首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 179 毫秒
1.
Sap flow measurements conducted with thermal dissipation probes (TDPs) are vulnerable to natural temperature gradient (NTG) bias. Few studies, however, attempted to explain the dynamics underlying the NTG formation and its influence on the sensors' signal. This study focused on understanding how the TDP signals are affected by negative and positive temperature influences from NTG and tested the novel cyclic heat dissipation (CHD) method to filter out the NTG bias. A series of three experiments were performed in which gravity-driven water flow was enforced on freshly cut stem segments of Fagus sylvatica L., while an artificial temperature gradient (ATG) was induced. The first experiment sought to confirm the incidence of the ATG on sensors. The second experiment established the mis-estimations caused by the biasing effect of the ATG on standard TDP measurements. The third experiment tested the accuracy of the CHD method to account for the ATG biasing effect, as compared with other cyclic correction methods. During experiments, sap flow measured by TDP was assessed against gravimetric measurements. The results show that negative and positive ATGs were comparable in pattern but substantially larger than field NTGs. Second, the ATG bias caused an overestimation of the standard TDP sap flux density of ~17 cm(3) cm(-2) h(-1) by 76%, and the sap flux density of ~2 cm(3) cm(-2) h(-1) by over 800%. Finally, the proposed CHD method successfully reduced the max. ATG bias to 25% at ~11 cm(3) cm(-2) h(-1) and to 40% at ~1 cm(3) cm(-2) h(-1). We concluded that: (i) the TDP method is susceptible to NTG especially at low flows; (ii) the CHD method successfully corrected the TDP signal and resulted in generally more accurate sap flux density estimates (mean absolute percentage error ranging between 11 and 21%) than standard constant power TDP method and other cyclic power methods; and (iii) the ATG enforcing system is a suitable way of re-creating NTG for future tests.  相似文献   

2.
Comparisons of tree water relations between treatments, species and sites are facilitated by the use of simple and low-cost measurements of xylem sap flow rates. The transient thermal dissipation (TTD) method is a variant of the constant thermal dissipation (CTD) method of Granier. It has the advantages of limiting thermal interference and of saving electrical energy. Here, our concern was to test a new step towards simplicity and low cost: the applicability of the TTD method with a single probe, i.e., without a reference sensor, following a cycle of 10 min heating and 10 min cooling, and using the same thermal index and multi-species calibration previously assessed with a dual probe. First, the responses of the dual and single probes were compared in an artificial hydraulic column of sawdust in the laboratory over a complete range of flux densities, from 0.3 to 4.0 l dm?2 h?1. Second, diurnal kinetics were compared in a young tree with rapid changes in the sapwood reference temperature of up to 5 °C h?1 for 5 consecutive days. With a relatively stable reference temperature, laboratory results showed that a single probe yielded the same temperature signal and thermal index as a dual probe for the full range of sap flux densities. Within the tree, the cooled temperature of the heated probe, linearly interpolated, proved to be an accurate indicator of the change in the reference temperature over time. Logically, the temperature signals and estimates of sap flux density with the single probe did not differ from the dual-sensor measurements when the cooled temperature was interpolated. Additionally, the responses of the thermal index, yielded in the hydraulic experiment with the sawdust column, fell within the variability of the multi-species calibration. This result supports the previous assessment of a non-species-specific calibration for the TTD method with diffuse porous media. In conclusion, our results showed that the TTD method can be directly applied with a single probe. Limitations and possible future progress are pointed out. This measurement system is probably the simplest technique currently available to measure xylem sap flow.  相似文献   

