首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine root biomass, rates of dry matter production and nutrients dynamics were estimated for 1 year in three high elevation forests of the Indian central Himalaya. Fine root biomass and productivity were higher in closed canopied cappadocian maple forest (9.92 Mg ha−1 and 6.34 Mg ha−1 year−1, respectively), followed by Himalayan birch forest (6.35 Mg ha−1 and 4.44 Mg ha−1 year−1) and Bell rhododendron forest (6.23 Mg ha−1 and 2.94 Mg ha−1 year−1). Both fine root biomass and productivity declined with an increase in elevation. Across the sites, fine root biomass was maximal in fall and minimal in summer. In all sites, maximum nutrient concentration in fine roots was in the rainy season and minimum in winter. Fine root biomass per unit basal area was positively related with elevation, Bell rhododendron forest having the largest fine root biomass per unit of basal area (0.53 Mg m−2) and cappadocian maple the least (0.18 Mg m−2). The production efficiency of fine roots per unit of leaf biomass also increased with elevation and ranged from 1.13 g g−1 leaf mass year−1 in cappadocian maple forest to 1.28 g g−1 leaf mass year−1 in Bell rhododendron forest. Present fine root turnover estimates showed a decline towards higher elevations (0.72 year−1 in cappadocian maple and 0.58 year−1 in Bell rhododendron forest) and are higher than global estimates (0.52).  相似文献   

2.
Data have been compiled from published sources on nitrogen (N) fluxes in precipitation, throughfall, and leaching from 69 forest ecosystems at 50 sites throughout China, to examine at a national level: (1) N input in precipitation and throughfall, (2) how precipitation N changes after the interaction with canopy, and (3) whether N leaching increases with increasing N deposition and, if so, to what extent. The deposition of dissolved inorganic N (DIN) in precipitation ranged from 2.6 to 48.2 kg N ha−1 year−1, with an average of 16.6 kg N ha−1 year−1. Ammonium was the dominant form of N at most sites, accounting for, on average, 63% of total inorganic N deposition. Nitrate accounted for the remaining 37%. On average, DIN fluxes increased through forest canopies, by 40% and 34% in broad-leaved and coniferous forests, respectively. No significant difference in throughfall DIN inputs was found between the two forest types. Overall, 22% of the throughfall DIN input was leached from forest ecosystems in China, which is lower than the 50–59% observed for European forests. Simple calculations indicate that Chinese forests have great potential to absorb carbon dioxide from the atmosphere, because of the large forest area and high N deposition.  相似文献   

3.
Rehabilitated forests established about 100 years ago on denuded lands in a hilly granitic area are widespread in the Kyoto–Osaka area, the second largest megalopolis in Japan. From 2001 to 2003, we monitored the annual nitrogen (N) budget of a rehabilitated forest watershed dominated by Quercus serrata and Ilex pedunculosa. The ion concentrations of bulk rain in the watershed were similar to those of other watersheds in Japan. The annual bulk rain input of N ranged from 5.1 to 6.3 kg N ha−1 year−1, and the N deposition from throughfall and stem-flow ranged from 7.5 to 8.2 kg N ha−1 year−1. Estimated annual outputs of N from the stream ranged from 3.3 to 10.6 kg N ha−1 year−1. These results indicate that the amount of N deposition in this area is less than that in urban Tokyo (>10 kg N ha−1 year−1), but the N output of the watershed is comparable with that of the Tokyo area. We discuss the characteristics of N dynamics in rehabilitated forests, focusing on the biogeochemical processes of this watershed.  相似文献   

