首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objectives of this experiment were: (i) to determine the net energy (NE) of soybean oil (SBO) fed to growing pigs using indirect calorimetry (IC); and (ii) to evaluate the effects of inclusion rate of SBO on heat production, oxidative status and nutrient digestibility in growing pigs. Eighteen growing barrows were allotted to three diets based on completely randomized design with six replicate pigs (period) per diet. Diets included a corn‐soybean meal basal diet and two test diets containing 5% or 10% SBO at the expense of corn and soybean meal. During each period, pigs were individually housed in metabolism crates for 14 days, including 7 days to adapt to feed, metabolism crate and environmental conditions. On day 8, pigs were transferred to the open‐circuit respiration chambers for measurement of daily O2 consumption and CO2 and CH4 production. During this time, pigs were fed one of the three diets at 2.4 MJ metabolizable energy/kg body weight (BW)0.6/day. Total feces and urine were collected and daily total heat production (THP) was measured from days 9 to 13 and fasted on day 14 to evaluate their fasting heat production (FHP). The results show that trends of decreased apparent total tract digestibility of neutral detergent fiber (linear, = 0.09) and acid detergent fiber (linear, = 0.07) were observed as the content of dietary lipids increased. The average THP for the three diets were 1326, 1208 and 1193 kJ/kg BW0.6/day, respectively. The FHP of pigs averaged 843 kJ/kg BW0.6/day and was not affected by diet characteristics. A reduction of the respiratory quotients in the fed state as the inclusion level of SBO increased was observed. In conclusion, the NE values of SBO we determined by indirect calorimetry were 33.45 and 34.05 MJ/kg dry matter under two inclusion levels. THP could be largely reduced when SBO is added in the feed, but the THP of SBO included at 5% in a corn‐soybean meal diet is not different from the THP of SBO included at 10%.  相似文献   

2.
The objectives of this experiment were to (a) determine the effects of fiber increase in diets on heat production (HP), (b) determine the net energy (NE) of oat bran (OB), wheat bran (WB), and palm kernel expellers (PKE) fed to growing pigs using indirect calorimetry (IC). Twenty‐four growing barrows (29.2 ± 2.6 kg) were randomly allotted to one of four diets with six replicate pigs per diet. Diets included a corn‐soybean meal basal diet and three test diets containing 30% OB, WB or PKE, respectively. During each period, pigs were individually housed in metabolism crates for 20 days, including 14 days to adapt to the diets. On day (d) 15, pigs were transferred to the open‐circuit respiration chambers for determination of daily total HP and were fed one of the four diets at 2.3MJ ME/kg body weight (BW)0.6/day. Total feces and urine were collected for the determination of digestible energy (DE) and metabolizable energy (ME) and daily total HP was measured from d 15 to d 19 and fasted on day 20 for the measurement of fasting heat production (FHP). The apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), and organic matter (OM) were greater (< 0.01) in pigs fed the basal diet compared with those fed the test diets. The ATTD of neutral detergent fiber (NDF) was lower (< 0.01) in pigs fed the WB diet compared with those fed the basal, OB, or PKE diets. The ATTD of ether extract (EE) in pigs fed the PKE diet was greater (< 0.01) compared with those fed the other diets. The average total HP and FHP in pigs fed the four diets were 1261 and 787 kJ/kg BW0.6/d, respectively, and were not significantly affected by diet characteristics. The NE:ME ratio for diets ranged from 78.1 to 80.9%. The NE contents of OB, WB, and PKE were 10.93, 7.47, and 8.71 MJ/kg DM, respectively.  相似文献   

3.
The present study was conducted to determine the net energy (NE) values and energy efficiency of wheat bran (WB), sugar beet pulp (SBP), corn gluten feed (CGF), soybean hulls (SBH), and defatted rice bran (DFRB) fed to pregnant sows. Thirty‐six multiparous pregnant sows were randomly assigned to six dietary treatments with six replicates per treatment. Each period lasted for 21 days including 14 days for adaptation. On day 15, sows were moved into respiration chambers for heat production (HP) measurement and provided feed at 544 kJ/kg BW0.75/day. On day 20, sows were fasted to measure the fasting heat production (FHP). Experimental diets included corn‐soybean meal basal diet and five diets containing 29.20% WB, SBP, CGF, SBH, and DFRB, respectively. Results showed that inclusion of WB, SBP, CGF, SBH, and DFRB to basal diet decreased (p < 0.05) the apparent total tract digestibility of energy and nutrients. The average adjusted total HP and FHP were 418 kJ/kg BW0.75/day and 326 kJ/kg BW0.75/day, respectively. The average NE:ME ratio of experiment diets was 82.5%. In conclusion, the NE values of WB, SBP, CGF, SBH, and DFRB were 9.05, 8.59, 8.37, 7.64, and 7.93 MJ/kg DM, respectively.  相似文献   

