首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
This study investigated the hypothesis that dietary supplementation of fish oil as a source of n‐3 polyunsaturated fatty acids (PUFA) influences the expression of target genes of sterol regulatory element‐binding proteins (SREBP)‐1 and (SREBP)‐2 involved in triacylglycerol (TAG) synthesis and fatty acid and cholesterol metabolism in the liver, and moreover activates the expression of target genes of peroxisome proliferation‐activated receptor (PPAR)‐α involved in TAG and fatty acid catabolism in liver and skeletal muscle. Twenty lactating sows were fed a control diet or a fish oil diet with either 50 g of a mixture of palm oil and soya bean oil (4:1, w/w) or fish oil per kg. The diet of the fish oil group contained 19.1 g of n‐3 PUFA (mainly 20:5 n‐3 and 22:6 n‐3) per 100 g of total fatty acids, while the diet of the control group contained 2.4 g of n‐3 PUFA (mainly 18:3 n‐3) per 100 g of total fatty acids. The fish oil group had reduced relative mRNA concentrations of various target genes of SREBP‐1 involved in fatty acid and TAG synthesis in comparison with the control group (p < 0.05). Relative mRNA concentrations of target genes of PPARα involved in fatty acid catabolism in both liver and muscle, and mRNA concentrations of target genes of SREBP‐2 involved in cholesterol synthesis and uptake were not influenced by fish oil supplementation. Concentrations of cholesterol and TAG in plasma, fat content of milk and weight gains of litters during the suckling period were not different between the two groups of sows. In conclusion, this study suggests that fish oil has only minor effects on hepatic lipid metabolism, which are non‐critical with respect to milk production in sows.  相似文献   

2.
The purpose of the study was to test the hypothesis that the dietary oils with different content of n‐3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA) affect plasma lipid level in rats in a different degree. The diets with 6% of fish oil (FO) and Schizochytrium microalga oil (SchO; EPA+DHA content in the diets 9.5 + 12.3 and 2.6 + 29.5% of the sum of total fatty acids, respectively) were used; the diet with 6% of safflower oil (high content of n‐6 PUFA linoleic acid, 65.5%; EPA+DHA content 0.7 + 0.9%) was used as a control. The difference between FO and SchO was established only in the case of plasma triacylglycerol (TAG) level: plasma TAG of the FO‐fed rats did not differ from the control rats (p > 0.05), while SchO decreased (p < 0.05) plasma TAG to 46% of the control. On the other hand, FO and SchO decreased (p < 0.05) total plasma cholesterol (TC) in rats in the same extent, to 73% of the control. Regarding the underlying mechanisms for the TC decrease, both SchO and FO up‐regulated hepatic Insig‐1 gene (181 and 133% of the control; p < 0.05), which tended (p = 0.15 and p = 0.19 respectively) to decrease the amount of hepatic nSREBP‐2 protein (61 and 66% of the control). However, neither SchO nor FO influenced hepatic 3‐hydroxy‐3‐methyl‐glutaryl‐CoA reductase gene expression (p > 0.05); SchO (but not FO) increased (p < 0.05) low‐density lipoprotein receptor mRNA in the liver. It was concluded that the decrease of total plasma cholesterol might be caused by an increased cholesterol uptake from plasma into the cells (in the case of SchO), but also by other (in the present study not tested) mechanisms.  相似文献   

3.
Dietary fish oil intake improves muscle atrophy in several atrophy models however the effect on denervation‐induced muscle atrophy is not clear. Thus, the aim of this study was to investigate the effects of dietary fish oil intake on muscle atrophy and the expression of muscle atrophy markers induced by sciatic nerve denervation in mice. We performed histological and quantitative mRNA expression analysis of muscle atrophy markers in mice fed with fish oil with sciatic nerve denervation. Histological analysis indicated that dietary fish oil intake slightly prevented the decrease of muscle fiber diameter induced by denervation treatment. In addition, dietary fish oil intake suppressed the MuRF1 (tripartite motif‐containing 63) expression up‐regulated by denervation treatment, and this was due to decreased tumor necrosis factor‐alpha (TNF‐α) production in skeletal muscle. We concluded that dietary fish oil intake suppressed MuRF1 expression by decreasing TNF‐α production during muscle atrophy induced by sciatic nerve denervation in mice.  相似文献   

