首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
This study investigated the effects of dietary supplementation with L‐methionine (L‐Met), DL‐methionine (DL‐Met) and calcium salt of the methionine hydroxyl analog (MHA‐Ca) on growth performance, intestinal morphology, antioxidant capacity and immune function in intra‐uterine growth‐retarded (IUGR) suckling piglets. Six normal birthweight (NBW) female piglets and 24 same‐sex IUGR piglets were selected at birth. Piglets were fed nutrient adequate basal diet supplemented with 0.08% L‐alanine (NBW‐CON), 0.08% L‐alanine (IUGR‐CON), 0.12% L‐Met (IUGR‐LM), 0.12% DL‐Met (IUGR‐DLM) and 0.16% MHA‐Ca (IUGR‐MHA‐Ca) from 7 to 21 days of age respectively (n = 6). The results indicated that IUGR decreased average daily milk (dry matter) intake and average daily gain and increased feed conversion ratio of suckling piglets (p < 0.05). Compared with the NBW‐CON piglets, IUGR also impaired villus morphology and reduced antioxidant capacity and immune homeostasis in the intestine of IUGR‐CON piglets (p < 0.05). Supplementation with L‐Met enhanced jejunal villus height (VH) and villus area and ileal VH of IUGR piglets compared with IUGR‐CON piglets (p < 0.05). Similarly, DL‐Met supplementation increased VH and the ratio of VH to crypt depth in the jejunum compared with IUGR‐CON pigs (p < 0.05). Supplementation with L‐Met and DL‐Met (0.12%) tended to increase reduced glutathione content and reduced glutathione: oxidized glutathione ratio and decrease protein carbonyl concentration in the jejunum of piglets when compared with the IUGR‐CON group (p < 0.10). However, supplementation with MHA‐Ca had no effect on the intestinal redox status of IUGR piglets (p > 0.10). In conclusion, supplementation with either L‐Met or DL‐Met has a beneficial effect on the intestinal morphology and antioxidant capacity of IUGR suckling piglets.  相似文献   

2.
One hundred and fifty 7‐day‐old Arbor Acres broilers were randomly assigned into five groups: group 1 served as a control that was fed a basal diet without selenium (Se) supplementation; groups 2, 3 and 4 were fed the basal diet supplemented with 0.15, 0.5 and 1.5 mg Se as Se‐enriched Saccharomyces cerevisiae (SSC) per kg of diet; and group 5 was fed the basal diet supplemented with 0.15 mg per kg of Se as sodium selenite (SS). Growth performance, glutathione peroxidase (GPX) and superoxide dismutase (SOD) activities, total antioxidant capacity (T‐AOC), and malondialdehyde (MDA) content in plasma and liver, and cellular glutathione peroxidase (GPX‐1) and phospholipid hydroperoxide glutathione peroxidase (GPX‐4) mRNA levels in liver were determined. Compared with group 1, groups 2–4 exhibited higher body weights (p < 0.05), lower feed/gain ratios, and higher GPX activities in plasma (p < 0.05) and GPX and SOD activities and GPX‐1 and GPX‐4 mRNA levels in liver (p < 0.05). Compared with group 5, group 2 exhibited higher GPX activity in plasma on day 21 (p < 0.05). Compared with group 2 and 5, group 3 exhibited lower MDA content in plasma on day 7 (p < 0.05), higher GPX activity in plasma, SOD activity and GPX‐1 mRNA levels in liver on day 14 and 21 (p < 0.05), and higher GPX‐4 mRNA levels on day 14 (p < 0.05). Compared with group 4, group 3 exhibited lower MDA contents in plasma on day 14 (p < 0.05) and in liver on day 21 (p < 0.05), higher T‐AOC in plasma and higher GPX‐1 mRNA levels on day 14 and 21 (p < 0.05), and higher SOD activity in plasma and higher SOD and GPX activities in liver on day 21 (p < 0.05). Thus, SSC improves growth and antioxidant status of broilers; the short‐term bioavailability of SS was faster than that of SSC, but the long‐term bioavailability of SSC was greater than SS.  相似文献   