4.
We evaluated the effect of three sources of dried distillers' grains with solubles (DDGS) in diets of mid‐lactating dairy cows on milk production and milk composition and on digestibility in sheep. DDGS from wheat, corn and barley (DDGS1), wheat and corn (DDGS2) and wheat (DDGS3) were studied and compared with a rapeseed meal (RSM). RSM and DDGS were characterized through in situ crude protein (CP) degradability. Nutrient digestibility was determined in sheep. Twenty‐four multiparous cows were used in a 4 × 4 Latin square design with 28‐day periods. Treatments included total mixed rations containing as primary protein sources RSM (control), DDGS1 (D1), DDGS2 (D2) or DDGS3 (D3). RSM contained less rapidly degradable CP (fraction a), more potentially degradable CP (fraction b) and more rumen undegradable CP (UDP) than the three DDGS. In vivo digestibility of RSM organic matter was similar to DDGS. Calculated net energy for lactation (NEL) was lower for RSM (7.4 MJ/kg DM) than for DDGS, which averaged 7.7 MJ/kg DM. Cows' dry matter intake did not differ between diets (21.7 kg/day). Cows fed D1 yielded more milk than those fed D3 (31.7 vs. 30.4 kg/day); no differences were found between control and DDGS diets (31.3 vs. 31.1 kg/day). Energy‐corrected milk was similar among diets (31.2 kg/day). Diets affected neither milk fat concentration (4.0%) nor milk fat yield (1.24 kg/day). Milk protein yield of control (1.12 kg/day) was significantly higher than D3 (1.06 kg/day) but not different form D1 and D2 (1.08 kg/day each). Feeding DDGS significantly increased milk lactose concentration (4.91%) in relation to control (4.81%). DDGS can be a suitable feed in relation to RSM and can be fed up to 4 kg dry matter per day in rations of dairy cows in mid‐lactation. However, high variation of protein and energy values of DDGS should be considered when included in diets of dairy cows.  相似文献   

5.
The net energy (NE) content of canola meals (CM; i.e. Brassica napus yellow and Brassica juncea yellow) in growing pigs was determined using an indirect calorimetry chamber or published prediction equations. The study was conducted as a completely randomized design (n = 6), with (i) a basal diet and (ii) 2 diets containing 700 g/kg of the basal diet and 300 g/kg of either of the two varieties of CM. A total of 18 growing barrows were housed in metabolism crates for the determination of digestible (DE) and metabolizable (ME) energy. Thereafter, pigs were transferred to the indirect calorimetry chamber to determine heat production (HP). The NE contents of diets containing Brassica napus yellow and Brassica juncea yellow determined with the direct determination technique and prediction equations were 9.8 versus 10.3 MJ/kg dry matter (DM) and 10.2 versus 10.4 MJ/kg DM, respectively. Retained energy (RE) and fasting heat production (FHP) of diets containing Brassica napus yellow and Brassica juncea yellow were 5.5 versus 5.7 MJ/kg and 4.3 versus 4.5 MJ/kg, respectively, when measured with the direct determination technique and prediction equations. The NE contents of Brassica napus yellow and Brassica juncea yellow were determined to be 8.8 and 9.8 MJ/kg DM, respectively, using the direct determination technique.  相似文献   