3.
Thermal dissipation probes (the Granier method) are routinely used in forest ecology and water balance studies to estimate whole-tree transpiration. This method utilizes an empirically derived equation to measure sap flux density, which has been reported as independent of wood characteristics. However, errors in calculated sap flux density may occur when large gradients in sap velocity occur along the sensor length or when sensors are inserted into non-conducting wood. These may be conditions routinely associated with ring-porous species, yet there are few cases in which the original calibration has been validated for ring-porous species. We report results from laboratory calibration measurements conducted on excised stems of four ring-porous species and two diffuse-porous species. Our calibration results for ring-porous species were considerably different compared with the original calibration equation. Calibration equation coefficients obtained in this study differed by as much as two to almost three orders of magnitude when compared with the original equation of Granier. Coefficients also differed between ring-porous species across all pressure gradient conditions considered; however, no differences between calibration slopes were observed for data collected within the range of expected in situ pressure gradients. In addition, dye perfusions showed that in three of the four ring-porous species considered, active sapwood was limited to the outermost growth ring. In contrast, our calibration results for diffuse-porous species showed generally good agreement with the empirically derived Granier calibration, and dye perfusions showed that active sapwood was associated with many annual growth rings. Our results suggest that the original calibration of Granier is not universally applicable to all species and xylem types and that previous estimates of absolute rates of water use for ring-porous species obtained using the original calibration coefficients may be associated with substantial error.  相似文献   

4.
木荷树干液流的密度特征   总被引:5,自引:0,他引:5  
树干液流在微时空尺度上具有较大的变异性,尺度扩展过程中又极易引起误差,而有些环境因子则是在较大空间尺度上发生变化,容易降低液流密度研究结果的可靠性。引入单位面积液流日累积量(Qa)和液流密度峰值(Jsmax)这2个参数,根据树高和胸径划分不同优势度,研究木荷树干液流时空动态特征及与环境因子的关系,探讨液流密度研究更合理的方法。结果表明:2007年9月到2008年4月木荷优势木、中等木和劣势木液流日进程均呈现单峰格型,根据树高划分优势度等级的木荷中等木平均液流密度要略大于优势木,劣势木的平均液流密度远远低于优势木和中等木;而根据胸径划分优势度等级的木荷优势木液流大于中等木,中等木液流大于劣势木;光合有效辐射是影响优势木和中等木液流密度的主要环境因子,劣势木液流密度主要受气温影响;在干旱胁迫下,土壤含水量对优势木和中等木液流密度瞬时变化的影响比劣势木显著;总体而言,土壤湿度对液流瞬时值影响不大,但显著影响大时间尺度上优势木液流累积量的变化。按树高划分的木荷等级对环境因子的响应更敏感,而按胸径划分的木荷等级显示树形因子对液流的影响不可忽略。根据研究的需求不同,按树高或胸径分级各有优势。  相似文献   

5.
Regalado CM  Ritter A 《Tree physiology》2007,27(8):1093-1102
Calibration of the Granier thermal dissipation technique for measuring stem sap flow in trees requires determination of the temperature difference (DeltaT) between a heated and an unheated probe when sap flow is zero (DeltaT(max)). Classically, DeltaT(max) has been estimated from the maximum predawn DeltaT, assuming that sap flow is negligible at nighttime. However, because sap flow may continue during the night, the maximum predawn DeltaT value may underestimate the true DeltaT(max). No alternative method has yet been proposed to estimate DeltaT(max) when sap flow is non-zero at night. A sensitivity analysis is presented showing that errors in DeltaT(max) may amplify through sap flux density computations in Granier's approach, such that small amounts of undetected nighttime sap flow may lead to large diurnal sap flux density errors, hence the need for a correct estimate of DeltaT(max). By rearranging Granier's original formula, an optimization method to compute DeltaT(max) from simultaneous measurements of diurnal DeltaT and micrometeorological variables, without assuming that sap flow is negligible at night, is presented. Some illustrative examples are shown for sap flow measurements carried out on individuals of Erica arborea L., which has needle-like leaves, and Myrica faya Ait., a broadleaf species. We show that, although DeltaT(max) values obtained by the proposed method may be similar in some instances to the DeltaT(max) predicted at night, in general the values differ. The procedure presented has the potential of being applied not only to Granier's method, but to other heat-based sap flow systems that require a zero flow calibration, such as the Cermák et al. (1973) heat balance method and the T-max heat pulse system of Green et al. (2003).  相似文献   