3.
This study was conducted to test the hypothesis that dietary supplementation with anti‐E. coli, chicken egg yolk immunoglobulins (IgY), may affect early weaned piglet (EWP) intestinal functions and enteric micro‐organisms. One hundred and forty‐eight ([Landrace × Yorkshire] × Duroc) piglets, weaned at age day 21, were randomly assigned to receive one of three diets for 14 days. Treatment group one (control group) was fed the base diet. Treatment group two (antibiotics group) was fed the base diet which was supplemented with 100 ppm colistin sulphate and 15 ppm enramycin; treatment group three (IgY group) was fed the base diet which was supplemented with 500 mg/kg anti‐E. coli IgY. The study evaluated the effects on EWPs of IgY on growth, serum biochemical, inflammatory profiles and also digestion content intestinal bacterial populations. Results showed no significant difference in diarrhoea rates between IgY‐fed EWPs and antibiotic‐treated EWPs. Serum biochemical analysis showed that EWPs fed an IgY‐containing diet had both lower (p < 0.05) cholesterol and low‐density lipoprotein compared to antibiotic‐treated EWPs. Escherichia coli populations measured in IgY‐fed EWP ileal contents, compared to the control group, were significantly reduced (p < 0.05). Enterococcus, Lactobacillus, Clostridium and Bifidobacterium populations were unaffected by the IgY treatment. Larger (p < 0.05) Enterococcus populations and lower (p < 0.05) expression levels of heat‐stable enterotoxin b (STb) were observed in IgY‐fed EWP caecal digesta compared to the control group. Enteric Lactobacillus significantly decreased (p < 0.05) in EWPs fed antibiotics while it was unaffected by IgY treatment. Dietary supplementation with anti‐E. coli IgY has the potential to suppress enteric E. coli growth, but not Lactobacillus, Clostridium and Bifidobacterium. This promotes and maintains a healthy EWP intestinal environment. These findings suggest that IgY may be used as an alternative to antibiotics in EWP diets.  相似文献   

4.
The objective of this experiment was to evaluate the effects of dietary supplementation with porous zinc oxide (HiZox) on growth performance, intestinal microbiota, morphology, and permeability in weaned piglets. A total of 128 weaned piglets [(Landrace × Yorkshire) × Duroc] with an average body weight (BW) of (6.55 ± 0.25 kg; 21 d of age) were randomly assigned to four dietary treatments: (1) a corn‐soybean basal diet; (2) basal diet + 3,000 mg/kg conventional ZnO; (3) basal diet + 200 mg/kg HiZox; (4) basal diet + 500 mg/kg HiZox. The experiments lasted for 28 days. Incremental HiZox in the diet increased ADG (linear p = 0.015; quadratic p = 0.043) and ADFI (linear p = 0.027; quadratic p = 0.038), and the diarrhea index decreased linearly and quadratically (p < 0.01) as HiZox supplemented increased. Furthermore, supplementation with HiZox increased the amounts of Lactobacillus spp. (p < 0.05) in the ileum and cecum in comparison with that of control treatment or 3,000 mg/kg ZnO treatment, while decreased the populations of Escherichia coli, Clostridium coccoides, and Clostridium. leptum subgroup (p < 0.05) in the ileum and cecum relative to those in control treatment. The addition of HiZox increased the villus height and villus‐to‐crypt ratio (VC) of duodenum, jejunum, and ileum (p < 0.05), while decreased the crypt depth of jejunum (p < 0.05) and tended to reduce the crypt depth of duodenum (p < 0.10) compared with the control treatment. Piglets fed with 500 mg/kg HiZox had lower serum D‐lactate and diamine oxidase (DAO) than those fed with basal control diet or 3,000 mg/kg ZnO diet (p < 0.01). The results suggested that supplementation with HiZox modulated intestinal microbial composition and improved intestinal morphology, which may exert protective effects on the integrity of the mucosal barrier function of weaned piglets, was as efficacious as pharmaceutical doses of ZnO in enhancing growth performance, indicating that the HiZox may be a promising alternative to pharmaceutical doses of ZnO.  相似文献   