6.
An experiment was conducted to measure DE and ME and the apparent total tract digestibility (ATTD) of energy, N, and P in distillers dried grains with solubles (DDGS) fed to growing pigs. Ten sources of DDGS were obtained from ethanol plants in South Dakota and Minnesota, and 11 diets were formulated. One diet was based on corn (96.8%), limestone, salt, vitamins, and microminerals. Ten additional diets were formulated by mixing the corn diet and each of the 10 sources of DDGS in a 1:1 ratio. Eleven growing pigs (initial BW of 29.3 +/- 0.42 kg) were allotted to an 11 x 11 Latin square design, with 11 periods and 11 pigs. Each of the 11 diets was fed to each pig during 1 period. Pigs were placed in metabolism cages that allowed for the total, but separate, collection of feces and urine. Samples were analyzed for GE, N, and P and energy and N balances, and the ATTD of GE, N, and P were calculated for each diet. By subtracting the contribution from the corn diet to the DDGS-containing diets, the energy and N balances and the ATTD for GE, N, and P for each source of DDGS were calculated. Results of the experiment showed that the DE and ME differed (P < 0.001) among the 10 sources of DDGS (3,947 to 4,593 kcal of DE/kg of DM and 3,674 to 4,336 kcal of ME/kg of DM). The average DE and ME in DDGS were 4,140 and 3,897 kcal/kg of DM, respectively. These values were not different from the DE and ME in corn (4,088 and 3,989 kcal/kg of DM, respectively). Based on the analyzed GE and nutrient composition of DDGS and the calculated values for DE and ME, prediction equations for DE and ME were developed. These equations showed that DE and ME in DDGS may be predicted from the concentration of ash, ether extract, ADF, and GE. The retention of N from DDGS was greater (P < 0.001) than from corn, but when calculated on a percentage basis, the N retention did not differ between DDGS and corn. The ATTD of P in DDGS was 59.1% on average for the 10 samples. This value was greater (P < 0.001) than the ATTD of P in corn (19.3%). It is concluded that the DE and ME in DDGS is not different from the DE and ME in corn. However, if DDGS is included in diets fed to growing swine, a greater portion of the organic P will be digested and absorbed, thus reducing the need for adding inorganic P to the diets.  相似文献   

7.
The objective of this study was to test the hypothesis that growth performance and carcass characteristics of pigs fed diets containing cold-fermented, low oil distillers dried grains with solubles (DDGS) is not different from that of pigs fed diets containing conventional DDGS regardless of the physical form of the diets. A total of 160 barrows and gilts were used. There were 4 diets, 10 pens per diet, and 4 pigs per pen. Pigs were weaned at 21 d of age and fed a common phase 1 diet that did not contain DDGS during the initial 7 d post-weaning. Pigs were then allotted to the four diets that were arranged in a 2 × 2 factorial design with two sources of DDGS (cold-fermented and conventional DDGS) and two diet forms (meal and pellets). Pigs were fed phase 2 diets from day 7 to 21 and phase 3 diets from day 21 to 43 post-weaning. All diets were based on corn and soybean meal, but phase 2 diets also contained 15% DDGS and phase 3 diets contained 30% DDGS. From day 43, pigs were fed grower diets for 38 d, early finisher diets for 38 d, and late finisher diets for 18 d and these diets also contained 30% DDGS. Feed was provided on an ad libitum basis and daily feed allotments were recorded. Pigs were weighed at the beginning of each phase and at the conclusion of the experiment. On the last day of the experiment, the pig in each pen with a body weight that was closest to the pen average was slaughtered and carcass measurements were determined. Combined results for the two nursery phases indicated that feeding meal diets instead of pelleted diets increased (P < 0.001) average daily feed intake and decreased (P < 0.05) gain to feed ratio (G:F). However, no differences between the two sources of DDGS were observed for the overall growth performance of weanling pigs. For the entire growing-finishing period, the source of DDGS did not affect growth performance, but pigs fed meal diets had reduced (P < 0.001) G:F compared with pigs fed the pelleted diets. There were no differences between the two sources of DDGS for carcass characteristics. Back fat was greater (P < 0.05) for pigs fed pelleted diets than for pigs fed meal diets. In conclusion, no differences in growth performance or carcass characteristics between pigs fed cold-fermented DDGS and pigs fed conventional DDGS were observed. However, pigs fed pelleted diets had greater G:F and greater back fat than pigs fed meal diets.  相似文献   