6.
Use of Granier-style heat dissipation sensors to measure sap flow is common in plant physiology, ecology and hydrology. There has been concern that any change to the original Granier design invalidates the empirical relationship between sap flux density and the temperature difference between the probes. Here, we compared daily water use estimates from gravimetric measurements with values from variable length heat dissipation sensors, which are a relatively new design. Values recorded during a one-week period were compared for three large pot-grown saplings of each of the tropical trees Pseudobombax septenatum (Jacq.) Dugand and Calophyllum longifolium Willd. For five of the six individuals, P values from paired t-tests comparing the two methods ranged from 0.12 to 0.43 and differences in estimates of total daily water use over the week of the experiment averaged < 3%. In one P. septenatum sapling, the sap flow sensors underestimated water use relative to the gravimetric measurements. This discrepancy could have been associated with naturally occurring gradients in temperature that reduced the difference in temperature between the probes, which would have caused the sensor method to underestimate water use. Our results indicate that substitution of variable length heat dissipation probes for probes of the original Granier design did not invalidate the empirical relationship determined by Granier between sap flux density and the temperature difference between probes.  相似文献   

7.
In a world of diminishing water reservoirs and a rising demand for food, the practice and development of water stress indicators and sensors are in rapid progress. The heat dissipation method, originally established by Granier, is herein applied and modified to enable sap flow measurements in date palm trees in the southern Arava desert of Israel. A long and tough sensor was constructed to withstand insertion into the date palm's hard exterior stem. This stem is wide and fibrous, surrounded by an even tougher external non-conducting layer of dead leaf bases. Furthermore, being a monocot species, water flow does not necessarily occur through the outer part of the palm's stem, as in most trees. Therefore, it is highly important to investigate the variations of the sap flux densities and determine the preferable location for sap flow sensing within the stem. Once installed into fully grown date palm trees stationed on weighing lysimeters, sap flow as measured by the modified sensors was compared with the actual transpiration. Sap flow was found to be well correlated with transpiration, especially when using a recent calibration equation rather than the original Granier equation. Furthermore, inducing the axial variability of the sap flux densities was found to be highly important for accurate assessments of transpiration by sap flow measurements. The sensors indicated no transpiration at night, a high increase of transpiration from 06:00 to 09:00, maximum transpiration at 12:00, followed by a moderate reduction until 08:00; when transpiration ceased. These results were reinforced by the lysimeters' output. Reduced sap flux densities were detected at the stem's mantle when compared with its center. These results were reinforced by mechanistic measurements of the stem's specific hydraulic conductivity. Variance on the vertical axis was also observed, indicating an accelerated flow towards the upper parts of the tree and raising a hypothesis concerning dehydrating mechanisms of the date palm tree. Finally, the sensors indicated reduction in flow almost immediately after irrigation of field-grown trees was withheld, at a time when no climatic or phenological conditions could have led to reduction in transpiration.  相似文献   

8.
Do F  Rocheteau A 《Tree physiology》2002,22(9):649-654
Natural temperature gradients in stems of trees growing in open stands give rise to errors when measuring sap flow by the continuous thermal dissipation method. Previously, we obtained evidence from field measurements that a noncontinuous thermal dissipation system can prevent these errors (Do and Rocheteau 2002). Cyclic heating (i.e., 45 minutes on and 15 minutes off; 45/15) allowed the derivation of an alternate signal, defined as the difference between the temperature signal at the end of the heating period and the temperature signal at the end of the cooling period. By analogy with the continuous system, we calculated an alternate flow index. Analysis in an artificial flow system confirmed that external temperature gradients have an additive effect on the continuous signal, whereas the alternate signal is unaffected by such gradients. The response of the alternate flow index to flow densities was similar for five combinations of heating and cooling times (45/15, 40/20, 30/30, 15/15 and 10/10 min). The relationship was markedly different from Granier's (1985) calibration because measurements in cyclic systems are made under non-steady-state temperature conditions. We recommend the 15/15 min cycle, which allows two sap flow measurements per hour. We compared flow density estimates obtained from field measurements with the continuous and cyclic systems over 192 days with 1-day lags between systems. Comparisons based on daily maximum values (between 0.5 and 2.5 l dm(-2) h(-1) for the cyclic system) confirmed that differences between the continuous and cyclic systems, which could be greater than 100%, were linked to the effect of temperature gradients on the continuous system. The results demonstrate that, in situations where significant natural temperature gradients (i.e., > 0.2 degrees C) are likely, the cyclic system improves the accuracy of sap flow measurements made with thermal dissipation probes.  相似文献   