5.
The present study was conducted to investigate the effects of Enterococcus faecium (E. faecium) on the meat quality and antioxidant capacity of muscle in broilers. A total of 600 Arbor Acre broiler chickens (1‐day‐old, male) were randomly divided into five treatments with six replicates (20 chickens per replicate) for each treatment. The five treatments were the control treatment (CON, basal diet), antibiotic treatment (ANT, basal diet supplemented with 0.1% chlortetracycline) and E. faecium‐supplemented treatments (LEF, MEF and HEF, basal diet supplemented with 50, 100 and 200 mg/kg of E. faecium respectively). The experiment lasted 42 days in two periods of 21 days. Results showed that there were no differences in breast meat quality among different treatments (p > 0.05). Compared with the CON and ANT treatments, the yellowness of thigh meat in E. faecium‐supplemented treatments was significantly increased (p < 0.05); the shear force of thigh meat in the LEF and MEF treatments was lower than that of the CON treatment (p < 0.05). In addition, the concentration of the inosine monophosphate (IMP) in the breast and thigh meat of the MEF treatment was significantly higher than that of the other treatments (p < 0.05). At 21 days, the total antioxidant capability (T‐AOC) level and glutathione peroxidase (GSH‐Px) activity of breast meat and superoxide dismutase (SOD) in the thigh meat of the MEF treatment were greatly increased (p < 0.05). At 42 days of age, the catalase (CAT), GSH‐Px and T‐AOC activities in the breast meat of the MEF treatment were increased (p < 0.05) and the CAT activity of thigh meat in the LEF and MEF treatments was increased (p < 0.05). In conclusion, E. faecium supplementation increased the meat quality of the thigh muscle, increased the IMP content and the activities of CAT, SOD, T‐AOC, and GSH‐Px of muscle in broilers. Supplementation with 100 mg/kg E. faecium had the greatest effects.  相似文献   

6.
Essential oils are widely used in the pharmaceutical, food and cosmetic industries, and many plant essential oils have shown that they have positive effects on broilers nutrition. This experiment was conducted to study the effects of orally administered different dosages of carvacrol essential oils on intestinal barrier function in broiler chickens. A total of eighty 28‐day‐old (1.28 ± 0.15 kg) ROSS 308 broilers were randomly allocated to four groups of 20 replicates each, with one chicken per replicate per cage, and all were fed with the same diet. Four experimental groups were orally administered 0, 200, 300 or 400 μl carvacrol essential oils at 18:00 hr every day during the 2‐week experimental period. As a result of which, the gene expression of the occludin, claudin‐1, claudin‐5, ZO‐1 and ZO‐2 in intestinal mucosa of small intestine (p < 0.05) and the goblet cell content in small intestine epithelium (p < 0.05) were significantly increased; test subjects with 300 or 400 μl carvacrol essential oils reduced the microbial counts of Salmonella spp. and Escherichia coli in the intestines (p < 0.05); Essential oils administration also significantly increased activity of the sucrase (p < 0.05) and lactase (p < 0.05) in intestinal mucosa. In conclusion, the carvacrol essential oils have positive effects on growth performance and intestinal barriers function of broilers; those effects may be related to the dosage, as administration of 300 or 400 μl was more effective than that of 200 μl.  相似文献   

7.
This study was to investigate the effects of Epigallocatechin‐3‐gallate (EGCG) on intestinal morphology, antioxidant capacity and anti‐inflammatory response in heat‐stressed broiler. A total of 192 2‐week‐old Arbour Acres broilers chickens were divided into four groups with six replicates per group and eight chickens per replicate: one thermoneutral control group (28°C, group TN), which was fed the basal diet; and three cyclic high‐temperature groups (35°C from 7:00 to 19:00 hr; 28°C from 19:00 hr to 7:00 hr, heat stress group), which were fed the basal diet supplementation with EGCG 0 mg/kg (group HS0), 300 mg/kg (group HS300) and 600 mg/kg (group HS600). The gut morphology and intestinal mucosal oxidative stress indicators, as well as intestinal barrier‐related gene expression, were analysed. The results showed that compared with group TN, heat stress reduced the villus height (VH), activities of glutathione peroxidase (GSH‐Px), superoxide dismutase (SOD)and catalase (CAT), increased the crypt depth (CD) and malondialdehyde (MDA)content at 21, 28 and 35 days (p < 0.05). After the heat‐stressed broilers were supplemented with EGCG, VH, VH/CD (V/C), and the activities of GSH‐Px, SOD and CAT were increased, and CD and MDA content were reduced compared with those in group HS0 without EGCG supplementation at 21, 28 and 35 days (p < 0.05). The EGCG supplementation promoted the gene expression of nuclear factor‐erythroid 2‐related factor 2 (Nrf2), Claudin‐1, Mucin 2 (Muc2) and alleviated the nuclear factor‐kappa B (NF‐κB) and lipopolysaccharide‐induced tumour necrosis factor (LITAF) gene expression compared with group HS0 (p < 0.05). Moreover, intestinal morphology was strongly correlated with antioxidant ability and inflammatory response. In conclusion, EGCG alleviated the gut oxidative injury of heat‐stressed broilers by enhancing antioxidant capacity and inhibiting inflammatory response.  相似文献   