4.
Wood products are considered to contribute to the mitigation of carbon dioxide emissions. A critical gap in the life cycle of wood products is to transfer the raw timber from the forest to the processing wood industry and, thus, the primary wood products. Therefore, often rough estimates are used for this step to obtain total forestry carbon balances. The objectives of this study were (1) to examine the fate of timber harvested in Thuringian state forests (central Germany), representing a large, intensively managed forested region, and (2) to quantify carbon stocks and the lifetime of primary wood products made from this timber. The analyses were based on the amount and assortments of actually sold timber, and production parameters of the companies that bought and processed this timber. In addition, for coniferous stands of a selected Thuringian forest district, we calculated potential effects of management, as expressed by different thinning regimes on wood products and their lifetimes. Total annual timber sale of soft- and hardwoods from Thuringian state forests (195,000 ha) increased from about 136,893 t C (~0.7 t C ha−1 year−1) in 1996 to 280,194 t C (~1.4 t C ha−1 year−1) in 2005. About 47% of annual total timber harvest went into short-lived wood products with a mean residence time (MRT) < 25 years. Thirty-one per cent of the total harvest went into wood products with an MRT of 25–43 years, and only 22% was used as construction wood and glued wood, products with the longest MRT (50 years). The average MRT of carbon in harvested wood products was 20 years. Thinning from above throughout the rotation of spruce forests would lead to an average MRT in harvested wood products of about 23 years, thinning from below of about 18 years. A comparison of our calculations with estimates that resulted from the products module of the CO2FIX model (Nabuurs et al. 2001) demonstrates the influence of regional differences in forest management and wood processing industry on the lifetime of harvested wood products. To our knowledge, the present study provides for the first time real carbon inputs of a defined forest management unit to the wood product sector by linking data on raw timber production, timber sales and wood processing. With this new approach and using this data, it should be possible to substantially improve the net-carbon balance of the entire forestry sector.  相似文献   

5.
High elevation ecosystems are particularly sensitive to environmental change. Mountain agriculture is extending to areas at high elevations in Taiwan but the effects on nutrient cycling of the surrounding ecosystems are largely unknown. We examined precipitation chemistry at Piluchi Experimental Forest in central Taiwan to evaluate the contributions of local air pollution and long-range transport of air pollutants on nutrient cycling at this seemingly remote forest. Sea-salt aerosols and anthropogenic pollutants resulting from long-range transport of air pollutants and mountain agriculture activities are the key factors affecting precipitation chemistry at Piluchi Experimental Forest. Precipitation chemistry was dominated by ions of oceanic origin in the summer and by anthropogenic pollutants SO4 2−, NO3 and NH4 + in the winter and spring, the northeast monsoon season. The much higher concentrations of S and N in the northeast monsoon season than the summer suggest a substantial contribution from long-range transport as the prevailing air masses moved from inland China and passed over the industrialized east coast of China before arriving in Taiwan. The very high concentration of NH4 + (22 μeq L−1) in the spring, when the local application of N-containing fertilizers was high, signifies the influences of mountain agriculture. Despite very low concentrations relative to other sites in Taiwan, annual input of NH4 + (3.6 kg ha−1 year−1), NO3 (7.2 kg ha−1 year−1) and SO4 2− (10 kg ha−1 year−1) via precipitation was substantial suggesting that high elevation ecosystems of Taiwan are not free from the threat of atmospheric deposition of pollutants.  相似文献   

6.
Analysis of the impacts of forest management and climate change on the European forest sector carbon budget between 1990 and 2050 are presented in this article. Forest inventory based carbon budgeting with large scale scenario modelling was used. Altogether 27 countries and 128.5 million hectare of forests are included in the analysis. Two forest management and climate scenarios were applied. In Business as Usual (BaU) scenario national fellings remained at the 1990 level while in Multifunctional (MultiF) scenario fellings increased 0.5–1% per year until 2020, 4 million hectare afforestation program took place between 1990 and 2020 and forest management paid more attention to current trends towards more nature oriented management. Mean annual temperature increased 2.5 °C and annual precipitation 5–15% between 1990 and 2050 in changing climate scenario. Total amount of carbon in 1990 was 12 869 Tg, of which 94% in tree biomass and forest soil, and 6% in wood products in use. In 1995–2000, when BaU scenario was applied under current climatic conditions, net primary production was 409 Tg C year−1, net ecosystem production 164 Tg C year−1, net biome production 84.5 Tg C year−1, and net sequestration of the whole system 87.4 Tg C year−1 which was equal to 7–8% of carbon emissions from fossil fuel combustion in 1990. Carbon stocks in tree biomass, soil and wood products increased in all applied management and climate scenarios, but slower after 2010–2020 than that before. This was due to ageing of forests and higher carbon densities per unit of forest land. Differences in carbon sequestration were very small between applied management scenarios, implying that forest management should be changed more than in this study if aim is to influence carbon sequestration. Applied climate scenarios increased carbon stocks and net carbon sequestration compared to current climatic conditions.  相似文献   

