首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Soil salinity and hydrologic datasets were assembled to analyze the spatio-temporal variability of salinization in Fengqiu County, Henan Province, China, in the alluvial plain of the lower reaches of the Yellow River. The saline soil and groundwater depth data of the county in 1981 were obtained to serve as a historical reference. Electrical conductivity (EC) of 293 surface soil samples taken from 2 km × 2 km grids in 2007 and 40 soil profiles acquired in 2008 was analyzed and used for comparative mapping. Ordinary kriging was applied to predict EC at unobserved locations to derive the horizontal and vertical distribution patterns and variation of soil salinity. Groundwater table data from 22 observation wells in 2008 were collected and used as input for regression kriging to predict the maximum groundwater depth of the county in 2008. Changes in the groundwater level of Fengqiu County in 27 years from 1981 to 2008 was calculated. Two quantitative criteria, the mean error or bias (ME) and the mean squared error (MSE), were computed to assess the estimation accuracy of the kriging predictions. The results demonstrated that the soil salinity in the upper soil layers decreased dramatically and the taxonomically defined saline soils were present only in a few micro-landscapes after 27 years. Presently, the soils with relatively elevated salt content were mainly distributed in depressions along the Yellow River bed. The reduction in surface soil salinity corresponded to the locations with deepened maximum groundwater depth. It could be concluded that groundwater table recession allowed water to move deeper into the soil profile, transporting salts with it, and thus played an important role in reducing soil salinity in this region. Accumulation of salts in the soil profiles at various depths below the surface indicated that secondary soil salinization would occur when the groundwater was not controlled at a safe depth.  相似文献   

2.
Soil salinity is one of the most severe environmental problems worldwide. It is necessary to develop a soil-salinity-estimation model to project the spatial distribution of soil salinity. The aims of this study were to use remote sensed images and digital elevation model (DEM) to develop quantitative models for estimating soil salinity and to investigate the influence of vegetation on soil salinity estimation. Digital bands of Landsat Thematic Mapper (TM) images, vegetation indices, and terrain indices were selected as predictive variables for the estimation. The generalized additive model (GAM) was used to analyze the quantitative relationship between soil salt content, spectral properties, and terrain indices. Akaike’s information criterion (AIC) was used to select relevant predictive variables for fitted GAMs. A correlation analysis and root mean square error between predicted and observed soil salt contents were used to validate the fitted GAMs. A high ratio of explained deviance suggests that an integrated approach using spectral and terrain indices with GAM was practical and efficient for estimating soil salinity. The performance of the fitted GAMs varied with changes in vegetation cover. Salinity in sparsely vegetated areas was estimated better than in densely vegetated areas. Red, near-infrared, and mid-infrared bands, and the second and third components of the tasseled cap transformation were the most important spectral variables for the estimation. Variable combinations in the fitted GAMs and their contribution varied with changes in vegetation cover. The contribution of terrain indices was smaller than that of spectral indices, possibly due to the low spatial resolution of DEM. This research may provide some beneficial references for regional soil salinity estimation.  相似文献   

3.
Salt—Water Dynamics in Soils:Ⅲ.Effect of Crop Planting   总被引:2,自引:0,他引:2  
Through a simulation test conducted with soil columns (61.8cm in diameter) in field condition,effect of crop planting upon the regulation of salt-water dynamics in soils was studied by monitoring of salt-water dynamics in situ,using soil salinity sensors and tensiometers.The results indicated that the amount of water absorbed by crops from the soil was generally larger than the decrement of water consumption from soil surface evaporation reduced by the crop covering the soil surface and improving the soil structure,therefore,under the conditions of crop growing and non-irrigation,water content in soil profile was less than that without crop growing,and the gradient of negative pressure of soil water in soil profile especially in the root zone was enlarged,thus causing the water flowing from subsoils into root zone and increasing the groundwater moving upwards into soil layer via capillary rise,so that the groundwater evaporation increased.Consequently,under the condition of crop growing,the salt was mainly accumulated towards the root zone rather than to the top soil.the accumulating rate of salt in groundwater via capillary rise of soil water to subsoils was increased thereby.  相似文献   