8.
In this study, we examined the effect of dietary supplementation with grape seed (GS) on the performance, carcass traits, plasma biochemistry, antioxidant status and ileal microflora in broilers. Experiment diets included a control diet (without additive) and three levels of GS powder (10, 20 and 40 g/kg of diet). Each diet was fed to a total of 300 one‐day‐old Cobb‐500 chicks for 42 days. The addition of 20 g/kg of GS to the basal diet increased final body weight and body weight gain, improved the feed conversion ratio and did not affect feed intake. Dietary 20 g GS significantly increased (p < .05) the percentage of carcass yield %, dressing % and gizzard. However, the addition of 40 g/kg of GS significantly reduced the percentage of abdominal fat in the birds. Diets supplemented with GS showed the lowest content of ether extract compared with the control group (p < .05). The physical characteristics of meat and the chemical composition of DM, CP and ash were not significantly influenced by treatments. In the GS groups, plasma protein, albumin, globulin, aspartate aminotransferase and alanine aminotransferase concentrations showed no significant change compared with the control group. Broilers fed a diet supplemented with GS had lower levels of plasma glucose, total lipids, triglycerides and cholesterol compared with the control birds (p < .05). The addition of 40 g of GS significantly (p < .05) enhanced the activity of reduced glutathione, catalase, superoxide dismutase, glutathione peroxidase and GST, and correlated with significantly decreased thiobarbituric acid‐reactive substances levels compared with the control group. The value of ileal pH was not significantly affected by the GS levels. Broilers fed diets supplemented with GS had lower ileal Streptococcus spp. and Escherichia coli populations but higher Lactobacillus spp. populations (p < .05). No adverse effects on birds’ health were detected due to the use of GS. Thus, GS could be recommended as an herbal supplement in the diet of broiler chickens to improve performance, reduce blood lipids, enhance antioxidant capacity and decrease detrimental bacteria in the ileum.  相似文献   

9.
The objective of this study was to evaluate the effects of dietary supplementation with zinc oxide nanoparticles (ZnO‐NPs) on the performance, egg quality, Zn retention, immunity responses, superoxide dismutase activity (SOD), egg malondialdehyde (MDA) content, and serum parameters in laying hens in the late phase of production. A total of 288 laying hens at 64 weeks of age were randomly assigned to 4 treatments with 6 replicates, and 12 birds within each group. Experimental diets included a corn‐soybean meal‐based diet (without Zn supplementation) and a basal diet supplemented with 80 mg/kg of Zn‐oxide, ZnO‐NPs, and Zn‐methionine. The results indicated that egg production and egg mass were significantly higher in the Zn‐methionine and ZnO‐NPs groups (p < .05). Also, eggshell thickness and shell strength increased in the ZnO‐NPs group as compared with the other groups (p < .05). Moreover, Zn supplementation decreased egg loss (p < .05). There were significant differences among treatments in Zn deposition in tibiotarsus, liver, pancreas, eggs, and excreta (p < .01). Antibody titre, heterophil (%(, and phytohemagglutinin (PHA) were significantly higher in birds fed with Zn‐supplemented diets (p < .05). In treatments supplemented with ZnO‐NPs and Zn‐methionine, the SOD activity in the liver, pancreas, and plasma was greater as compared with the other treatments (p < .05). The MDA content in eggs was significantly reduced in groups supplemented with Zn (p < .01). Moreover, dietary Zn supplementation significantly affected serum total protein, albumin, glucose, alkaline phosphatase activity, carbonic anhydrase activity, and Zn level (p < .05). In conclusion, this study demonstrated that dietary supplementation with ZnO‐NPs can improve the performance of laying hens. Therefore, ZnO‐NPs can enhance zinc absorption in the intestine of aged layers and can be a more suitable source of zinc than regular Zn‐oxide in diets.  相似文献   