7.
In this study, the supply and input–output balances of phosphorus (P) were investigated for a 10-year-period at 85 long-term monitoring sites in German forest ecosystems under the European Level II programme. These sites encompass 23 European beech (Fagus sylvatica L.) stands, 9 oak stands comprised of common oak (Quercus robur L.) and/or sessile oak (Quercus petraea Liebl.), 20 Scots pine (Pinus sylvestris L.) and 33 Norway spruce (Picea abies H.Karst.) stands. We quantified P concentrations in needles and leaves, P inputs from the atmosphere, P outputs through leaching and harvesting, and total P in the soil and humus layers. The P concentrations in European beech leaves from two sites (>1 mg P g−1 dry weight), and in Norway spruce needles from four sites (>1.2 mg P g−1 dry weight), were deficient over several years. In contrast, the oak and Scots pine sites were well supplied with P. When P removal through harvesting was disregarded, P balances were positive or stable (median 0.21 kg P ha−1 a−1). With harvesting, balances were mostly negative (median −0.35 kg P ha−1 a−1), with long-term P removal from the forest ecosystems.  相似文献   

8.
Generic or default values to account for biomass and carbon accumulation in tropical forest ecosystems are generally recognized as a major source of errors, making site and species specific data the best way to achieve precise and reliable estimates. The objective of our study was to determine carbon in various components (leaves, branches, stems, structural roots and soil) of single-species plantations of Vochysia guatemalensis and Hieronyma alchorneoides from 0 to 16 years of age. Carbon fraction in the biomass, mean (±standard deviation), for the different pools varied between 38.5 and 49.7% (±3 and 3.8). Accumulated carbon in the biomass increased with the plantation age, with mean annual increments of 7.1 and 5.3 Mg ha−1 year−1 for forest plantations of V. guatemalensis and H. alchorneoides, respectively. At all ages, 66.3% (±10.6) of total biomass was found within the aboveground tree components, while 18.6% (±20.9) was found in structural roots. The soil (0–30 cm) contained 62.2 (±13) and 71.5% (±17.1) of the total carbon (biomass plus soil) under V. guatemalensis and H. alchorneoides, respectively. Mean annual increment for carbon in the soil was 1.7 and 1.3 Mg ha−1 year−1 in V. guatemalensis and H. alchorneoides. Allometric equations were constructed to estimate total biomass and carbon in the biomass which had an R 2aj (adjusted R square) greater than 94.5%. Finally, we compare our results to those that could have resulted from the use of default values, showing how site and species specific data contribute to the overall goal of improving carbon estimates and providing a more reliable account of the mitigation potential of forestry activities on climate change.  相似文献   

9.
Forest soil is a huge reserve of carbon in the biosphere. Therefore to understand the carbon cycle in forest ecosystems, it is important to determine the dynamics of soil CO2 efflux. This study was conducted to describe temporal variations in soil CO2 efflux and identify the environmental factors that affect it. We measured soil CO2 efflux continuously in a beech secondary forest in the Appi Highlands in Iwate Prefecture for two years (except when there was snow cover) using four dynamic closed chambers that automatically open after taking measurements. Temporal changes in soil temperature and volumetric soil water content were also measured at a depth of 5 cm. The soil CO2 efflux ranged from 14 mg CO2 m−2 h−1 to 2,329 mg CO2 m−2 h−1, the peak occurring at the beginning of August. The relationship between soil temperature and soil CO2 efflux was well represented by an exponential function. Most of temporal variation in soil CO2 efflux was explained by soil temperature rather than volumetric soil water content. The Q 10 values were 3.7 ± 0.8 and estimated annual carbon emissions were 837 ± 210 g C m−2 year−1. These results provide a foundation for further development of models for prediction of soil CO2 efflux driven by environmental factors.  相似文献   