4.
A long term simulation test on salt-water dynamics in unsaturated soils with different groundwater depths and soil texture profiles under stable evaporation condition was conducted.Salinity sensors and tensiometers were used to monitor salt and water variation in soils.The experiment revealed that in the process of fresh groundwater moving upwards by capillary rise in the column,the salts in subsoil were brought upwards and accumulated in the surface soil,and consequently the salinization of surface soil took place.The rate of salt accumulation is determined mainly by the volume of capillary water flow and the conditions of salts contained in the soil profile.Water flux in soils decreased obviously when groundwater depths fell below 1.5m.When there was an interbedded clay layer 30cm in thickness in the silty loam soil profile or a clay layer 100cm in thickness at the top layer,the water flux was 3-5 times less than in the soil profile of homogeneous silty loam soil.Therefore,the rate of salt accumulation was decreased and the effect of variation of groundwater depth on the water flux in soils was weakened comparatively.If there was precipitation or irrigation supplying water to the soil,the groundwater could rarely take a direct part in the process of salt accumulation in surface soil,especially,in soil profiles with an interbedded stratum or a clayey surface soil layer.  相似文献   

5.
Located in the inland arid area of central Asia, salt-affected farmlands take up one third of the total irrigated land area in Xinjiang of Northwest China. Spatio-temporal variability of soil salinity and the underlying mechanism are fundamental problems challenging the sustainability of oasis agriculture in China. In this study, the data of total dissolved solids(TDS) measured for soil samples collected from 27 representative study areas in the oasis areas of Xinjiang were analyzed and the coefficient of variation(CV) and stratification ratio(SR) of TDS were used to describe the lateral and vertical soil salinity variations, respectively. Weekly, monthly,and annual changes in soil salinity were also summarized. Results showed that the top(0–20 cm) soil salinity was highly variable(CV 75%) for most studied areas. Lateral variation of soil salinity was significantly correlated with the sampling interval; as a result, a maximum sampling interval of 0.9 m was found for reducing evaluation uncertainty. The top 0–20 cm soil salt accounted for about25.2% of the total salt in the 0–100 cm soil profile. The stratification ratio values(the ratio of TDS at the 20–40 cm depth to that at the 0–20 cm depth) were mostly smaller than 1 and on average 0.92, illustrating that the top 0–20 cm soil contained slightly more salt and a considerable amount of salt still existed in subsurface and deep horizons. Irrigation reduced top soil salinity by 0.52 g kg-1, or14.6%, within the first week. On average, the relative range of soil salinity, calculated to indicate monthly changes in soil salinity, was58.2% from May to September. A 27-year experiment indicated that cultivation increased soil salinity by 44.4% at a rate of 0.14 g kg-1year-1. At small spatio-temporal scales, soil salinity variation was mainly affected by anthropogenic factors, such as irrigation and land use. However, natural factors, including groundwater, topography, and climate conditions, mainly influenced soil salinity variation at large spatio-temporal scales. This study displayed the highly variable nature of soil salinity in space and time. Those driving factors identified in this study could provide guidelines for developing sustainable agriculture in the oasis areas and combating salinization in arid regions of China.  相似文献   

6.
A laboratory salt-water dynamics experiment using unsaturated soils in packed silt loam and clay soil columns with different soil texture profiles and groundwater levels under crops were conducted to study the changes of salt-water dynamics induced by water uptake of crops and to propose the theoretical basis for the regulation and control of salt-water dynamics as well as to predict salinity levels. The HYDRUS 1D model was applied to simulate the one-dimensional movement of water and salt transport in the soil columns. The results showed that the salts mainly accumulated in the plow layer in the soil columns under crops. Soil water and salt both moved towards the plow layer due to soil water absorption by the crop root system. The salt contents in the column with lower groundwater were mostly greater than those with high groundwater. The water contents in the soil columns increased from top to the bottom due to plant root water uptake. The changes in groundwater level had little influence on water content of the root zone in the soil columns with crop planting. Comparison between the simulated and the determined values showed that model simulation results were ideal, so it is practicable to do numerical simulation of soil salt and water transport by the HYDRUS 1D model. Furthermore, if the actual movement of salt and water in fields is to be described in detail, much work needs to be done. The most important thing is to refine the parameters and select precise boundary conditions.  相似文献   