10.
This study was designed to evaluate the potential application of the stems and leaves of Astragalus membranaceus (AMSL) in the poultry industry. Quails were divided into four groups and fed daily with an AMSL‐free diet (control) or with 1%, 3%, or 5% (w/w) AMSL‐incorporated diets for 35 days. The results showed that supplementing AMSL in the diet, especially at a concentration of 3%, increased daily gain and feed intake during the entire experiment (p < 0.05). The immune organ development of the thymus and bursa of Fabricius was promoted, and the immune system was enhanced by increasing the quantities of IgA and complements C3 and C4 (p < 0.05). The total antioxidant capacity and the activities of glutathione peroxidase and catalase were increased (p < 0.05). Moreover, the 3%–5% AMSL groups regulated the intestinal flora by promoting the proliferation of lactic acid bacteria and inhibiting the growth of coliform bacteria (p < 0.05). In conclusion, feeding incorporated diets with appropriate AMSL levels significantly increased growth performance, strengthened the immune system, improved antioxidative status, and regulated the intestinal microflora of quails, suggesting that AMSL has the potential to serve as a feed additive in the poultry industry.  相似文献   

11.
12.
Three experiments were conducted to investigate the interaction between zinc methionine (ZnM) and laminarin (LAM) on piglet growth performance and intestinal health post‐weaning. Experiment 1 was designed as 2 × 2 factorial with four treatments [n = 8, weaning age (WA) 24 days, live weight (LW) 7.15 kg]: (i) basal diet (BD); (ii) BD + 500 mg/kg ZnM; (iii) BD + 300 mg/kg LAM; and (iv) BD + 500 mg/kg ZnM + 300 mg/kg LAM. There was an interaction (p < 0.05) between LAM and ZnM. Pigs that were offered the LAM diet had a similar performance to the BD. However, when combining LAM with ZnM, pigs had reduced average daily gain (ADG), gain‐to‐feed ratio (G:F) and LW at slaughter at day 8 post‐weaning compared to the ZnM. Both LAM and ZnM improved the small intestinal morphology of the pigs at day 8 post‐weaning. Experiment 2 was designed as 2 × 2 factorial with four dietary treatments (n = 9, WA 24 days, LW 7.32 kg): (i) BD; (ii) BD + 500 mg/kg ZnM; (iii) BD + 175 mg/kg LAM; and (iv) BD + 500 mg/kg ZnM + 175 mg/kg LAM. The ADG and average daily feed intake were improved between day 0 and 31 PW when pigs were offered a LAM diet (p < 0.01). Faecal scores were reduced between day 0 and day 31 post‐weaning with ZnM (p < 0.001). Experiment 3 consisted of four dietary treatments (n = 10, WA 24 days, LW 7.32 kg): (i) BD; (ii) BD + 3300 mg/kg zinc oxide (ZnO); (iii) BD + 500 mg/kg ZnM; and (iv) BD + 175 mg/kg LAM. Pigs that were offered the ZnO diet had an increased ADG compared to the BD or ZnM diets (p < 0.01). Pigs that were offered the LAM diet had increased ADG compared to the ZnM diet (p < 0.05). Faecal scores were reduced between day 0 and day 31 PW with ZnM or ZnO supplementation (p < 0.001). In conclusion, the inclusion of 175 mg/kg LAM and ZnO improved ADG while both ZnO and ZnM reduced the faecal scores post‐weaning.  相似文献   