8.
The effects of dietary protein and feeding levels on dietary metabolizable (ME) and net energy (NE) content were determined in 24 pigs, each offered two diets at 2.0 times the energetic maintenance requirement or for ad libitum intake between 55 and 95 kg body weight. Within feeding levels, pigs received, in random order, low‐protein (LP; 11.2% CP, 0.61% lysine) or high‐protein (HP; 20.2% CP, 0.61% lysine) diets of similar digestible energy content. Dietary NE was calculated from heat production based on 24‐h indirect calorimetry following a 7‐day N‐balance period. Feed intake was greater for LP than HP when fed for ad libitum intake (p = 0.001). Protein level did not affect daily gain (p > 0.1) but HP improved gain: feed (p = 0.003). Dietary ME and NE were not significantly affected by feeding level but were decreased by high protein intake (p < 0.07). Reducing dietary protein reduced urinary energy losses and increased energy retention but did not affect heat production. The effect of dietary protein restriction was already evident on the ME level and carried over to a similar degree to the NE level because the utilization of ME was not affected by protein level. Dietary ME and NE decreased by 0.012 MJ/kg (p = 0.014) and 0.018 MJ/kg (p = 0.062), respectively, for each gram per day N intake. The results suggest that although there was an effect of protein level on NE, the greatest effect occurred at the level of ME. However, the prediction of both ME and NE may be improved by adopting energy values for dietary protein that changes with dietary protein content.  相似文献   

9.
选用61.08 kg杜×长×大三元杂交猪540头,随机分为9个处理,每处理6个重复,每重复10头猪,公、母各半。采用3×3两因素设计,日粮蛋白水平降低4个百分点,净能为9.83、10.04、10.25 MJ/kg,赖氨酸净能比为0.76、0.84、0.91 g/MJ,研究净能和赖氨酸净能比对肥育猪生长性能和胴体品质的影响。结果表明:在60~100 kg阶段,10.04 MJ/kg净能组的ADG显著高于9.83 MJ/kg组的(P<0.05);赖氨酸净能比为0.84 g/MJ组的ADG显著高于0.76 g/MJ组(P<0.05);二者互作不影响生长性能和胴体品质(P>0.05),综合评定在60~100 kg阶段,猪的低蛋白日粮净能水平和赖氨酸净能比分别为10.04 MJ/kg和0.84 g/MJ为宜。  相似文献   

10.
Two experiments were conducted to study the effects of extrusion on the energy content of corn and broken rice and on growth performance of weaning pigs. In experiment 1, 24 barrows (28 days old, 7.28 ± 0.90 kg body weight (BW)) were used to compare the effects of extrusion of corn and broken rice on the values of digestible energy (DE) in weaned pigs. The DE content in extruded corn (17.45 MJ/kg dry matter (DM)) was significantly greater (P < 0.05) by 5.54% compared with that in corn (16.48 MJ/kg DM), while no significant difference in DE content was observed between extruded broken rice (17.66 MJ/kg DM) and broken rice (17.76 MJ/kg DM). In experiment 2, 120 weanling pigs (21 days old, 5.76 ± 0.07 kg BW) were used to evaluate the influence of substitution corn and extruded corn by different proportions of raw and extruded broken rice on growth performance of pigs. The inclusion of broken rice in the diets improved (P < 0.05) growth performance of pigs during the first week and the 2 weeks post‐weaning but not thereafter. However, there was no significant difference in growth performance between treatments in other periods. Overall, this study indicates that feeding weaning pigs with broken rice has beneficial results.  相似文献   

11.
Effect of supplementing wheat dried distillers’ grain with solubles (DDGS)‐containing diet with enzymes on nutrient utilization by growing pigs was evaluated in two experiments. In Experiment 1, 60 pigs weighing ~30 kg were fed five diets that included a corn‐based diet (Control), Control with 10% wheat DDGS (DDGS‐PC), DDGS‐PC without inorganic P source (DDGS‐NC), and DDGS‐NC plus phytase alone or with multi‐carbohydrase for 4 weeks to determine average daily gain (ADG), average daily feed intake (ADFI) and gain‐to‐feed ratio (G:F). In Experiment 2, 30 barrows weighing 22 kg were fed five diets fed in Experiment 1 to determine nutrient digestibility and retention. Pigs fed DDGS‐PC and Control diets had similar ADG and G:F. The ADG and G:F for DDGS‐PC diet were higher (P < 0.05) than those for DDGS‐NC diet. Phytase improved (P < 0.05) ADG, G:F, total tract P digestibility and P retention by 6.6, 8.7, 86.0 and 85.5%, respectively. Addition of multi‐carbohydrase to phytase‐supplemented diet did not affected growth performance, but reduced (P < 0.05) P retention. In conclusion, inclusion of 10% wheat DDGS in growing pig diet may not affect growth performance of growing pigs. Phytase supplementation to wheat DDGS‐containing diet can eliminate the need for inorganic P supplement in pig diets.  相似文献   