4.
This study was conducted to evaluate the influence of back‐fat thickness (BF), at mating of sows, on the maternal and newborn circulating lipids, expression of placental fatty acids (FA) transporters and lipid accumulation in placenta. Full‐term placentas were obtained by vaginal delivery from BFI (9–14 mm; n = 37), BFII (15–19 mm; n = 43) and BFIII (20–27 mm; n = 38) sows according to BF at mating, and frozen placental sections were analysed for fat accumulation. Blood samples were collected from the sows of day 105 pregnancy and from cord blood at delivery. mRNA and protein expression levels were evaluated with real‐time RT‐PCR and Western blotting. Our results demonstrated that BFII females had significantly increased litter weight and placental efficiency, decreased maternal triglyceride (TG) and non‐esterified fatty acids (NEFA) levels, decreased maternal IL‐6, TNFα and leptin levels compared to BFIII females (< .05). BFIII sows were associated with significantly decreased newborn TG levels, increased newborn glucose, IL‐6 and TNFα levels compared to BFI or BFII sows (< .05). BFI and BFII females had significantly decreased placental TG, NEFA and cholesterol (CHOL) contents compared to BFIII females (< .05). Moreover, decreased CD36, FATP1, FABP4, and FABP1 mRNA and protein and FATP4 protein expression, and increased LPL activity were also observed in BFIII group compared with BFII group (< .05). PPARγ mRNA and protein and lipogenic genes such as SREBP‐1c, ACSL1, ACCα, FAS and SCD mRNA expression were downregulated or upregulated, respectively, in the placentas of BFIII sows compared to BFI or BFII sows (< .05). Overall, this study demonstrated that there is no advantage, in terms of litter live size, litter weight and placental FA transport and metabolism, in performing the mating of sows with BF>19 mm.  相似文献   

5.
Microalgae might be considered as an alternative source of fat and/or protein for ruminant's diets. However, changes in populations of ruminal micro‐organisms associated with biohydrogenation process, methane and ammonia production in response to microalgae dietary supplementation have not been well characterized. Thus, 16 cross‐bred goats were divided into two groups. Each goat of both groups was fed individually with alfalfa hay and concentrates separately. The concentrates of the control group had no microalgae while those of the treated group were supplemented with 10 g lyophilized Chlorella vulgaris/kg concentrate (chlor). On the 30th experimental day, samples of rumen fluid were collected for microbial DNA extraction, fatty acid profile and enzyme activity analyses. The results showed that the chlor diet compared with the control increased significantly the populations of Methanosphaera stadtmanae, Methanobrevibacter ruminantium and Methanogens bacteria and protozoa in the rumen of goats. A significant reduction in the cellulase activity and in the abundance of Ruminococcus albus, and a significant increase in the protease activity and in the abundance of Clostridium sticklandii in the rumen liquid of goats fed with the chlor diet, compared with the control, were found. Chlorella vulgaris supplementation promoted the formation of trans C18:1, trans‐11 C18:1 and monounsaturated fatty acids (MUFA), while the proportions of C18:0 and long‐chain fatty acids (LCFA) reduced significantly in the rumen liquid of goats. This shift in ruminal biohydrogenation pathway was accompanied by a significant increase in Butyrivibrio fibrisolvens trans C18:1‐producing bacteria. In conclusion, the supplementation of diets with microalgae needs further investigation because it enhances the populations of methane‐producing bacteria and protozoa.  相似文献   

6.
To examine the effects of dietary β‐carotene (βC) or retinyl palmitate (RP) on fatty acid (FA) profile and mRNA expression, samples were collected from 24 Angus‐cross calves that were allotted to four treatments consisting of RP supplemented at 2200 IU/kg, and synthetic β‐carotene (SβC) supplemented at one, five or 10 times RP. Longissimus muscle (LM) cis‐9, trans‐11 conjugated linoleic acid was greater in RP compared to SβC1X (= 0.04). The polyunsaturated:saturated FA increased linearly (= 0.04) in the LM as dietary SβC increased. Expression of βC oxygenase 2 (βCO2), an enzyme that cleaves β‐carotene, was greater in the LM for SβC1X compared to RP and decreased linearly as SβC increased (P  0.02). Peroxisome proliferator activated receptor γ (PPARγ) expression in the LM increased in SβC1X compared to RP (= 0.03); however, PPARγ and retinoic acid X receptor α (RXRα) expression decreased linearly (P = 0.02) in the LM with increasing SβC. Retinoic acid receptor α (RARα) expression tended (= 0.10) to decrease linearly in the LM with increased SβC. In conclusion, SβC supplementation increased mRNA expression of some lipogenic genes in the LM, but increasing dietary SβC inhibited their expression and tended to increase polyunsaturated FA.  相似文献   