13.
The objective of this trial was to test the effects of oxidative stress induced by a high dosage of dietary iron on intestinal lesion and the microbiological compositions in caecum in Chinese Yellow broilers. A total of 450 1‐day‐old male chicks were randomly allotted into three groups. Supplemental iron (0, 700 and 1,400 mg/kg) was added to the basal diet resulting in three treatments containing 245, 908 and 1,651 mg/kg Fe (measured value) in diet respectively. Each treatment consisted of six replicate pens with 25 birds per pen. Jejunal enterocyte ultrastructure was observed by transmission electron microscopy. The results showed that a high dosage of dietary iron induced oxidative stress in broilers. Dilated endoplasmic reticulum (ER), autophagosome formation of jejunal enterocytes and decreased villi were caused by this oxidative stress. Compared to the control, concentration of the malondialdehyde (MDA) in jejunal mucosa in the 908 and 1,651 mg/kg Fe groups increased by 180% (p < .01) and 155% respectively (p < .01); activity of copper‐zinc superoxide dismutase (Cu/ZnSOD) increased in jejunum (p < .01); and the concentration of plasma reduced glutathione (GSH) decreased by 34.9% (p < .01) in birds fed 1,651 mg/kg Fe. Gene expression of nuclear factor, erythroid‐derived 2‐like 2 (Nrf2) and zonula occludens‐1 (ZO‐1), in the higher dietary Fe groups was enhanced (p < .05). Species of microbial flora in caecum increased caused by oxidative stress. The PCR‐DGGE (denaturing gradient gel electrophoresis) dendrograms revealed different microbiota (65% similarity coefficient) between the control and iron‐supplemented groups (p < .05). These data suggest high dosage of iron supplement in feed diet can induce oxidative stress in Chinese Yellow broilers, and composition of microbiota in the caecum changed. It implied there should be no addition of excess iron when formulating diets in Chinese Yellow broilers.  相似文献   

14.
This experiment was conducted to investigate the efficacy of multistrain probiotics in weaning pigs. A total of 125 28‐day‐old weaning pigs [(Landrace × Yorkshire) × Duroc] with an initial average body weight (BW) of 7.26 ± 0.76 kg were randomly allotted into 5 treatments, 5 replicate pens/treatment with 5 pigs/pen for 42‐day experiment. Dietary treatments were as follows: CON, basal diet; PC1, CON + 0.01% multistrain probiotics; PC2, CON + 0.03% multistrain probiotics; PC3, CON + 0.06% multistrain probiotics; PC4, CON + 0.1% multistrain probiotics. On day 14, pigs fed the PC4 diet had higher BW gain than pigs fed the CON diet. On day 42, pigs fed multistrain probiotics supplementation diets had higher BW gain than pigs fed the CON diet. From days 1 to 14, pigs fed the PC2, PC3 and PC4 diets had higher (p < 0.05) ADG than pigs fed the CON diet. From day 15 to 42, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) average daily gain (ADG) and gain: feed ratio (G:F) than pigs fed the CON diet. In the overall period, pigs fed the multistrain probiotics supplementation diets had higher (p < 0.05) ADG and pigs fed the PC2 and PC4 diets had higher (p < 0.05) G:F than pigs fed the CON diet. On day 42, pigs fed the PC4 diet had higher (p < 0.05) apparent total tract digestibility (ATTD) of dry matter (DM), nitrogen (N) and gross energy (GE), faecal Lactobacillus counts and lower (p < 0.05) E. coli counts and NH3 emission than pigs fed the CON diet. Pigs fed the multistrain probiotics supplementation diets had lower (p < 0.05) H2S and total mercaptans emissions than pigs fed the CON diet. Conclusions, dietary supplementation with 0.1% probiotics improved growth performance, nutrition digestibility and intestinal microflora balance and decreased faecal noxious gas emissions in weaning pigs.  相似文献   

15.
As meat quality is basically dependent on muscle fibre characteristics, it is important to know how muscle fibres are regulated and transformed. This study aimed to investigate the effect of maternal dietary supplementation on muscle fibre types using 3% saturated fatty acid (palmitic acid, PA) or 3% unsaturated fatty acid (linoleic acid, LA) from 80 days of gestation to the weaning of offspring (25 days post‐natal). The results indicated that higher mRNA levels of MyHCI type genes were found in the soleus muscles of piglets that suckled from LA‐supplemented sows than from PA‐supplemented sows. In addition, LA treatment increased the gene expression of the type I muscle fibre marker troponin I (p < 0.01), suggesting that LA promoted muscle fibre type transformation to type I fibres. Moreover, PGC‐1α (p < 0.01) and MEF2c (p < 0.05) mRNA levels were higher in the piglets from the LA treatment group than in those from the PA treatment group. Furthermore, LA supplementation also significantly increased AMP‐activated protein kinase (AMPK) mRNA levels (p < 0.05), which is an upstream regulator of PGC‐1α. Collectively, these findings demonstrated that maternal dietary LA supplementation promoted muscle fibre transformation to type I fibre and that this process may be mediated through an AMPK‐dependent pathway.  相似文献   