12.
This experiment was conducted to determine whether increasing the net energy (NEL) of a total mixed ration (TMR) with mainly unsaturated fat from corn distillers dried grains with solubles (DDGS) vs. rumen inert (RI)‐saturated fat has similar impacts on animal performance. The experiment was an incomplete Youden square with three treatments and four 28‐days periods, completed on a large commercial dairy using three early lactation pens each with approximately 380 multiparity cows. The TMR for all treatments was the same, except for 150 g/kg dry matter (DM) of each TMR which contained 90 g/kg high‐protein DDGS (HPDDGS) and 60 g/kg beet pulp (i.e. low‐fat control diet; LFC); 150 g/kg DDGS (i.e. high‐fat diet with unsaturated fat; HFU); or 111 g/kg HPDDGS, 20 g/kg beet pulp and 19 g/kg RI fat (i.e. high‐fat diet with saturated fat; HFS). The DM intake was highest (p < 0.05) for HFU‐fed cows. Milk, fat and true protein yields, as well as milk energy output, were higher (p < 0.01) when cows were fed HFS vs. HFU and LFC diets. Milk true protein concentration was lowest (p < 0.01) for HFS‐fed cows, but milk fat % was lowest (p < 0.01) for HFU and highest (p < 0.01) for HFS‐fed cows. There were numerous differences (p < 0.01) in milk fatty acid levels amongst diets. The increase in body condition score was lowest (p < 0.01) for LFC. Whole tract digestibility of acid detergent fibre was lower (p < 0.01) for LFC vs. HFS cows, and fat digestion was lowest (p < 0.01) for LFC‐fed cows. This DDGS, high in unsaturated fatty acids, was fed at high levels (i.e. 152 g/kg DM) with little impact on animal performance vs. a lower fat control diet, although addition of an RI‐saturated fat to create a diet with a similarly higher fat level resulted in higher animal productivity.  相似文献   

13.
The aim of the present trials was to determine the effect of an experimental Brown‐midrib (Bm) corn hybrid in relation to a commercial corn hybrid (Con) on digestibility in wethers and on dry matter intake (DMI), milk yield and milk composition in dairy cows. Digestibility of crude fibre (CF), neutral detergent fibre (NDFom) and acid detergent fibre (ADFom) were higher for Bm (CF Con: 57.8%; Bm: 67.2%; NDFom Con: 56.8%; Bm: 64.8%; ADFom Con: 52.0%; Bm: 63.9%), but concentration of net energy for lactation did not differ (Con: 6.4 MJ/kg DM; Bm: 6.3 MJ/kg DM). A total of 64 lactating German Holstein cows were assigned to one of the two dietary treatments Con or Bm according to milk yield, lactation number, days in milk and live weight. In Trial 1, cows were fed a total mixed ration consisting of 50% corn silage (Con or Bm) and 50% concentrate on dry matter (DM) basis. In Trial 2, the same animals were fed the respective silage for ad libitum intake and 5.3 kg of concentrate DM per animal per day. In Trial 1, DMI and milk‐fat content were decreased significantly for the Bm‐treatment (DMI Con: 22.5 kg/day; Bm: 21.5 kg/day; milk fat Con: 3.8%; Bm: 3.3%). In Trial 2, milk yield and fat‐corrected milk (FCM) were increased significantly, whereas milk‐fat% was decreased significantly (milk yield Con: 25.8 kg/day; Bm: 29.4 kg/day; FCM Con: 27.2 kg/day; Bm: 29.6 kg/day; fat Con: 4.4%; Bm: 4.0%). Diets did not influence ruminal pH or temperature. Diets, furthermore, did not influence rumination in either trial. Additional research on digestibility and rumen fermentation should, however, be carried out using dairy cows at respective intake levels as trials with wethers cannot be transferred to high‐yielding ad libitum fed cows.  相似文献   