9.
Do F  Rocheteau A 《Tree physiology》2002,22(9):641-648
The thermal dissipation method is simple and widely used for measuring sap flow in large stems. As with several other thermal methods, natural temperature gradients are assumed to be negligible in the sapwood being measured. We studied the magnitude and variability of natural temperature gradients in sapwood of Acacia trees growing in the Sahelian zone of Senegal, analyzed their effects on sap flow measurements, and investigated possible solutions. A new measurement approach employing cyclic heating (45 minutes of heating and 15 minutes of cooling; 45/15) was also tested. Three-day measurement sequences that included 1 day without heating, a second day with continuous heating and a third day with cyclic heating were recorded during a 6.5-month period using probes installed at three azimuths in a tree trunk. Natural temperature gradients between the two probes of the sensor unit, spaced 8 to 10 cm vertically, were rarely negligible (i.e., < 0.2 degrees C): they were positive during the night and negative during the day, with an amplitude ranging from 0.3 to 3.5 degrees C depending on trunk azimuth, day and season. These temperature gradients had a direct influence on the signal from the continuously heated sensors, inducing fluctuations in the nighttime reference signal. The resulting errors in sap flow estimates can be greater than 100%. Correction protocols have been proposed in previous studies, but they were unsuitable because of the high spatial and temporal variability of the natural temperature gradients. We found that a measurement signal derived from a noncontinuous heating system could be an attractive solution because it appears to be independent of natural temperature gradients. The magnitude and variability of temperature gradients that we observed were likely exacerbated by the combination of open stand, high solar radiation and low sap flow rate. However, for all applications of the thermal dissipation method, it is wise to check regularly for natural temperature gradients by switching off the heater.  相似文献   

10.
Lu P  Müller WJ  Chacko EK 《Tree physiology》2000,20(10):683-692
Circumferential and radial variations in xylem sap flux density in trunks of 13-year-old mango (Mangifera indica L.) trees were investigated with Granier sap flow sensor probes under limiting and non-limiting soil water conditions. Under non-limiting soil water conditions, circumferential variation was substantial, but there was no apparent relationship between sap flux density and aspect (i.e., the radial position of the sensor probes on the trunk relative to the compass). Hourly sap flux densities over 24 hours at different aspects were highly pair-wise correlated. The relationships between different aspects were constant during well-watered periods but highly variable under changing soil water conditions. Sap flux density showed marked radial variation within the trunk and a substantial flux was observed at the center of the trunk. For each selected aspect on each tree, changes in sap flux densities over time at different depths were closely correlated, so flux at a particular depth could be extrapolated as a multiple of flux from 0 to 2 cm beneath the cambium. However, depth profiles of sap flux density differed between trees and even between aspects within a tree, and also varied in an unpredictable manner as soil water conditions changed. Nevertheless, over a period of non-limiting soil water conditions, depth profiles remained relatively constant. Based on the depth profiles obtained during these periods, a method is described for calculating total sap flow in a mango tree from sap flux density at 0-2 cm beneath the cambium. Total daily sap flows obtained were consistent with water use estimated from soil water balance.  相似文献   

