首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aramid fibers have been known to difficult to dye with conventional dyes and dyeing techniques because of its extremely high crystallinity and compactness. In order to make the aramid fibers dyeable to a bright color in deep shade, meta-aramid fabrics were photografted under continuous UV irradiation with dimethylaminopropyl methacrylamide (DMAPMA) and benzophenone as a monomer and a hydrogen-abstractable photoinitiator respectively. Several factors affecting the photografting treatment of the meta-aramid fabrics were investigated including monomer and photoinitiator concentrations. ATR, ESCA and SEM analysis indicated significant alterations on the chemical structure and atomic composition of the photografted fabric surface and the fabric surface was covered with the grafted polymers. While the pristine meta-aramid fabrics showed no appreciable dyeability to the α-bromoacrylamide type reactive dyes, the grafted aramid fabrics showed the remarkably enhanced dyeability to the reactive dyes, which was proportional to the graft yield indicating the covalent bond formation between the dyes and the secondary amino groups in the grafted DMAPMA. In case of C.I. Reactive Red 84, a K/S value of 14.8 can be obtained with the grafted meta-aramid fabrics with a graft yield of 7.6 % (w/w). Also and the color fastness properties of the dyed fabrics was excellent in the conditions of washing, rubbing and solar irradiation.  相似文献   

2.
Knitted wool and wool/nylon blend dyed fabrics were treated with low temperature plasma (LTP) to achieve optimum shrink-resistance without impairing surface topography, colour or fastness to washing of the fabrics. As LTP tends to impair handle of the fabrics, both wool and wool/nylon blend fabrics were submitted to industrial softening and/or biopolymer treatments after LTP treatment, leading to hydrophilic wool and wool/nylon blend fabrics with improved shrink-resistance without any colour changes and good fastness to washing. The results obtained were compared with those obtained by an industrial shrink-resist treatment.  相似文献   

3.
Dyeing of wool fabrics with natural dyes from Phytolacca berries has been studied. The effect of dye concentration, dye bath pH, dyeing time and temperature were discussed. The influence of chitosan application on the dyeing properties of wool fabrics was investigated. The SEM photographs of chitosan treated wool fabrics clearly depict the deposition of chitosan on the fibers. The effect of chitosan concentration, dye bath pH, dyeing time and temperature has been studied by orthogonal experiment. It has been proved that the dyed wool samples pretreated by chitosan have higher color fastness, faster dyeing rate, and better antibacterial properties compared with untreated ones.  相似文献   

4.
In this study, the natural pigment from sappan was used for the dyeing of wool fabrics after treatment with the protease and transglutaminase. The influences of protease and transglutaminase on the UV/visible absorption spectrum of aqueous extract of sappan were studied. The enzymatic modified wool was compared with non-modified wool in K/S value and fastness after direct dyeing and mordant dyeing. It was shown that protease and transglutaminase made the absorbance at the λ max 540 nm in visible region increase. It suggested that there might be some interaction between the enzymes and sappan dye and the residual enzyme on wool fabric might affect the color of following dyeing. Compared to untreated wool, treatments with protease and transglutaminase enhance K/S value of wool dyed subsequently with sappan. Modification of protease led to some decrease in wet rubbing fastness, whereas transglutaminase had almost no influence on rubbing fastness. Enzymatic treatments have no influence on the washing fastness for samples dyed with sappan.  相似文献   

5.
Superfine down-powder/viscose blend films were prepared and characterized for their dyeing properties. Down-powder with average size of 2.56 μm were suspended in viscose dope and blend films were obtained by solution casting. When the blend films were dyed with acid dye, the dye uptake and K/S values increased with the increase in down-powder content. Amino-acid analyses showed that amino acid component of the down were not affected during the film formation, which confirmed the changes of dye uptake and K/S value.  相似文献   

6.
Wool/cotton union fabric was dyed with a direct dye in union shade. The dyeing was performed in a single bath in relation to four factors: leveling agent (Lyogen SMKI, 0–1.5 % oww), electrolyte (sodium sulfate, 0–10 %), dyeing temperature (85–95 °C), and dyeing time (15–60 min). The dyeing was characterized by dye bath exhaustion (%), color strength (K/S value), washing fastness, and light fastness of dyed sample. Response surface analysis showed that the exhaustion of direct dye increased with electrolyte, dyeing temperature, and dyeing time while the K/S value followed a linear shape with leveling agent and dyeing temperature. An optimized recipe was formulated based on response surface strategy and numerical optimization solution.  相似文献   