14.
Sorghum dried distiller's grains with solubles (S‐DDGS) are distillation extract residues from the ethanol fuel industry. In this experiment, two hundred 42‐day‐old rabbits were randomly allocated to five experimental diets containing 0 g/kg (control), 75, 150, 225 and 300 g/kg S‐DDGS. The experiment lasted for 4 weeks. No difference was found in the average daily feed intake (ADFI; p > 0.05). With increasing sorghum inclusion, the average daily gain (ADG) was linearly (< 0.001) and quadratically (= 0.039) reduced, while, conversely, the feed conversion ratio (FCR) linearly (< 0.001) increased. Increasing the amount of S‐DDGS in the diet linearly decreased (< 0.001) the apparent total tract digestibility (ATTD) of dry matter (DM), organic matter (OM), crude protein (CP) and ash. Carcass weight, carcass yield, heart and liver weights were linearly decreased by an increase in the amount of S‐DDGS added to diets (< 0.001), but no difference was observed between the 0, 75 and 150 g/kg S‐DDGS groups (> 0.05). Serum IL‐6, IL‐10 and SIgA linearly increased (= 0.008) with increasing levels of S‐DDGS in the diet. Rabbits fed 0, 75 and 150 g/kg of S‐DDGS had similar IL‐6 and IL‐10 levels. Statistically significant differences in SIgA were observed between rabbits fed control diets and feed mixtures containing S‐DDGS (< 0.01). To conclude, S‐DDGS can safely be added up to 75 g/kg, to the diet of rabbits. Increasing dietary S‐DDGS inclusion may decrease the growth performance, nutrient digestibility and carcass traits, and activate immune responses.  相似文献   

15.
Two experiments were completed to determine the potential for using distillers dried grains with solubles (DDGS) in diets with or without phytase to provide available P, energy, and protein to highly productive lactating sows without increasing their fecal P. In Exp. 1, the dietary treatments were as follows: (1) corn and soybean meal with 5% beet pulp (BP) or (2) corn and soybean meal with 15% DDGS (DDGS). Besides containing similar amounts of fiber, diets were isonitrogenous (21% CP, 1.2% Lys) and isophosphorus (0.8% P). Sixty-one sows were allotted to dietary treatments at approximately 110 d of gestation (when they were placed in farrowing crates) based on genetics, parity, and date of farrowing. Sows were gradually transitioned to their lactation diet. On d 2 of lactation, litters were cross-fostered to achieve 11 pigs/litter. Sows and litters were weighed on d 2 and 18. Fecal grab samples were collected on d 7, 14, and 18 of lactation. Dietary treatment did not affect the number of pigs weaned (10.9 vs. 10.8) or litter weaning weight. On d 14, DDGS sows had less fecal P concentration than BP sows (28.3 vs. 32.8 mg/g; P = 0.04). Fecal Ca of sows fed DDGS decreased for d 7, 14, and 18 (55.6, 51.4, and 47.1 mg/g of DM, respectively; P = 0.05) but not for BP sows. In Exp. 2, the dietary treatments were as follows: (1) corn and soybean meal (CON), (2) CON + 500 phytase units of Natuphos/kg diet, as fed (CON + PHY), (3) corn and soybean meal with 15% DDGS and no phytase (DDGS), or (4) DDGS + 500 FTU of Natuphos/kg of diet, as fed (DDGS + PHY). Sows (n = 87) were managed as described for Exp 1. Litter BW gain (46.0, 46.3, 42.1, and 42.2 kg; P = 0.25) and sow BW loss (8.1, 7.2, 7.4, and 6.3 kg for CON, CON + PHY, DDGS, and DDGS + PHY, respectively; P = 0.97) were not affected by dietary treatment. Fecal P concentration did not differ among dietary treatments but was reduced at d 14 and 18 compared with d 7 (P = 0.001). However, fecal phytate P concentration was decreased by the addition of DDGS when DDGS and DDGS + PHY were compared with the CON sows except on d 7 (P < 0.05). Sows fed CON diet had greater fecal phytate P than sows fed DDGS, and sows fed DDGS + PHY had less fecal phytate P than sows fed DDGS with no phytase (P = 0.001). Although these experiments were only carried out for 1 lactation, these results indicate that highly productive sows can sustain lactation performance with reduced fecal phytate P when fed DDGS and phytase in lactation diets.  相似文献   