7.
In order to utilize the wasted saline-sodic soils under shallow groundwater condition,a 3-year field study was carried in a field cropped with Lycium barbarum L.and irrigated by drip irrigation with saline groundwater under the water table depth of 30-40 cm in the northern Yinchuan Plain,China.Effects of cropping duration (one,two,and three years) on soil salinity,soil solution composition,and pH in three adjacent plots were investigated in 2008.Results showed that a high irrigation frequency maintained high soil water potential and subsequently facilitated infiltration and downward movement of water and salt in the crop root zone.Salt accumulated on the edges of the ridges,and soil saturated-paste electrical conductivity (ECe) was higher in the edge.Concentrations of Na+,Ca2+,Mg2+,Cl-,and SO42- in the soil increased with the soil depth as did the ECe,while HCO3- and pH had a relative uniform distribution in soil profile.As planting year increased,the ECe and soil salts in the field had a decreasing tendency,while in the root zone they decreased immediately after irrigation and then remained relatively stable in the following growing seasons.HCO3- and pH had little change with the planting year.Results suggested that the application of drip irrigation with saline water could ameliorate saline-sodic soil and provide a relatively feasible soil environment for the growth of salt-tolerant plant Lycium barbarum L.under the saline-sodic soils with shallow groundwater.  相似文献   

8.
Saline ice meltwater can be used for irrigation and leaching of salts in salt-affected soil regions.A laboratory experiment was conducted using soil columns to investigate the redistribution of soil moisture, salt and sodium adsorption ratio(SAR) in saline-sodic soil under the infiltration of saline ice meltwater.Soils were treated using saline water of three irrigation volumes(1 600, 2 400 and 3 200 mL) at four salinity levels.These four salinity levels included salt free(0 g L~(-1)), low salinity level(1.4 g L~(-1)), moderate salinity level(2.7 g L~(-1)) and high salinity level(4.1 g L~(-1)).The prepared saline water was frozen into ice, and then the ice was put on the surface of soil columns.After 96 h, the infiltration rate and soil moisture content of saline ice treatments were greater than those of salt-free ice treatments, increasing with the increase of ice salinity.Infiltration of saline ice meltwater increased soil moisture content in the upper layers for all treatments.Both salt contents and SAR values in the upper soil layers decreased in all saline ice treatments and were lower than those in salt-free ice treatment.However, this trend was reversed in the deeper(below 20 cm) soil layers.The highest desalting rate and lowest SAR were observed in high-salinity treatment under three irrigation volumes in the 0–15 cm soil layer,especially under irrigation volume of 2 400 mL.These results indicate that saline ice(0–20 cm) meltwater irrigation is beneficial to saline-sodic soil reclamation, and the best improvement effect would be achieved when using high-salinity ice under optimal irrigation volume.  相似文献   

9.
Soil salinization is one of the most common land degradation processes. In this study, spectral measurements of saline soil samples collected from the Yellow River Delta region of China were conducted in laboratory and hyperspectral data were acquired from an EO-1 Hyperion sensor to quantitatively map soil salinity in the region. A soil salinity spectral index (SSI) was constructed from continuum-removed reflectance (CR-reflectance) at 2052 and 2203 nm, to analyze the spectral absorption features of the salt-affected soils. There existed a strong correlation (r = 0.91) between the SSI and soil salt content (SSC). Then, a model for estimation of SSC with SSI was established using univariate regression and validation of the model yielded a root mean square error (RMSE) of 0.986 and an R2 of 0.873. The model was applied to a Hyperion reflectance image on a pixel-by-pixel basis and the resulting quantitative salinity map was validated successfully with RMSE = 1.921 and R2 = 0.627. These suggested that the satellite hyperspectral data had the potential for predicting SSC in a large area.  相似文献   