11.
【目的】试验不同长度热消散探针(TDP)测量毛竹液流的可行性,分析年龄对立竹液流的影响,并据此对立竹液流进行尺度扩展,估算桂北毛竹林的蒸腾耗水,为区域毛竹林的生态水文效应研究和指导关键生态功能区植被结构调整提供依据。【方法】显微镜观察毛竹输水结构在竹壁上的径向分布。基于热消散方法,用5 mm和10 mm长度的TDP探针对1~2年生立竹和3龄以上立竹的基部液流进行连续测量,并同步测定环境因子。【结果】维管束在毛竹竹壁上不均匀分布,竹壁外侧维管束小而密,导管分化不完全,竹壁内侧维管束大而疏,导管分化完全,直径较大。10 mm TDP探针测得的液流密度显著高于5 mm探针,其平均液流密度是5 mm探针的4.03倍。在生长旺季的7月,基于10 mm TDP探针测量的1~2年生立竹正午液流密度显著高于3龄以上立竹,而在早上和傍晚二者基本相同。1~2年生立竹液流的平均日通量在测量生长季内均高于3龄以上立竹,二者的平均日液流通量分别为51.15和33.80 g·cm-2 d-1。以立竹年龄和基径作为液流尺度扩展依据估测的桂北毛竹林日蒸腾耗水量在观测生长季内为0.01~0.72 mm·d-1,平均日蒸腾耗水量为0.31 mm·d-1。【结论】10 mm长度的TDP探针较5 mm探针更适宜用于毛竹液流的测量。1~2年生立竹比3龄以上立竹具有更高的液流密度和日液流通量,因此年龄是毛竹液流由立竹到林分尺度扩展时除立竹直径外另一个必须要考虑的因素。  相似文献   

12.
在广西黄冕林场采用Granier热扩散技术方法对人工纯林桉树、杉木和香樟的液流密度、液流通量、单株日均耗水量及耗水量与主要环境因子的关系进行了研究.结果表明:3个树种树干液流密度均与光合有效辐射有一致的变化规律和单峰曲线.综合分析显示桉树在3个树种中耗水能力最强,虽然香樟液流密度比杉木大,但因为边材面积最小,所以表现出耗水量最小,单株日均耗水量仅有桉树的0.5倍左右,而杉木虽然边材面积比桉树大,但耗水量并不高,仅为桉树的0.7倍左右;通过偏相关分析发现3个树种的液流通量均与光合有效辐射、水气压亏缺和空气温度有极显著的正相关关系,杉木和香樟液流通量与空气相对湿度有极显著的负相关关系,而桉树表现不显著;通过多元线性分析发现3个树种的液流通量均与光合有效辐射、空气温度和空气相对湿度有很强的线性相关关系.3个不同树种的耗水研究结果可为本地区造林树种选择的优劣性提供参考.  相似文献   

13.
Fiora A  Cescatti A 《Tree physiology》2008,28(9):1317-1323
Understanding the causes determining the radial pattern of sap flux density is important both for improving knowledge of sapwood functioning and for up-scaling sap flow measurements to canopy transpiration and ecosystem water use. To investigate the anatomical connection between whorls and annual sapwood rings, pruning-induced variation in the radial pattern of sap flux density was monitored with Granier probes in a 35-year-old Picea abies (L.) Karst tree that was pruned from the crown bottom up. Modifications in the radial pattern of sap flux density were quantified by a shape index (SI), which varies with the relative contribution of the outer and inner sapwood to tree transpiration. The SI progressively diminished during bottom up pruning, indicating a significant reduction in sap flow contribution of the inner sapwood. Results suggest that the radial pattern of sap flux density depends mainly on the vertical distribution of foliage in the crown, with lower shaded branches hydraulically connected with inner sapwood and upper branches connected with the outer rings.  相似文献   