7.
In this study, electrospun wool keratose (WK)/silk fibroin (SF) blend nanofiber was prepared and evaluated as a heavy metal ion adsorbent which can be used in water purification field. The WK, which was a soluble fraction of oxidized wool keratin fiber, was blended with SF in formic acid. The electrospinnability was greatly improved with an increase of SF content. The structure and properties of WK/SF blend nanofibers were investigated by SEM, FTIR, DMTA and tensile test. Among various WK/SF blend ratios, 50/50 blend nanofiber showed an excellent mechanical property. It might be due to some physical interaction between SF and WK molecules although FTIR result did not show any evidence of molecular miscibility. As a result of metal ion adsorption test, WK/SF blend nanofiber mats exhibited high Cu2+ adsorption capacity compared with ordinary wool sliver at pH 8.5. It might be due to large specific surface area of nanofiber mat as well as numerous functional groups of WK. Consequently, the WK/SF blend nanofiber mats can be a promising candidate as metal ion adsorption filter.  相似文献   

8.
The physical and mechanical characteristics of hollow polyester fibres were compared with solid polyester fibres in order to establish their processing behaviour and performance characteristics. The effects of hollow fibres on fabric properties were investigated by using microscopy and tests of tensile and bursting strength, pilling, abrasion resistance, water vapour permeability, and handle. The results show that tensile strength of hollow polyester fibres and yarns are negatively affected by the cavity inside the fibre. Hollow fibres also have higher stiffness and resistance to bending at relaxed state. Fabrics made from hollow polyester/wool blends and pure wool fabrics show three distinguishable steps in pilling. During pilling, hollow fibres break before being pulled fully out of the structure, leading to shorter protruding fibres. Microscopy studies showed that the breakdown of hollow fibres started during entanglement by splitting along the helical lines between fibrils. KES results showed that the friction between fibres and the fibre shape are the most important parameters that determine the fabric low stress mechanical properties. However, in some aspects, the hollow structure of the fibre does not have a significant effect.  相似文献   

9.
Photografting coloration of wool was carried out under UV-LED irradiation at room temperature using aqueous vinylsulfone dye solution containing vinylsulfonic acid as a comonomer. UV-LED irradiation of the 395 nm emission is more energy efficient, less damaging to the dyes, and much safer to human eyes compared with polychromatic mercury UV lamps. However, in case of the UV-LED lamps, the wool needs to be photo-oxidized either by UV/ozone or polychromatic UV irradiation before the dye photografting. The surface treatments increased the sulfur and oxygen contents in the modified wool surfaces. While the optimally photografted wool fabrics under the UV-LED lamp yielded a K/S value of 9.9, the K/S of the grafted wool increased to 25.2 and 13.6 after the UV/Ozone or polychromatic UV preoxidation at UV energies of 10.6 J/cm2 and 25 J/cm2 respectively. The color fastness properties of the photografted fabrics were far better than with those of the conventionally reactive-dyed fabrics, implying that the high-molecular-weight photografted dyes seemed to be more durable than the low-molecular dyes.  相似文献   

10.
Azohydroxypyridone disperse dyes containing a fluorosulfonyl group were dyed on PET/cotton blends and their dyeing and fastness properties were investigated. Specially, the azohydroxypyridone dyes containing a nitro group in place of the fluorosulfonyl group in the para position to azo group were synthesized in order to compare their dyeing and fastness properties on PET/cotton blends with those of fluorosulfonyl-substituted analogues. As these dyes can be alkali cleared in the same bath, a one-bath dyeing method was used and the results were compared with that of a conventional two-bath dyeing method. In particular, the cross-staining of cotton was studied in order to assess their suitability for the one-bath dyeing of PET/cotton blends.  相似文献   