10.
基于土壤电导率时空变异性的管理分区技术研究   总被引:2,自引:0,他引:2  
LI Yan  SHI Zhou  LI Feng 《土壤圈》2007,17(2):156-164
A coastal saline field of 10.5 ha was selected as the study site and 122 bulk electrical conductivity (ECb) measurements were performed thrice in situ in the topsoil (0-20 cm) across the field using a hand held device to assess the spatial variability and temporal stability of the distribution of soil electrical conductivity (EC), to identify the management zones using cluster analysis based on the spatiotemporal variability of soil EC, and to evaluate the probable potential for sitespecific management in coastal regions with conventional statistics and geostatistical techniques. The results indicated high coefficients of variation for topsoil salinity over all the three samplings. The spatial structure of the salinity variability remained relatively stable with time. Kriged contour maps, drawn on the basis of spatial variance structure of the data, showed the spatial trend of the salinity distribution and revealed areas of consistently high or consistently low salinity, while a temporal stability map indicated stable and unstable regions. On the basis of the spatiotemporal characteristics, cluster analysis divided the site into three potential management zones, each with different characteristics that could have an impact on the way the field was managed. On the basis of the clearly defined management zones it was concluded that coastal saline land could be managed in a site-specific way.  相似文献   

11.
基于D-S证据理论的土壤潜在盐渍化研究   总被引:10,自引:2,他引:8  
该文以山东禹城20世纪80年代第二次土壤普查资料为基础,在GIS和Dempster-Shafer证据理论的支持下,旨在探讨影响土壤盐渍化的因子作用下引发的土壤潜在盐渍化的概率分布状况。该文主要利用模糊函数集中的“J”形模型和Dempster-Shafer-Weight-of-Evidence(D-S证据理论)模型对影响土壤盐渍化因子进行运算和合并,预测土壤潜在盐渍化现象在整个栅格表面发生的可信度,并运用专家知识评价存在的因子,获得了研究区土壤潜在盐渍化的概率表面图。结果表明:土壤盐渍化分布不仅具有空间变异性,在局部也存在着一致性,即在地形、地貌基本一致的前提下,在一定的距离范围内,越靠近盐渍化土地的区域,发生盐渍化的可能性越大,地下水埋深和地下水矿化度是影响土壤潜在盐渍化分布的两个关键因子。  相似文献   

12.
基于指示Kriging法的土壤盐渍化与地下水埋深关系研究   总被引:10,自引:4,他引:6  
在北方干旱、半干旱的地下水浅埋区,土壤盐渍化是土地资源退化的主要原因,防治土壤盐渍化是农业和生态环境可持续发展的重要保障。该文以内蒙古河套灌区解放闸灌域为例,运用指示Kriging法绘制并比较了不同阈值下地下水位埋深和土壤表层含盐量的概率分布图,从概率空间分布的角度分析研究了土壤盐渍化与地下水位埋深之间的关系,从而将这方面的研究从通常的农田尺度扩大到灌域尺度。结果表明:1)土壤盐分和地下水位埋深空间变异强度均为中等,且具有中等的空间自相关性,球状模型拟合变异函数的效果较好;2)在灌域尺度上,解放闸灌域4月底土壤表层发生中度、轻度盐渍化时地下水位临界埋深分别为2.0、2.5m,西南及中东部地下水位埋深小于临界埋深的概率较大,是土壤返盐的高风险区;3)3月底地下水位埋深对土壤返盐的影响比4月底更大一些,这表明地下水位埋深对土壤返盐的影响具有一定滞后效应,只有地下水位埋深小于临界深度的状态维持一段时间,才会造成土壤中度或轻度盐渍化。  相似文献   