16.
The biological properties of Piper sarmentosum render it a potential substitute for antibiotics in livestock feed. This study evaluated the effects of P. sarmentosum extract (PSE) on the growth performance, antioxidant capability and immune response of weaned piglets. Eighty 21‐d‐old weaned piglets were selected and randomly allocated to one of four dietary treatments with five replicates of four pigs each. The dietary treatments consisted of a basal diet supplemented with 0 (T0), 50 (T50), 100 (T100) or 200 (T200) mg/kg PSE. The feeding trial lasted 4 weeks. The results revealed that the T50 group had the highest average daily gain (ADG) and average daily feed intake (ADFI) throughout the feeding trial (p < 0.05). Additionally, the T50 group had higher (p < 0.05) serum glutathione peroxidase activity (GSH‐Px) and lower (p < 0.05) serum malondialdehyde (MDA) levels than the T0 group at 4 weeks post‐weaning (p < 0.05). Serum levels of interleukin‐1β (IL‐1β) and tumour necrosis factor‐α (TNF‐α) decreased, while serum levels of interleukin‐4 (IL‐4), interleukin‐10 (IL‐10) and transforming growth factor‐β (TGF‐β) increased by PSE supplementation at 4 weeks post‐weaning (p < 0.05). PSE supplementation upregulated the mRNA expression of IL‐4, IL‐10 and TGF‐β and downregulated the mRNA expression of TNF‐α, IL‐1β and interleukin‐6 (IL‐6) in the ileal mucosal layer of piglets (p < 0.05). In summary, our study findings revealed that PSE supplementation improved the antioxidant capability, and reduced inflammation, which may be beneficial to weaned piglet health.  相似文献   

17.
A study was conducted to evaluate the effects of chestnut tannins (CT) on intestinal morphology, barrier function, pro‐inflammatory cytokine expression, microflora and antioxidant capacity in heat‐stressed broilers. Four hundred 28‐day‐old male Ross 308 broilers were randomly assigned into four groups, with 10 replicates per group and 10 broilers per replicate. The broilers in the normal (NOR) group were kept at 22 ± 1°C and fed the basal diet, and each of the other three groups were treated with cyclic heat (33 ± 1°C from 0800 to 1800 and 22 ± 1°C from 1800 to 0800) and fed the basal diet with 0 (HT), 1 (CT1) or 2 (CT2) g of CT/kg of diet. The experiment lasted for 14 days. Compared with the HT group, broilers in the NOR and CT2 groups had higher (p < .05) average daily gain and villus height in the jejunum and lower serum d ‐lactate (p < .001) and diamine oxidase (p < .01) levels. The addition of 2 g CT/kg of diet increased the total antioxidant capacity (p < .001) and superoxide dismutase activities (p < .05) and zonula occludens‐1 mRNA expression level (p < .05) and decreased the malondialdehyde concentration (p < .01) and mRNA expression levels of interleukin‐6 (p < .001) and nuclear factor kappa B (p < .001) in the jejunal mucosa of heat‐stressed broilers. The populations of Escherichia coli and Clostridium in the jejunum (p < .01) and caecum (p < .05) of broilers in the HT group were higher than those in the NOR and CT2 groups. In conclusion, the addition of 2 g CT/kg of diet seemed to be a feasible means of alleviating the negative effects of heat stress on the growth performance and intestinal function of broilers.  相似文献   