16.
Four experiments were conducted to investigate the effects of distillers dried grains with solubles (DDGS) and dietary S on feed preference and performance of pigs. In a 10-d feed preference experiment (Exp. 1), 48 barrows (20.1 ± 2.2 kg of BW) were randomly allotted to 3 treatment groups, with 8 replicate pens per treatment and 2 pigs per pen. A control diet based on corn and soybean meal, a DDGS diet containing 20% DDGS, and a DDGS-sulfur (DDGS-S) diet were prepared. The DDGS-S diet was similar to the DDGS diet with the exception that 0.74% CaSO(4) was added to the diet. Two diets were provided in separate feeders in each pen: 1) the control diet and the DDGS diet, 2) the control diet and the DDGS-S diet, or 3) the DDGS diet and the DDGS-S diet. Preference for the DDGS diet and the DDGS-S diet vs. the control diet was 35.2 and 32.6%, respectively (P < 0.05), but there was no difference between the DDGS diet and the DDGS-S diet. In Exp. 2, a total of 90 barrows (10.3 ± 1.4 kg of BW) were allotted to 3 treatments, with 10 replicate pens and 3 pigs per pen, and were fed the diets used in Exp. 1 for 28 d, but only 1 diet was provided per pen. Pigs fed the control diet gained more BW (497 vs. 423 and 416 g/d; P < 0.05) and had greater G:F (0.540 vs. 0.471 and 0.455; P < 0.05) than pigs fed the DDGS or the DDGS-S diet, but no differences between the DDGS and the DDGS-S diets were observed. In a 10-d feed preference experiment (Exp. 3), 30 barrows (49.6 ± 2.3 kg of BW) were allotted to 3 treatment groups, with 10 replicates per group. The experimental procedures were the same as in Exp. 1, except that 30% DDGS was included in the DDGS and DDGS-S diets and 1.10% CaSO(4) was added to the DDGS-S diet. Feed preference for the DDGS and the DDGS-S diets, compared with the control diet, was 29.8 and 32.9%, respectively (P < 0.01), but there was no difference between the DDGS and the DDGS-S diets. In Exp. 4, a total of 120 barrows (34.2 ± 2.3 kg of BW) were fed grower diets for 42 d and finisher diets for 42 d. Diets were formulated as in Exp. 3. Pigs on the control diets gained more BW (1,021 vs. 912 and 907 g/d; P < 0.05) and had greater G:F (0.335 vs. 0.316 and 0.307; P < 0.05) than pigs fed the DDGS or DDGS-S diet, respectively, but no differences between pigs fed the DDGS and the DDGS-S diets were observed. In conclusion, dietary S concentration does not negatively affect feed preference, feed intake, or growth performance of weanling or growing-finishing pigs fed diets based on corn, soybean meal, and DDGS.  相似文献   

17.
An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates per treatment). The three experimental diets were the following: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121 °C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P < 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P < 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.  相似文献   

18.
Two experiments were conducted to compare the nutritional value of normal and high-oil corn for pigs. The normal corn and the two varieties (high-oil corns A and B) of high-oil corn contained 4.41, 7.35 and 8.86% ether extract, on DM basis, respectively. In experiment 1, six non-littermate crossbred barrows (37.8 +/- 1.3 kg BW) were fitted with ileal T-cannulas and used in a double replicated Latin Square digestion trial. Three diets were formulated containing 96.6% of one of the three varieties of corn as the only protein source. Chromic oxide (0.4%) was added as a digestibility marker. Additional vitamins and minerals were added to meet requirements. The digestible energy concentrations for normal corn and high-oil corn A and B were 16.53, 16.99 and 17.07 MJ/kg while the metabolizable energy values were 15.82, 16.32 and 16.36 MJ/kg, on DM basis, respectively. The ileal amino acid digestibility of high-oil corn was generally higher than that of normal corn with significant differences being observed for the essential amino acids isoleucine and phenylalanine. In experiment 2, 96 pigs (8.01 +/- 0.14 kg BW) were used to evaluate four diets in a 2 x 2 factorial design conducted over a 35-day period. Corn variety (high-oil vs. normal corn) and nutrient density (high content of protein and ME vs. low content of protein and ME) were set as the two main effects. During the first 14 days, pigs fed high-oil corn diets consumed more feed and tended to get higher daily gain than pigs fed normal corn. Over the entire 35-day experiment, increasing dietary nutrient density increased daily gain and tended to increase feed conversion, while variety of corn had no significant effects on performance. Overall, the present results indicate that the energy concentration and ileal amino acid digestibility of high-oil corn varieties were equal or superior to those in normal corn and therefore they should be able to be effectively utilized in diets fed to swine.  相似文献   