10.
On-farm trials were conducted to assess the effects of four branch pruning levels on maize grain yield, tree growth and stem shape. The experimental plots consisted of Gmelina (Gmelina arborea R.Br.) trees planted at 1 × 10 m with maize intercropped in the 10 m-wide alleys between lines of trees. Pruning levels consisted of retaining a live crown ratio of 60–70% (T 1), 40–50% (T 2); 30–40% (T 3) and of 20–30% (T 4). At the end of the experiment, the total maize grain yield was highest under the high pruning intensity (T 4) (18.06 t ha−1) and lowest under T 1 (14.48 t ha−1). Maize grain yield under the pruning regime T 2 and T 3 were 16.08 and 17.21 t ha−1, respectively. Mean annual increment (MAI) in tree diameter was greater (5.0 cm year−1) under T 1 than those at T 4 (4.1 cm year−1). Pruning regimes T 2 and T 3 resulted in a MAI of 4.7 and 4.5 cm year−1, respectively. Financial analysis showed that maize-tree systems under T 4 were more profitable than under T 1 as long as the reduction of the average dbh at harvest were not greater than 1 cm. Pruning trees intensively also generated greater returns from labour than moderate pruning, as the greater maize grain yields under T 4 compensated for the cost of pruning and the lower timber yield. In the context of resource-poor farmers, intensive branch pruning was a practice that prolonged the period of profitable intercropping and was compatible with commercial timber production.  相似文献   

11.
A comparison was made of annual net ecosystem productivity (NEP) of a closed canopy Sitka spruce forest over 2 years, using either eddy covariance or inventory techniques. Estimates for annual net uptake of carbon (C) by the forest varied between 7.30 and 11.44 t C ha−1 year−1 using ecological inventory (NEPeco) measures and 7.69–9.44 t C ha−1 year−1 using eddy covariance-based NEP (-NEE) assessments. These differences were not significant due to uncertainties and errors associated with estimates of biomass increment (15–21%) and heterotrophic respiration (12–19%). Carbon-stock change inventory (NEPΔC ) values were significantly higher (27–32%), when compared to both NEPeco- and -NEE-based estimates. Additional analyses of the data obtained from this study, together with published data, suggest that there was a systematic overestimation of NEPΔC -based assessments due to unaccounted decomposition processes and uncertainties in the estimation of soil-C stock changes. In contrast, there was no systematic difference between NEPeco and eddy covariance assessments across a wide range of forest types and geographical locations.  相似文献   

12.
This paper discusses a plantation management approach involving a combination of “short” and “long” rotations designed to allow farmers to receive income from trees as soon as possible after establishment. We present results from two plots that represent extreme conditions: (a) a seasonally waterlogged, non-saline site (Nahalal), and (b) a saline site (Ginnegar) located in the Yizre’el Valley, Israel. Six improved seed sources, four of Eucalyptus camaldulensis and two of E. occidentalis, were examined. The local Israeli seed source of E. camaldulensis (HA) performed best at both sites. In Nahalal, the short rotation thinning of the slower growing (50%) plantation trees could provide economic returns approximately five years after establishment. The calculated mean annual increment (MAI) of these trees reached 12.2 t ha−1 year−1. The long rotation, or better performing half of the plantation trees, could be used as a source of sawn timber, providing higher-value products. By nine years after establishment, the average DBH of the various seed sources reached 25.8 ± 1.9 cm. The calculated MAI of the combined cutting rotations reached 48.3 t ha−1 year−1. Eucalyptus grown under the combined (short- and long-term) management approach at Nahalal was more profitable than many other non-irrigated local crops. Eucalyptus production in Ginnegar would be less profitable than in Nahalal. However, an additional ecological benefit was provided by the crop’s ability to lower the water table. When this contribution to regional drainage is taken into account, trees become economically competitive with other non-irrigated field crops under saline conditions. Jim Morris–Deceased.  相似文献   

13.
Subtropical evergreen broad-leaved forest is the most widely distributed land-cover type in eastern China. As the rate of land-use change accelerates worldwide, it is becoming increasingly important to quantify ecosystem biomass and carbon (C) and nitrogen (N) pools. Above and below-ground biomass and ecosystem pools of N and C in a subtropical secondary forest were investigated at Laoshan Mountain Natural Reserve, eastern China. Total biomass was 142.9 Mg ha−1 for a young stand (18 years) and 421.9 Mg ha−1 for a premature stand (ca. 60 years); of this, root biomass was from 26.9 (18.8% of the total) to 100.3 Mg ha−1 (23.8%). Total biomass C and N pools were, respectively, 71.4 Mg ha−1 and 641.6 kg ha−1 in the young stand, and 217.0 Mg ha−1 and 1387.4 kg ha−1 in the premature stand. The tree layer comprised 91.8 and 89.4% of the total biomass C and N pools in the young stand, and 98.0 and 95.6% in the premature stand. Total ecosystem C and N pools were, respectively, 101.4 and 4.6 Mg ha−1 for the young stand, and 260.2 and 6.6 Mg ha−1 for the premature stand. Soil C comprised 23.8–29.6% of total ecosystem C whereas soil N comprised 76.9–84.4% of the total. Our results suggest that a very high percentage of N in this subtropical forest ecosystem is stored in the mineral soil, whereas the proportion of organic C in the soil pool is more variable. The subtropical forest in eastern China seems to rapidly accumulate biomass during secondary succession, which makes it a potentially rapid accumulator of, and large sink for, atmospheric C.  相似文献   