11.
A series of hybrid materials composed of boehmite/silica/thiazole dyes and prepared via the sol-gel process is synthesized from aluminum isopropoxide (AIP) and tetraethoxysilane using heteroaryl 2-amino-thiazole azo dyes. Heterocyclic 2-amino-thiazole azo dyes undergo a hydrolysis-condensation reaction with an appropriate proportion of AIP under a catalyst, at a constant ratio of vinyltriethoxysilane (VTES) and tetraethoxysilane (TEOS). The structures of these hybrid materials composed of boehmite/silica/thiazole dyes are characterized using Fourier transform infrared (FT-IR) analysis. The surface morphology of polyethylene terephthalate (PET) fabrics is evaluated using scanning electron microscopy (SEM). SEM images show uniform dyeing of the PET fabrics that confirms the reaction of the hybrid materials with the PET fabrics. The water contact angle, washing fastness, color evenness, air permeability, and warmth retention of the PET fabrics dyed with hybrid materials composed of boehmite/silica/thiazole dyes are evaluated. The evaluation results indicate improved warmth retention property and good water repellency.  相似文献   

12.
Two proteolytic enzymes were used as auxiliaries in the dyeing of wool fabrics with acid dyes. The effect of the enzymes on dye exhaustion (%E) and dye uptake (K/S) was studied at 70, 85, and 98 °C and compared to the corresponding values obtained for the control samples which were dyed without enzymes under the same conditions. Two commercially available dyeing auxiliaries commonly used for the dyeing of wool at low temperatures were also used under the same conditions and compared with the dyeings made with and without enzymes. Treatment with transglutaminase was done in order to compensate the damaging effects of protease. The study shows that the enzymes could be used as auxiliaries in the dyeing of wool at lower temperatures.  相似文献   

13.
A durable aroma finishing for PET fabric was carried out by adopting poly(vinyl acetate) (PVAc) nanoparticles containing lavender oil (LO) in core. Relatively small size of PVAc nanoparticles (ca. 244 nm of mean particle diameter) was expected to resist the frictional destruction of the particles, which is frequently observed in cases of microcapsules. PVAc nanoparticles containing LO in core were prepared by emulsification-diffusion method and their application as an aroma releasing agent for PET fabrics was assessed through the observation of releasing profiles of LO in ethanol for experimental acceleration. Melamine-formaldehyde (MF) microcapsules containing LO were also prepared and treated on fabrics for comparison. PVAc nanoparticles treated on PET fabric showed higher initial releasing amount, which was ascribed to the enhanced surface area. After 2 days of releasing, PET fabric treated with PVAc nanoparticles showed slower and more stable releasing profile and reached about 12 ppm of cumulative release after 16 days, which was under two thirds of that with MF microcapsules. PVAc nanoparticles can be used as an agent for durable aroma finishing of PET fabrics.  相似文献   

14.
Curcuma powder was used to dye cotton and polyamide 6,6 fabrics in order to produce textile-based optical pH sensors. Both fabrics showed a bright yellow color after dyeing and demonstrated color changes (towards red) when contacted with basic solutions. Color change and sensitivity differ for cotton and for polyamide. Curcuma-dyed cotton shows color changes in particular in the range of pH between 6.5 and 8.5, whilst curcuma-dyed polyamide shows a wider pH range: from 8.5 to 13.0. The stability of pH sensing to washing was evaluated. Three different kinds of washing agents were used in order to simulate the real life conditions of a garment or a cloth. Standard test methods were used when available for washing tests. The pH sensing of the curcuma-dyed fabrics demonstrated an excellent fastness to all kinds of washing. Ionic strength of the solution does not affect the color changes. Moreover, color reversibility of the fabrics was proven, too. Color change and reversibility of the fabrics was assessed by an UV-visible spectrophotometer. Spectral changes were observed at 540 nm for curcuma-dyed cotton, and at 487 and 574 nm for polyamide.  相似文献   

15.
A detailed study of electromagnetic shielding effectiveness (EMSE) of woven fabrics made of polyester and stainless steel/polyester blended conductive yarn was presented in this research work. Fabrics with different structures were analyzed and their shielding behavior was reported under different frequencies. Shielding efficiency of fabric was analyzed by vector network analyzer in the frequency range of 300 kHz to 1.5 GHz using coaxial transmission line holder. The effects of different fabric parameters such as weft density, proportion of conductive weft yarn, proportion of stainless steel content, grid openness, weave pattern and number of fabric layers on EMSE of fabrics were studied. The EMSE of fabric was found to be increased with increase in proportion of conductive yarn in the weft way. With increase in overall stainless-steel content in the fabric, the EMSE of fabric was increased. As such weave is considered, it did not have significant effect on EMSE of fabrics. But fabric with lower openness and aperture ratio showed better conducting network, hence better shielding. With increase in number of layers of fabric and ply yarns, EMSE of fabric was increased.  相似文献   