7.
Thirty calves were randomly assigned to two treatments and fed until weaning [42 days (d) of age]. Treatments were a control group (n = 15), which did not receive Megasphaera elsdenii (Me0) and a M. elsdenii group, which received a 50‐ml oral dose of M. elsdenii NCIMB 41125 (108 CFU/ml) at day 14 day of age (Me14). Calves were given colostrum for the first 3 day followed by limited whole milk feeding. A commercial calf starter was offered ad libitum starting at day 4 until the end of the study. Fresh water was available throughout the study. Feed intake and growth were measured. Blood samples were collected via jugular venipuncture to determine β‐hydroxybutyrate (BHBA) concentrations. Fourteen male calves (seven per group) were euthanised on day 42 and digestive tracts harvested. Reticulo‐rumen weight was determined and rumen tissue samples collected from the cranial and caudal sacs of the ventral and dorsal portions of the rumen for measurements of papillae length, papillae width and rumen wall thickness. Dosing with M. elsdenii NCIMB 41125 improved starter dry matter intake (DMI), weaning body weight (BW) and tended to improve average daily gain. Calves in Me14 group had greater plasma BHBA concentration than Me0‐calves during the last 3 weeks of the trial and had at day 42 greater reticulo‐rumen weight, papillae width and papillae density compared to Me0. No differences in rumen wall thickness or papillae length were observed between the two groups. Total volatile fatty acids, acetate and propionate production did not differ between treatments, but butyrate production was greater in Me14 than Me0. Dosing M. elsdenii NCIMB 41125 showed benefit for calves with improved feed intake and rumen development suggesting increased epithelium metabolism and improved absorption of digestive end products.  相似文献   

8.
A study was conducted to determine the effect of two levels of linoleic acid (LA) intake at either high or low α‐linolenic acid (ALA) intake on their conversion and subsequent deposition into long‐chain (20–22 C‐atoms) polyunsaturated fatty acids (LC PUFA) in muscle and backfat in growing pigs. In a 2 × 2 factorial arrangement, 32 gilts from 8 litters were assigned to one of four dietary treatments, varying in LA and ALA intakes. Low ALA and LA intakes were 0.15 and 1.31 g/(kg BW0.75/day), respectively, and high ALA and LA intakes were 1.48 and 2.65 g/(kg BW0.75/day) respectively. There was a close positive relation between intake of ALA and the concentration of ALA in backfat and in intramuscular fat. Dietary ALA did not affect the concentration of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), but increased docosapentaenoic acid (DPA) in backfat. High ALA intake did not significantly affect DHA but significantly increased EPA, 20:3 n‐3 and DPA concentrations in intramuscular fat. The n‐3 LC PUFA proportion in backfat was increased from approximately 1–3%, which may be useful to enrich meat with these fatty acids. The effect of ALA intake on n‐3 LC PUFA was suppressed by LA intake. Dietary ALA suppressed the concentration of n‐6 LC PUFA in blood plasma by more than 50%. When compared at equal incremental dose, the inhibiting effect of ALA on blood arachidonic acid was stronger than the stimulating effect of LA as precursor.  相似文献   

9.
Feeding systems such as grazing affect the fatty acid profile of bovine milk fat. In addition, milk fat is formed as the product of fatty acid metabolism in cow bodies before being secreted into milk. However, how grazing influences milk fatty acid profile through the metabolism has not been completely characterized. When fatty acid concentrations in Holstein milk were compared between grazing and non‐grazing periods, α‐linolenic acid was significantly higher in the grazing period than in the non‐grazing period. This could be explained with an increase in α‐linolenic acid feeding with grazing. α‐linolenic acid had a linear positive correlation with conjugated linoleic acid (9c,11t‐18:2) (CLA) and vaccenic acid (VA) during the grazing period, whereas CLA had higher correlation with linoleic acid rather than with α‐linolenic acid during the non‐grazing period. These data indicate that the high content of dietary α‐linolenic acid affects CLA and VA formation in milk of grazing periods via α‐linolenic acid metabolism into VA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号