14.
This article compares three methods for forest resource estimation based on remote sensing features extracted from Airborne laser scanning and CIR orthophotos. The estimation was made exemplarily for the total stem volume of trees for a given area, measured in cubic metres per hectare [m3 ha−1] (as one of the most important quantitative parameters to characterise a forest stand). The following methods were compared: Regression Analysis (RA), k-NN (nearest neighbour) method and a method that utilises regional yield tables, referred to as the yield table method (YT-method). The estimation of stem volume was examined in a mixed forest in Southern Germany using 300 circular inventory plots, each with a size of 452 m2. Remote sensing features relating to vegetation height and structures were extracted and used as input variables in the different approaches. The accuracy of the estimation was analysed using scatter plots and quantified using absolute and relative root mean square errors (RMSE). The comparison was made for all plots, as well as for averaged plot values located within forest stands that have the same age class. On “plot level” the RMSE yielded 79.79 m3 ha−1 (RA), 81.93 m3 ha−1 (k-NN) and 81.78 m3 ha−1 (YT-method) and for the averaged values 35.75 m3 ha−1 (RA), 35.06 m3 ha−1 (k-NN) and 42.98 m3 ha−1 (YT-method). Advantages and disadvantages, as well as requirements, of the methods are discussed.  相似文献   

15.
Annual amounts of litterfall and nitrogen input by litterfall were measured in a subtropical evergreen broad-leaved forest to examine the contribution of a liana species, Mucuna macrocarpa Wall., to the spatial heterogeneity of litterfall production and nitrogen input. The total litterfall in the study plot was 7.1 t ha−1 year−1. The amount of litterfall varied with topography and was greatest at the valley bottom and decreased toward the ridges. Macuna macrocarpa litterfall was absent on the ridges although it accounted for the largest percentage, 32%, of total leaf litter production in the valley. Nitrogen input by litterfall was 69 kg ha−1 year−1 in the plot. Nitrogen input by litterfall was also largest at the valley bottom and decreased toward the ridges. Leaf litter of M. macrocarpa had approximately twice the nitrogen concentration of litterfall of other species. Macuna macrocarpa accounted for 42% of nitrogen input by leaf litter in the valley. The abundance and the high nitrogen concentration of M. macrocarpa intensified differences in the amount of litterfall and nitrogen input by litterfall between valleys and ridges. It was concluded that a liana species, M. macrocarpa, can contribute to the spatial heterogeneity of litterfall and may subsequently affect nutrient cycling in a subtropical evergreen broad-leaved forest on Okinawa Island.  相似文献   

16.
The net primary productivity of Bruguiera parviflora dominated mangrove forest at Kuala Selangor, Malaysia was estimated from the average yearly biomass increment and litter production. The average yearly biomass increment in saplings and trees was 0.58 and 16.51 t ha−1, respectively, and the annual amount of total litter production was 10.35 t ha−1. The biomass increment in saplings and trees was not significantly different (t-test, p > 0.05) in 2 successive years and the estimated net primary productivity was 27.44 t ha−1 year−1. The ratio (2.65:1) of net primary productivity and litterfall suggests that this mangrove forest is at a juvenile stage.  相似文献   

17.
The amounts of extractable sulfate in 12 forest soils were measured as a preliminary work to study sulfur dynamics in forest ecosystems. The sulfate content determined by the distillation method varied widely (10–880 × 10−6 gSg−1) depending on the soil type and the depth. Japanese forest soils were broadly divided into two groups in sulfate level: one retains a large amount of sulfate and the other does not. In general, the surface soils to the depth of 10 cm contained small amounts of sulfate (< 100 × 10−6 gSg−1), while subsoils contained more. The soil samples with low (< 4.6) or high (6 <) pH (H2O) retained small amounts of sulfate. Black soils derived from volcanic ash retained great quantities of sulfate. The two levels of sulfate contents in Japanese forest soils suggests that the sulfur dynamics are different in these soils.  相似文献   

