land-cover information is unavailable. Partitioning a region into spatial units and then selecting a subset (sample) of these units introduces artificial patch edge and patch truncation effects that may lead to biased sample-based estimators of landscape pattern metrics. The bias and variance of sample-based estimators of status and change in landscape pattern metrics were evaluated for four 120-km × 120-km test regions with land cover provided by the 1992 and 2001 National Land-Cover Data of the United States. Bias was generally small for both the estimators of status and estimators of change in landscape pattern, but exceptions to this favorable result exist and it is advisable to assess bias for the specific metrics and region of interest in any given application. A 10-km × 10-km sample block generally yielded larger biases but smaller variances for the estimators relative to a 20-km × 20-km sample block. Stratified random sampling improved precision of the estimators relative to simple random sampling. The methodology developed to determine properties of sample-based estimators can be readily extended to evaluate other landscape pattern metrics, regions, and sample block sizes.  相似文献   

7.
The mechanism of noise pollution propagation is considerably affected by 1) the type and configuration of its receiving environment and 2) the distance that sound waves pass to reach that environment. This study adopts a spatio-statistical approach to quantify and model associations between noise pollution levels and landscape metrics of land categories (built-up structures and urban green covers). Accordingly, noise levels were measured employing a sound pressure meter to quantify equivalent levels (Leq in dB A), in addition to their corresponding percentiles (L10 and L90). A collection of 30 sampling points were selected to measure noise data within the fall season and between 4 p.m. and 8 p.m. hours of the day. A hierarchical distance-sampling framework based on buffer areas with different radius (300 m, 600 m and 1 km) around each sampling point was compiled to measure composition and configuration metrics of land categories within each buffer area. The results derived from Pearson correlation analysis and multiple-linear regression models indicated that there is a distance-dependent relationship between the metrics of green areas and noise levels. We didn’t find remarkable distance-dependency between built-up structures and noise levels. Based on our new spatio-statistical approach, we conclude that more connected and compacted pattern of green areas closer to pollution centers can significantly alleviate the effects of noise propagation mechanism and appropriate pattern of built-up areas follows a low density distribution with coming green areas in between. Findings of this study highlight the potential of landscape ecology approach as an effective planning paradigm for designing greener and calmer cities.  相似文献   

8.
Urban green spaces often form urban cool islands (UCIs), which are important for human health and urban sustainability. Previous studies have emphasized the cooling effects of urban green spaces on their surrounding areas at landscape level. Less attention, however, has been directed to effects of urban green space patterns on their own UCIs at patch level. In this study, we focused on the effects of spatial patterns of urban green patches on their own surface UCIs. The urban green spaces of Beijing, China, were extracted from one QuickBird image and were classified as Trees, Shrubs, Grass, Crops, River and Lake. Land surface temperatures (LSTs) were derived from four Landsat images, each in one season. The UCI was represented by the minimum LST of each urban green patch. Results showed spatial patterns of urban green patches had significant effects on their UCIs in four seasons. In detail, the size, edge and connectivity of urban green spaces all affected the UCIs negatively, and the influence was stronger in warm seasons. Shape of urban green space also had effects on UCIs, but the effects were stronger in cool seasons. Great differences were found between predictive values of metrics for different green types. Shape metrics were more important for indicating UCIs of River, Trees and Crops than were patch size and connectivity. However, patch size and connectivity metrics were more effective in determining UCIs of Shrubs, Grass and Lake than were shape metrics. Further, among shape metrics, only shape index was a good indicator of UCIs. The results of this study suggest that a combination of specific urban green types and pattern metrics are a prerequisite for analyzing the influence of urban green patterns on UCIs and for urban green design.  相似文献   

9.

Prior studies exploring the quantitative relationship between landscape structure metrics and the ecological condition of receiving waters have used a variety of sampling units (e.g., a watershed, or a buffer around a sampling station) at a variety of spatial scales to generate landscape metrics resulting in little consensus on which scales best describe land-water relationships. Additionally, the majority of these studies have focused on freshwater systems and it is not clear whether results are transferable to estuarine and marine systems. We examined how sampling unit scale controls the relationship between landscape structure and sediment metal concentrations in small estuarine systems in the Mid-Atlantic region of the United States. We varied the spatial extent of the contributing watersheds used to calculate landscape structure and assessed linear relationships between estuarine sediment metal concentrations and the total area of developed and agricultural lands at each scale. Area of developed lands was consistently related to sediment metals while total agricultural land was not. Developed land had strongest associations with lead and copper; weakest with arsenic and chromium; and moderate associations with cadmium, mercury, and zinc. Local (i.e., less than 15−20 km from a sampling station) land uses have a greater impact than more distant land uses on the amount of toxic metals reaching estuarine sediments.