13.
杨奇勇  杨劲松  姚荣江 《土壤》2011,43(6):998-1003
针对目前黄淮海平原盐渍土改良区存在的土壤盐渍障碍问题,以该区域典型县域禹城市为研究对象,综合运用GIS和非参数地质统计学的指示克立格法,对县级和镇级两个采样尺度下0~20 cm耕层土壤盐分的空间变异性进行了分析,并给出了土壤盐分满足一定条件的概率分布图.结果表明,两个采样尺度下土壤盐分均不符合正态分布且都存在特异值,但...  相似文献   

14.
黄骅市土壤含盐量空间变异特征和影响因素分析   总被引:2,自引:0,他引:2  
文章为了探知黄骅市土壤含盐量的空间变异及影响因素,基于样点数据,运用GIS和地统计相结合的方法对土壤含盐量的空间变异特征和空间分布进行分析和模拟。然后通过逐步回归分析对影响黄骅市土壤含盐量空间分布的主要因素进行分析。结果显示:(1)黄骅市土壤含盐量空间变异拟合于指数模型,存在各向异性,基底效应属于中等,其空间分布受到外界因素的影响。(2)黄骅市土壤含盐量整体上由沿海向内陆逐渐降低,在内陆地区的黄骅镇和南大港也出现了聚集;全市仅有8.49%的土地未出现土壤盐渍化,零星分布于黄骅市内陆边界地区;轻度盐渍化土面积最大,占全市面积的31.93%。(3)黄骅市土壤含盐量与高程、地下水矿化度、地下水埋深空间分布格局较为吻合,与土壤含盐量空间相关性最大的因素是地下水矿化度,而且更多表现为直接影响,其次为地下水埋深,高程因素相关性最小,黄骅市表层土壤与地下水之间垂直迁移交换作用比盐分水平运移作用更显著。  相似文献   

15.
潮土区土壤有机质含量的趋势演变研究——以禹城市为例   总被引:10,自引:1,他引:10  
杨玉建  杨劲松 《土壤通报》2005,36(5):647-651
通过分析山东省禹城市100个采样点1980年和2003年耕层土壤的有机质含量,研究了土壤有机质的时空变异特征,探讨了潮土区有机质含量的变化,形成了研究区1980年和2003年有机质含量空间分布图及1980~2003年有机质含量的空间变化图。分析了研究区有机质含量增加的原因。研究结果表明,该市目前土壤有机质含量平均为14.68g kg-1,比1980年的6.0g kg-1增加了8.68 g kg-1,年均提高0.38g kg-1。土壤表层含盐量的降低为土壤养分含量提高提供了条件。  相似文献   

16.
黄河三角洲地区典型地块土壤盐分空间变异特征研究   总被引:67,自引:10,他引:57  
针对目前黄河三角洲地区存在的土壤盐渍化问题,以黄河三角洲地区典型地块为研究区,运用经典统计学和地统计学相结合的方法研究了不同深度土层盐分含量的空间变异特征,绘制了各土层盐分的随机性和结构性的半方差图以及空间分布图。结果表明:受内在因子和外在因子的共同作用,各土层含盐量均具有中等的变异强度和空间自相关性,自相关距差异不大。Kriging插值结果表明,研究区内各土层含盐量的空间分布表现为条带状和斑块状分布。微地形和气候条件是影响表层土壤盐分空间变化的主要因素,地下水性质是影响深层土壤盐分空间分布的主要因素。该研究为黄河三角洲地区盐渍化土壤的分区、改良、管理和合理利用提供了理论基础和参考依据。  相似文献   