14.
We developed a new microelectrode technique for measuring CO2 concentration ([CO2]) in xylem sap of trees. This technique enabled us to make rapid and continuous measurements of xylem sap [CO2] in situ. In this report, we discuss the methodology and establish the feasibility of the technique. We also describe calibration procedures, temperature sensitivity, field use and other characteristics of the microelectrodes. An example of data collected in the field is provided. Microelectrode calibration was accomplished at constant temperature in air of known [CO2]. When sampling temperature differed from calibration temperature, correction was necessary. We developed an equation to correct for temperatures between 15 and 35 degrees C when calibration was conducted at 25 degrees C. Equations based on Henry's Law were used to convert measured gas phase [CO2] (%) to concentration of all products of CO2 dissolved in sap (mmol l(-1)). We inserted microelectrodes into stems of three tree species to measure diurnal changes in [CO2] in the xylem sap. A diurnal pattern with depression during the day and elevation at night was observed. Mean daily [CO2] ranged from 1.6 to 10.3 mmol l(-1). Microelectrodes were suitable for making diurnal measurements for up to 7 days without recalibration. We also used the microelectrodes to measure [CO2] of soil in situ. Soil [CO2] ranged from 1 to 4% (gas phase), with little diurnal variation.  相似文献   

15.
The compensation heat pulse method (CHPM) is of limited value for measuring low rates of sap flow in woody plants. Recent application of the CHPM to woody roots has further illustrated some of the constraints of this technique. Here we present an improved heat pulse method, termed the heat ratio method (HRM), to measure low and reverse rates of sap flow in woody plants. The HRM has several important advantages over the CHPM, including improved measurement range and resolution, protocols to correct for physical and thermal errors in sensor deployment, and a simple linear function to describe wound effects. We describe the theory and methodological protocols of the HRM, provide wound correction coefficients, and validate the reliability and accuracy of the technique against gravimetric measurements of transpiration.  相似文献   

16.
Fiora A  Cescatti A 《Tree physiology》2006,26(9):1217-1225
Daily and seasonal patterns in radial distribution of sap flux density were monitored in six trees differing in social position in a mixed coniferous stand dominated by silver fir (Abies alba Miller) and Norway spruce (Picea abies (L.) Karst) in the Alps of northeastern Italy. Radial distribution of sap flux was measured with arrays of 1-cm-long Granier probes. The radial profiles were either Gaussian or decreased monotonically toward the tree center, and seemed to be related to social position and crown distribution of the trees. The ratio between sap flux estimated with the most external sensor and the mean flux, weighted with the corresponding annulus areas, was used as a correction factor (CF) to express diurnal and seasonal radial variation in sap flow. During sunny days, the diurnal radial profile of sap flux changed with time and accumulated photosynthetic active radiation (PAR), with an increasing contribution of sap flux in the inner sapwood during the day. Seasonally, the contribution of sap flux in the inner xylem increased with daily cumulative PAR and the variation of CF was proportional to the tree diameter, ranging from 29% for suppressed trees up to 300% for dominant trees. Two models were developed, relating CF with PAR and tree diameter at breast height (DBH), to correct daily and seasonal estimates of whole-tree and stand sap flow obtained by assuming uniform sap flux density over the sapwood. If the variability in the radial profile of sap flux density was not accounted for, total stand transpiration would be overestimated by 32% during sunny days and 40% for the entire season.  相似文献   

17.
用热扩散式茎流计测定园林树木蒸腾耗水量   总被引:2,自引:0,他引:2  
采用热扩散式边材液流探针和环境自动监测系统对北京3种园林树木的树干液流及主要环境因子进行了一个生长季的同步观测.结果表明,3树种树干液流的日变化呈明显的单峰曲线,晴天的液流速率大于多云天和阴天,紫叶李和悬铃木的日耗水量明显大于元宝枫;对不同天气3树种每h的液流速率与相应的环境因子进行逐步回归分析.结果显示,影响3树种液流速率的主要环境因子是空气温度、空气相对湿度、辐射强度和5 cm土层温度,在不同天气里起主导作用的因子不同,环境因子与树干液流之间的数量关系能较好地预测树木的蒸腾耗水量.  相似文献   