  相似文献   

10.
Urbanization transforms landscape structure and profoundly affects biodiversity and ecological processes. To understand and solve these ecological problems, at least three aspects of spatiotemporal patterns of urbanization need to be quantified: the speed, urban growth modes, and resultant changes in landscape pattern. In this study, we quantified these spatiotemporal patterns of urbanization in the central Yangtze River Delta region, China from 1979 to 2008, based on a hierarchical patch dynamics framework that guided the research design and the analysis with landscape metrics. Our results show that the urbanized area in the study region increased exponentially during the 30 years at the county, prefectural, and regional levels, with increasing speed down the urban hierarchy. Three growth modes—infilling, edge-expanding, and leapfrogging—operated concurrently and their relative dominance shifted over time. As urbanization progressed, patch density and edge density generally increased, and the connectivity of urban patches in terms of the average nearest neighbor distance also increased. While landscape-level structural complexity also tended to increase, the shape of individual patches became increasingly regular. Our results suggest that whether urban landscapes are becoming more homogenous or heterogeneous may be dependent on scale in time and space as well as landscape metrics used. The speed, growth modes, and landscape pattern are related to each other in complicated fashions. This complex relationship can be better understood by conceptualizing urbanization not simply as a dichotomous diffusion-coalescence switching process, but as a spiraling process of shifting dominance among multiple growth modes: the wax and wane of infilling, edge-expansion, and leapfrog across the landscape.  相似文献   

11.
Cumming  Steve  Vervier  Pierre 《Landscape Ecology》2002,17(5):433-444
Forest managers in Canada need to model landscape pattern or spatial configurationoverlarge (100,000 km2) regions. This presents a scalingproblem, as landscape configuration is measured at a high spatial resolution,but a low spatial resolution is indicated for regional simulation. We present astatistical solution to this scaling problem by showing how a wide range oflandscape pattern metrics can be modelled from low resolution data. Our studyarea comprises about 75,000 km2 of boreal mixedwoodforest in northeast Alberta, Canada. Within this area we gridded a sample of 84digital forest cover maps, each about 9500 ha in size, to aresolution of 1 ha and used FRAGSTATS to compute a suite oflandscape pattern metrics for each map. We then used multivariate dimensionreduction techniques and canonical correlation analysis to model therelationship between landscape pattern metrics and simpler stand table metricsthat are easily obtained from non-spatial forest inventories. These analyseswere performed on four habitat types common in boreal mixedwood forests: youngdeciduous, old deciduous, white spruce, and mixedwood types. Using only threelandscape variables obtained directly from stand attribute tables (totalhabitatarea, and the mean and standard deviation of habitat patch size), ourstatistical models explained more than 73% of the joint variation in fivelandscape pattern metrics (representing patch shape, forest interior habitat,and patch isolation). By PCA, these five indices captured much of the totalvariability in the rich set of landscape pattern metrics that FRAGSTATS cangenerate. The predictor variables and strengths of association were highlyconsistent across habitat classes. We illustrate the potential use of suchstatistical relationships by simulating the regional, cumulative effects ofwildfire and forest management on the spatial arrangement of forest patches,using non-spatial stand attribute tables.This revised version was published online in May 2005 with corrections to the Cover Date.  相似文献   

12.
The urban heat island describes the phenomenon that air/surface temperatures are higher in urban areas compared to their surrounding rural areas. Numerous studies have shown that increased percent cover of greenspace (PLAND) can significantly decrease land surface temperatures (LST). Fewer studies, however, have investigated the effects of configuration of greenspace on LST. This paper aims to fill this gap using Beijing, China as a case study. PLAND along with six configuration metrics were used to measure the composition and configuration of greenspace. The metrics were calculated based on a greenspace map derived from SPOT imagery, and LST data were retrieved from Landsat TM thermal band. Ordinary least squares regression and spatial autoregression were employed to investigate the relationship between LST and spatial pattern of greenspace using the census tract as the analytical unit. The results showed that PLAND was the most important predictor of LST. A 10?% increase in PLAND resulted in approximately a 0.86?°C decrease in LST. Configuration of greenspace also significantly affected LST. Given a fixed amount of greenspace, LST increased significantly with increased patch density. In addition, the variance of LST was largely explained by both composition and configuration of greenspace. The unique variation explained by the composition was relatively small, and was close to that of the configuration. Results from this study can expand our understanding of the relationship between LST and vegetation, and provide insights for improving urban greenspace planning and management.  相似文献   