18.
In order to estimate the effect of alpha‐lipoic acid (LA) supplementation on relieving ammonia stress of broilers, 180 22‐day‐old male broilers were assigned to three groups, six replicates in each group and 10 birds per replicate. The three groups were: (1) a control group without ammonia stress; (2) exposure to 70 ppm atmospheric ammonia (AM); (3) exposure to 70 ppm atmospheric ammonia and administration of 300 mg/kg LA (AM + LA). The experimental period was 3 weeks. Results showed that average daily weight gain was increased and feed conversion ratio was decreased in the AM + LA group, compared with the AM group (P < 0.05). Total superoxide dismutase and glutathione peroxidase activities in serum, and glutathione content in liver were higher in the AM + LA group than that in the AM group (P < 0.05); however, serum malondialdehyde content was decreased by LA addition (P < 0.05). Additionally, serum glutamic‐pyruvic transaminase, creatine kinase and lactate dehydrogenase activities were reduced and albumin level was increased by LA addition (P < 0.05). In conclusion, LA addition could relieve ammonia stress to restore broiler production performance to normal levels.  相似文献   

19.
The abnormalities in intestinal morphology and digestive function during weaning are associated with the loss of milk‐borne growth factors. Epidermal growth factor (EGF) has been shown to stimulate the growth of animals. This study was to determine the effect of dietary EGF on nutrient digestibility, intestinal development and the expression of genes encoding nutrient transporters in weaned piglets. Forty‐two piglets were weaned at 21 days and assigned to one of three treatment groups: (1) basal diet (control), (2) basal diet + 200 µg/kg EGF or (3) basal diet + 400 µg/kg EGF. Each treatment consisted of 14 replicates, and seven piglets from each treatment were sampled on day 7 and 14. The EGF supplementation significantly elevated (p < 0.05) the coefficients of total tract apparent digestibility of crude protein, calcium and phosphorus, but tended to decrease sucrase activity (< 0.10) than the control group. At day 7 post‐weaning, animals receiving EGF diets showed a tendency (p < 0.10) towards greater ileal villus height (VH), jejunal crypt depth (CD) and duodenal VH:CD when compared with the control group. Moreover, the mRNA levels of glucose transporter 2 (Slc2a2), neutral amino acid transporter (Slc6a19) and calbindin D9k (S100G) tended to be higher (p < 0.10) for EGF groups than the control group. By day 14, EGF supplementation markedly enhanced (p < 0.05) the VH, CD and VH:CD in the jejunum compared to the control group. This addition also up‐regulated (p < 0.05) the mRNA level and the protein abundance of peptide transporter 1 than the control group. These findings demonstrated that dietary EGF beneficially enhanced nutrient digestibility, improved intestinal development and increased the mRNA expression of nutrient transporters in weaned piglets.  相似文献   

20.
This study was designed to evaluate the efficacy of selenium‐enriched probiotics (SeP) on production performance and intestinal microbiota of piglets raised under high ambient temperature. Forty‐eight cross‐bred weanling piglets (28 days old), randomly allotted into 12 pens (four piglets/pen) and four dietary treatments (three pens/treatment group), were fed ad libitum for 42 days a basal diet (Con) or the basal diet supplemented with probiotics (Pro), sodium selenite (ISe) or a SeP preparation. Blood and faecal samples were collected on days 0, 14, 28 and 42 post‐treatment. The SeP group had higher final BW (p < 0.05), greater ADG (p < 0.05) and lower FCR (p < 0.01) than the Pro, ISe or Con group. The diarrhoea incidence rate of either SeP or Pro group was lower (p < 0.01) than the ISe or Con group. Blood Se concentration and GSH‐Px activity were both higher (p < 0.01) in the SeP than in the Pro, ISe or Con group. On days 28 and 42, the serum concentrations of T3 were higher (p < 0.01) and T4 lower (p < 0.01) in the SeP than in the ISe group, and the T3 and T4 concentrations in the ISe group, in turn, were higher (p < 0.05) and lower (p < 0.01), respectively, than in the Pro or Con group. Also on days 28 and 42, the faecal counts of lactobacillus bacteria were higher (p < 0.01) while Escherichia coli lower (p < 0.01) in the SeP or Pro group as compared to the ISe or Con group. The results of RFLP showed that the faecal microbial flora in the SeP group changed the most (numerically) as compared to the Pro or ISe group. These results suggest that the SeP product may serve as a better alternative to antibiotics than the solo probiotics for using as a growth promoter for weanling piglets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号