17.
灌区土壤盐分空间变异及多因素响应关系   总被引:1,自引:0,他引:1  
[目的]研究土壤含盐量空间特征和分布格局,分析土壤盐分空间格局与地下水、土壤物理特性参数间的空间响应关系,为灌区盐渍化防控提供理论依据。[方法]以黄河南岸灌区吉格斯太灌域为例,网格化布点,分层采样测定土壤含盐量、表层土壤含水量、颗粒组成、干容重并换算热容量及导热率,同步监测地下水埋深及含盐量,采用经典统计方法和地统计方法分析土壤含盐量空间分布特征及其与物理特性和地下水等因素间的空间相关性。[结果]灌域处于非盐化—轻度盐化状态,土壤含盐量呈中等空间变异程度,总体呈现相对独立的随机分布,空间结构特征可以用高斯模型和指数模型描述。土壤含盐量与地下水埋深呈显著负相关,与地下水含盐量呈显著正相关,地下水埋深1.6 m区域发生轻度盐渍化风险较高。0—20 cm土壤含盐量与黏粒含量、容重、含水量、导热率及热容量显著空间正相关,相关范围约2~6 km;与砂粒含量呈显著空间负相关,相关范围约2~4 km。20—60 cm土壤盐分与0—20 cm土壤黏粒、砂粒含量、导热率、热容量及含水量呈显著相关,相关范围与土壤表层略有差异。[结论]黏粒含量较高,含水率较大,地下水埋深1.6 m的区域是灌域盐渍化防控的重点区域。  相似文献   

18.
盐碱地盐分空间分布精准识别及形成机理解析对盐碱地科学利用具有重要意义.针对传统点状采样监测方法工作量大、代表性差和检测费用高等问题,本研究采用电磁感应仪精准调查技术对上海崇明某滩涂农场进行土壤盐分空间分布评估,全面快速获得盐分空间分布信息,解析土壤盐分形成机理,进而分类分区分级指导农业生产和科学精准改良.结果表明:土壤...  相似文献   

19.
为了探究不同地下水埋深条件下膜下滴灌农田的水盐运移规律,于2012—2016年在新疆库尔勒绿洲,对采用膜下滴灌结合冬春灌压盐的棉田开展定位观测,在不同位置处150 cm深土壤剖面进行水盐监测,探究不同生育阶段地下水埋深与土壤水盐含量的关系。结果表明,膜下滴灌农田土壤水分呈反"S"型分布,土壤盐分呈"酒杯"状表聚型分布;试验期内地下水埋深从2~3 m增加到5~6 m,相应地苗期和非生育期返盐程度显著降低,收获期盐分含量下降;5a来土壤含盐量从6.5 g/kg下降到1 g/kg,土壤累积含盐量与地下水埋深呈负的指数关系;深层水分交换量表明土壤水和地下水间的联系明显减弱。建议将类似地区的地下水埋深控制在3.5 m左右,膜下滴灌结合冬春灌淋洗可有效抑制土壤层盐分累积,并可保证自然植被的生态需水。  相似文献   

20.
黑龙港流域微地貌与地下水埋深对土壤潜在盐渍化的影响   总被引:3,自引:0,他引:3  
[目的]对近年河北省曲周县土壤潜在盐渍化进行多方位评价,为预防土壤盐渍化提供科学依据。[方法]通过微咸水灌溉试验、土壤剖面观测和土样分析,从海拔高度、土层深度、地下水埋深、土壤质地几个方面对黑龙港流域土壤盐分运移以及其对土壤潜在盐渍化的影响进行探讨。[结果]从区域角度分析,降雨和用微咸水灌溉加剧了表层盐分向下层淋洗的可能性,从而使土壤盐分多在40—100cm土层聚集。质地较为黏重的土层阻止了土壤盐分的运移而聚积在该土层之上,为土壤潜在盐渍化创造了条件。土壤盐分含量与海拔高度呈现出很好的相关性,其复相关指数R2=0.76。HCO_3~-的表聚现象比较明显,各土层土壤SO_4~(2-)离子和Ca~(2+)离子与全盐含量之间达到了显著和极显著相关(0.88*~1.00**,0.89*~0.97**),Ca~(2+)离子与SO_4~(2-)离子之间达到了显著和极显著相关(0.86*~0.97**)。[结论]微地貌和土体构型的变化将会影响到土壤盐分的重新分配,进而对土壤潜在盐渍化有重要影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号