19.
Two studies were conducted to assess the energy content of low-solubles distillers dried grains (LS-DDG) and their effects on growth performance, carcass characteristics, and pork fat quality in grow-finish pigs. In Exp. 1, 24 barrows (Yorkshire-Landrace × Duroc; 80 to 90 d of age) in 2 successive periods were assigned to 1 of 6 dietary treatments. In individual metabolism stalls, pigs were fed a corn-soybean meal diet (control); control replaced by 30, 40, or 50% LS-DDG; or control replaced by 30 or 40% distillers dried grains with solubles (DDGS) at 3% of their initial BW for 12 d. All diets contained 0.25% CrO(2). During the 5-d collection period, feces and urine were collected from each pig. Feed, feces, and urine were analyzed for DM, GE, and N concentrations, and feed and feces were analyzed for Cr content. The ME content of LS-DDG (2,959 ± 100 kcal/kg of DM) was similar to that determined for DDGS (2,964 ± 81 kcal/kg of DM). In Exp. 2, 216 Yorkshire-Landrace × Duroc pigs were blocked by initial BW (18.8 ± 0.76 kg) and assigned to 1 of 24 pens (9 pigs/pen). Pens within block were allotted to 1 of 3 dietary treatments (8 pens/treatment) in a 4-phase feeding program: a corn-soybean meal control (control), control containing 20% LS-DDG, or control containing 20% DDGS. Treatment had no effect on final BW, ADG, ADFI, or HCW. Pigs fed LS-DDG had similar G:F (0.367) compared with pigs fed DDGS (0.370), but tended (P = 0.09) to have decreased G:F compared with pigs fed the control (0.380; pooled SEM = 0.004). Dressing percent was less (P < 0.01) for pigs fed LS-DDG (72.8%) and DDGS (72.8%) compared with the control (73.8%; pooled SEM = 0.22). Pigs fed LS-DDG (54.8%) had greater (P = 0.02) carcass lean compared with pigs fed DDGS (53.4%), but were similar to pigs fed control (54.1%; pooled SEM = 0.33). Bellies from pigs fed DDGS (12.9°) were softer (P < 0.01) than those from pigs fed control (17.7°; pooled SEM = 1.07) as determined by the belly flop angle test. Feeding LS-DDG (14.1°) tended (P < 0.10) to create softer bellies compared with control-fed pigs. The PUFA content of belly fat was reduced (P < 0.01) by LS-DDG (14.0%) compared with DDGS (15.4%), but was increased (P < 0.05) compared with pigs fed the control (9.4%; pooled SEM = 0.34). In conclusion, LS-DDG and DDGS had similar ME values and inclusion of 20% LS-DDG in diets for growing-finishing pigs supports ADG and ADFI similar to that of diets containing 20% DDGS, and may reduce negative effects on pork fat compared with DDGS.  相似文献   

20.
The effects of corn dried distillers grains with solubles (DDGS) feeding on rumen fermentation and milk production in cows were evaluated using diets high in neutral detergent fiber (NDF, 45.9–46.6%). The control diet (Control) consisted mainly of hay, corn silage and concentrates. In the experimental diets, the concentrates were replaced with DDGS as 10% dry matter (DM) (10%DDGS) and 20% DM (20%DDGS). Eight cows were used for each 14‐day treatment period. Effect of DDGS feeding on DM intake was not significant. Ruminal volatile fatty acids and ammonia‐N at 5 h after feeding of 20%DDGS were decreased compared to Control, whereas protozoal count at 2 h after feeding of 20%DDGS was higher than that of 10%DDGS. Milk yield of cows fed DDGS diets was greater than that of Control, although percentages of milk protein and solids‐not‐fat were decreased by DDGS diets. The proportions of C10:0, C12:0, C14:0 and C16:0 in the milk fat decreased, and those of C18:0, C18:1, C18:2 and cis‐9, trans‐11 conjugated linoleic acid (CLA) increased markedly with elevated DDGS. Increase in trans‐11 C18:1 was observed in the rumen fluid at 5 h after feeding. These findings suggest that DDGS feeding enhanced milk yield, as well as CLA synthesis under a high dietary NDF condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号