18.
The diversity, spatial patterns and temporal dynamics of dead wood were examined within the near-natural beech forests (Fagus sylvatica) of Serrahn (North-eastern Germany). Data were collected in an 8 ha sample plot and in two permanent plots (0.36 and 0.25 ha) that had been established at the end of the 1960s. The mean volume of dead wood was 94 m3 ha−1, amounting to 14% of the total volume of all trees. The dead wood displayed a large variation in dead wood type, tree size and decay class. Standing dead wood accounted for about one-third of the total dead wood volume. The densities of standing dead trees were about 10% of the densities of the living trees over a wide range of diameters. The overall spatial distribution of dead trees exhibited a random pattern. Among the different dead wood types, standing entire dead trees and uprooted trees deviated from this pattern by displaying a significantly aggregated pattern. In the permanent plots a high mortality of overstorey trees was observed (1.3% year−1) and the average amount of dead wood increased greatly from 2.9 to 111.6 m3 ha−1 over the 35-year observation period. The near-natural beech forests of Serrahn have experienced a long period of low human interference. Nevertheless, our results suggest that the structure and dynamics of dead wood are strongly affected by the last major disturbance events that took place at the end of the Middle Ages. Information about the forest history is therefore a basic requirement when interpreting the results obtained in near-natural forests.  相似文献   

19.
The poplar based agroforestry system improves aggregation of soil through huge amounts of organic matter in the form of leaf biomass. The extent of improvement may be affected by the age of the poplar trees and the soil type. The surface and subsurface soil samples from agroforestry and adjoining non-agroforestry sites with different years of poplar plantation (1, 3 and 6 years) and varying soil textures (loamy sand and sandy clay) were analyzed for soil organic carbon, its sequestration and aggregate size distribution. The average soil organic carbon increased from 0.36 in sole crop to 0.66% in agroforestry soils. The increase was higher in loamy sand than sandy clay. The soil organic carbon increased with increase in tree age. The soils under agroforestry had 2.9–4.8 Mg ha−1 higher soil organic carbon than in sole crop. The poplar trees could sequester higher soil organic carbon in 0–30 cm profile during the first year of their plantation (6.07 Mg ha−1 year−1) than the subsequent years (1.95–2.63 Mg ha−1 year−1). The sandy clay could sequester higher carbon (2.85 Mg ha−1 year−1) than in loamy sand (2.32 Mg ha−1 year−1). The mean weight diameter (MWD) of soil aggregates increased by 3.2, 7.3 and 13.3 times in soils with 1, 3 and 6 years plantation, respectively from that in sole crop. The increase in MWD with agroforestry was higher in loamy sand than sandy clay soil. The water stable aggregates (WSA >0.25 mm) increased by 14.4, 32.6 and 56.9 times in soils with 1, 3 and 6 years plantation, respectively, from that in sole crop. The WSA >0.25 mm were 6.02 times higher in loamy sand and 2.2 times in sandy clay than in sole crop soils.  相似文献   

20.
Acacia pennatula trees are the most conspicuous woody species in the pasturelands of the Nature Reserve Mesas de Moropotente, Estelí, Nicaragua. Cattle ranchers keep A. pennatula because it produces fence posts, forage (pods) and firewood. A population projection matrix model was developed to: (1) estimate the sustainable harvest (H) of fence posts at different tree population densities, (2) explore the range of recruitment (R), and survival and growth of both saplings and small poles compatible with current population density, and (3) determine how much carbon is stored in the soil-pasture-tree system. Acacia pennatula trees take 40 years to reach H size (D30 ≥ 30 cm). Estimated sustainable H from current tree population density is 1.8l7 trees ha−1 year−1, yielding 2.8 large and 11.2 regular size fence posts ha−1 year−1. This annual output easily satisfies the needs of a typical 100 ha cattle ranch in the study area. Current population density is congruent with very low R (<100 saplings ha−1 year−1), very low survival rates (<0.30%) and/or retarded D30 growth of saplings and small poles. Total carbon in tree biomass was only 37 Mg ha−1. Cattle ranchers have learned to harness the invasive nature of the species to obtain valuable tree products for farm use or sale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号