13.
Coastal dunes and sand areas are reported to be among the habitats most invaded by alien species in Europe. Landscape pattern could be a significant driver in invasion processes in parallel with land-use legacy. Fragmentation of natural habitats combined with the availability of propagules from the surrounding matrix may enhance the invisibility of ecological communities. Based on multitemporal land cover maps (1954–2008) and a floristic database, we analyzed how habitat fragmentation, propagule pressure and land-use legacy have affected alien plants’ presence and richness on natural dune patches along the Lazio Coast (Central Italy). Floristic data were derived from an existing geo-database of random vegetation plots (64 m2). A set of landscape patch-based metrics, considered to be adequate proxies of the main processes affecting alien invasion and richness, was calculated. First, we fit a generalized linear model (GLM) with binomial errors to assess which landscape metrics are influencing patch invasion. Second, we extracted invaded patches and, with GLMs, we investigated how landscape metrics affect average alien species richness. Alien invasion and alien richness seem to be affected by different processes: although alien invasion of each patch is strongly associated with its land-use legacy, the richness of aliens is more affected by landscape fragmentation and by the propagule pressure to which patch is exposed. By integrating spatial and temporal landscape metrics with floristic data, we were able to disentangle the relations of landscape fragmentation, propagule pressure and land-use legacy with the presence and richness of alien plants. The methodological approach here adopted could be easily extended to other alien species and ecosystems, offering scientifically sound support to prevent the high economic costs derived from both the control and the eradication of aliens.  相似文献   

14.
Quantifying the spatiotemporal pattern of urbanization is necessary to understand urban morphology and its impacts on biodiversity and ecological processes, and thus can provide essential information for improving landscape and urban planning. Recent studies have suggested that, as cities evolve, certain general patterns emerge along the urban–rural gradient although individual cities always differ in details. To help better understand these generalities and idiosyncrasies in urbanization patterns, we analyzed the spatiotemporal dynamics of the Shanghai metropolitan area from 1989 to 2005, based on landscape metrics and remote sensing data. Specifically, the main objectives of our study were to quantitatively characterize the spatiotemporal patterns of urbanization in Shanghai in recent decades, identify possible spatial signatures of different land use types, and test the diffusion coalescence hypotheses of urban growth. We found that, similar to numerous cities around the world reported in previous studies, urbanization increased the diversity, fragmentation, and configurational complexity of the urban landscape of Shanghai. In the same time, however, the urban–rural patterns of several land use types in Shanghai seem unique—quite different from previously reported patterns. For most land use types, each showed a distinctive spatial pattern along a rural–urban transect, as indicated by landscape metrics. Furthermore, the urban expansion of Shanghai exhibited an outward wave-like pattern. Our results suggest that the urbanization of Shanghai followed a complex diffusion–coalescence pattern along the rural–urban transect and in time.  相似文献   

15.
The north-central region of Indiana in the Midwestern United States was covered by deciduous forest, but was largely cleared for agriculture during the 1800s. The landscape has experienced tremendous change due to forest restoration, urban expansion, and reservoir construction since the early 1900s. At the same time, ecological health and environmental quality have been dramatically degraded in the region. We used simple landscape indices, such as land proportion, TE, and Shared Edge Length (SEL) between any two classes, to examine changes in the spatial patterning of six land cover types, including agriculture, grassland, closed-canopy forest, open-canopy forest, urban, and water, using aerial photographs dating from 1940 to 1998. The landscape’s domination by agriculture did not change (65% in 1940 and 57% in 1998), but there were net gains in area for closed-canopy forest (79%), urban (256%), and water (125%). Several landscape indices did not change much but SEL between closed-canopy forest and urban increased over seven fold, and SEL between water and urban increased over eight fold from 1940 to 1998. More forestlands and water bodies were exposed to human activities. The clumped pattern of forest, water, and urban in a landscape can be ecologically detrimental and should be considered in future land-use decisions.  相似文献   