16.
To investigate the aluminum deposition on the chemically recycled polyethylene terephthalate (CR-PET) fabrics by DC magnetron sputtering, effects of sputtering parameters (sputtering power and deposit time) on the properties of the Al deposited CR-PET fabric were examined. The variations in the properties such as wettability, optical and thermal insulation property of the CR-PET fabric sputtered under various sputtering parameters were discussed. Wettability of the Al deposited CR-PET fabrics decreased with an increase of sputtering power and deposit time, and then they leveled off above a certain condition. The light reflectance of the Al deposited CR-PET fabrics showed a maximum point with proper sputtering power and deposition time. The thermal insulation property of the Al deposited CR-PET fabrics improved with sputtering power and deposit time.  相似文献   

17.
The dye-resist effect and leveling properties of hetero-mulifunctional dye-resist agents in acid dyeing of wool were investigated. The dye-resist agent with dichlorotriazinyl group achieved better resist effectiveness than those with monochlorotriazinyl group. The resist effectiveness was improved by increasing the number of sulfonate group in dye-resist agents. Also, the resist agents with more sulfonate groups showed better dye-assist effectivness, attributable to the increased electrostatic attraction between dye-resist agents and the cationic dye. However, the leveling properties of dye-resist agents decreased with the number of sulfonate groups in the molecule.  相似文献   

18.
A novel bifunctional quinizarin dye possessing two photoactive methacrylate groups was synthesized by the reaction of quinizarin with methacryloyl chloride. The synthesized dye, a low substantive dye under the conventional dyeing process, can be photografted onto cotton and wool fabrics at room temperature without neutral salts, which makes it a novel coloration process of excellent environmental friendliness. The concurrent polymerization and grafting of the synthesized dye onto cotton or wool can be assisted by a photoinitiator and acrylic acid in the case of cotton grafting. Moreover, color yields of the grafted fabrics improved significantly with the photografting of the bifunctional dye. The bifunctional dye can be photopolymerized with the increase in UV energy to 25 J/cm2 and the oligomeric dye has a degree of polymerization of 5 or more. Furthermore, the color fastness properties of the grafted fabrics were superior to those of the dyed fabrics via exhaustion.  相似文献   

19.
Effect of using cold plasma on dyeing properties of polypropylene fabrics   总被引:2,自引:0,他引:2  
The low temperature plasma (LTP) technique is used widely to modify polymer and textile materials. This paper describes the development of a plasma system for textile treatment. Polypropylene (PP) has a very low value of the surface free energy (approximately 20–25 mJ/m2). Due to low surface energy, Polypropylene has very weak hydrophilic properties. By controlling the plasma variables, such as the nature of gas, the discharge power, the pressure and the exposure time, a great variety of surface effects can be generated. In this paper, we report the effect of cold plasma of O2 and N2 gases at various time of exposure on the dyeing and physical properties of PP fabrics. The results show a significant increase in the color depth upon dyeing after treating PP fabrics with low temperature plasma of O2 and N2. For comparing the amount of fabrics dye exhaustion, we have used reflective spectrophotometer. The morphology of the modified surfaces has also been investigated using scanning electron microscopy (SEM). And also FTIR was used to examine the functional groups of the corresponding samples.  相似文献   

20.
The cotton fabrics were dyed by exhaust method using the pigment dispersions as colorant, and meanwhile the effects of particle character on dyeing performance were further investigated. The results showed that the larger zeta potentials, the higher K/S value, pigment uptakes, rubbing and washing fastness of the dyed cotton fabrics were. Adsorption isotherms were belonging to Langmuir type when zeta potentials were about 0.46 mV and 31.39 mV respectively. The cotton fabrics that dyed by the pigment dispersions with small particles had high K/S value, rubbing and washing fastness. The chemical structure of pigment had little influence on pigment uptakes, and all kind of pigment dispersions reach to 98 % uptakes after 30 min but exhibit various uptake rates at initial stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号