18.
大青山油松人工林树干液流动态及其蒸腾耗水规律研究   总被引:2,自引:0,他引:2  
应用TDP(Thermal Dissipation Probe)技术对大青山古路板林场的30a生油松人工林树干液流以及不同林分密度下的树木蒸腾耗水规律进行了研究。结果表明:1)在生长季内,树干径向断面形成层以下不同部位输水能力差异较大,最大流速位于形成层下3cm。2)油松树干液流的日进程呈现明显的昼夜变化规律。在11:00左右达到峰值,其值可达0.286 6~0.306 0cm3/s。3)树干液流量(Y)与树木的胸径(X)之间的关系可用Y=0.0053EXP(0.4823X)的指数函数模型表达。4)在相同立地条件下,随着阴坡林分密度从2 147株/hm2增加到4 463株/hm2,单株蒸腾耗水量从0.543 4cm3/s降低到0.319 7cm3/s,而林分蒸腾耗水量变化幅度较小,平均蒸腾耗水量为0.3710±0.0489(5)mm/h。结果指出,大青山30a生油松人工林经营密度应控制在3 307株/hm2左右。  相似文献   

19.
基于连续1年的兴安落叶松树干液流密度和环境因子(光照、空气温度、空气湿度、土壤温度和土壤湿度)的测定结果,探讨不同时间尺度下树干液流密度与环境因子的关系差异.在月时间尺度上,土壤温度和土壤湿度显著影响树干液流密度变化,土壤温度单位增加引起树干液流上升0.084~0.123 L·cm-2 month-1;在天时间尺度上,显著影响因子有土壤温度、光照和空气温度,其中土壤温度为最主要的影响因子,单位增加会导致树干液流上升1.9 ~2.7 mL·cm-2 d-1;在小时时间尺度上,主要影响因子在不同季节不同,但最主要因子多是直接影响地上叶片生理指标如光照和空气湿度,二者单位上升平均分别引起树干液流上升1.239 mL·cm-2 min-1和下降0.0566 mL·cm-2 min-1.随尺度由大到小,对树干液流影响最大的因子有从地下直接与根系水分吸收相关的土壤环境因子向地上直接影响叶片蒸腾的环境因子(光照和空气湿度)转变的趋势.同时,随着尺度增大,与树干液流显著相关的环境因子数明显下降,且相关系数R2显著提高,长期监测树木耗水可以采用监测环境因子反推的方法,而在小尺度上相同方法可能导致很大误差,最好采用直接测定法.  相似文献   

20.
The compensation heat pulse method is widely used to estimate sap flow in conducting organs of woody plants. Being an invasive technique, calibration is crucial to derive correction factors for accurately estimating the sap flow value from the measured heat pulse velocity. We compared the results of excision and perfusion calibration experiments made with mature olive (Olea europaea L. 'Manzanilla de Sevilla'), plum (Prunus domestica L. 'Songal') and orange (Citrus sinensis (L.) Osbeck. 'Cadenero') trees. The calibration experiments were designed according to current knowledge on the application of the technique and the analysis of measured heat pulse velocities. Data on xylem characteristics were obtained from the experimental trees and related to the results of the calibration experiments. The most accurate sap flow values were obtained by assuming a wound width of 2.0 mm for olive and 2.4 mm for plum and orange. Although the three possible methods of integrating the sap velocity profiles produced similar results for all three species, the best results were obtained by calculating sap flow as the weighted sum of the product of sap velocity and the associated sapwood area across the four sensors of the heat-pulse-velocity probes. Anatomical observations showed that the xylem of the studied species can be considered thermally homogeneous. Vessel lumen diameter in orange trees was about twice that in the olive and plum, but vessel density was less than half. Total vessel lumen area per transverse section of xylem tissue was greater in plum than in the other species. These and other anatomical and hydraulic differences may account for the different calibration results obtained for each species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号