16.
Urban forest dynamics can influence the provision of ecosystem services provision. Considerable research has been conducted to understand how these dynamics respond to urbanization, from individual patches to entire landscapes. However, most of these are cross-sectional studies based on landscape metrics, and research using a process-based perspective in this context is scarce. In this study, we present a “pattern-process” analytical framework to quantify the evolutionary behavior of urban forest patches. We combine this framework with land cover classification data based on high-resolution remote sensing images (< 1 m) from 2002, 2013, and 2019 to detect the dynamic characteristics of four processes of forest patches in Beijing urban areas. These dynamic characteristics include: size distribution, aggregation and fragmentation, transfer, and self-stabilization. The results showed that 1) the average size of the patches in the study area is increasing, and patches larger than 50 m2 have a more positive influence on the process of patch structure evolution, 2) patch fragmentation shifts with the direction of urban sprawl, 3) transfer between urban forest and bare land is increasing, and 4) urban forest network construction positively enhances the stability of patches. This framework can provide a useful basis for understanding the spatial and temporal evolution of urban forest landscapes during urban development and contribute to the sustainable management of urban forests.  相似文献   

17.
18.
This study investigates the relationship between soil sealing and landscape conservation in four Mediterranean regions (Athens, Barcelona, Lisbon, Rome) characterized by different patterns of urban expansion. Per-capita sealed land, a landscape conservation index and selected territorial variables were considered into a multivariate exploratory framework aimed at assessing the correlation between land-use efficiency (based on the degree of soil sealing per-capita) and the quality of suburban landscape. A population density gradient with intensity of sealed land decreasing with the distance from the central city was observed in compact urban regions such as Athens and Barcelona. A mixed urban gradient was observed in Rome and Lisbon. In all the considered cities the spatial distribution of per-capita sealed land was not correlated with the urban gradient indicating that land consumption follows place-specific patterns irrespective of landscape quality. These findings suggest that urban containment and landscape conservation are policy targets requiring environmental measures irrespective of the prevailing morphology of the urban region (compact vs dispersed). In this context, green infrastructure planning is a promising tool for landscape conservation and the containment of soil sealing within fragile and dynamic contexts such as the wildland-urban interface.  相似文献   

19.
在遥感和GIS技术的支持下,借助各种遥感影像,采用转移矩阵和景观斑块变化类型的分析方法,对2001~2011年沈阳市铁西区大中型(面积大于400m2)城市森林景观动态变化进行分析。结果表明:10年间,铁西区各类型用地相互转化频繁,大中型城市森林斑块总面积和总数量都呈现先增后减的趋势,斑块整体水平向中小型化发展。而工业用地、企事业单位用地和其他用地中的斑块更新度高。研究区域以工业迁移因素为核心,经济发展、人口增长及管理因素成为景观动态变化的主要驱动力。  相似文献   

20.
Landscape indices describing a Dutch landscape   总被引:56,自引:0,他引:56  
The data set of a human modified Dutch landscape was used to evaluate whether landscape pattern indices developed in the United States are fit to describe a Dutch landscape. The grid based data set contains the development of land use over the period 1845–1982. The indices were divided in two groups: pattern indices and change indices. In the first group the proportion of each land use type (P), patch number (N), mean patch size (A) and two indices of patch shape (S1 and S2) were tested; in the second group the rate of change (C) was tested.Not all indices considered in this case study are suitable for the Dutch landscape. The dominance index (D) seems not to be sensitive enough to respond in a clear way to changes in the landscape studied. Shape index seems to be a complicated index, particularly in a human modified landscape like the Dutch, where the shape of natural patches is fixed by their man-made neighbours. The trends observed in the two shape indices considered in this study are not satisfactory since each index considers another aspects of shape (either the interior-to-edge ratio or the complexity of the patch perimeter).None of the indices appears to give information on changes in the geographical position of the patches, which implies that nothing can be induced with respect to the real landscape dynamics.The indices have to be considered in combination to produce meaningful information. The combination of proportion of each land use (P) and the data of the transitions shows how the development in land use has been. Number of patches (N) together with the mean size of patches (A) gives a good indication of the pattern development.Further research is necessary to develop a useful method how to quantify the change in landscape pattern and to give an ecological meaning to the index value in relation to the process of changing pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号