首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
High temperature and humidity can be controlled in greenhouses by using mechanical refrigeration cooling system such as air conditioner(AC)in warm and humid regions.This study aims to evaluate the techno-financial aspects of the AC-cooled greenhouse as compared to the evaporative cooled(EV-cooled)greenhouse in winter and summer seasons.Two quonset single-span prototype greenhouses were built in the Agriculture Experiment Station of Sultan Qaboos University,Oman,with dimensions of 6.0 m long and 3.0 m wide.The AC-cooled greenhouse was covered by a rockwool insulated polyethylene plastic sheet and light emitting diodes(LED)lights were used as a source of light,while the EV-cooled greenhouse was covered by a transparent polyethylene sheet and sunlight was used as light source.Three cultivars of high-value lettuce were grown for experimentation.To evaluate the technical efficiency of greenhouse performance,we conducted measures on land use efficiency(LUE),water use efficiency(WUE),gross water use efficiency(GWUE)and energy use efficiency(EUE).Financial analysis was conducted to compare the profitability of both greenhouses.The results showed that the LUE in winter were 10.10 and 14.50 kg/m2 for the AC-and EV-cooled greenhouses,respectively.However,the values reduced near to 6.80 kg/m2 in both greenhouses in summer.The WUE of the AC-cooled greenhouse was higher than that of the EV-cooled greenhouse by 3.8%in winter and 26.8%in summer.The GWUE was used to measure the total yield to the total greenhouse water consumption including irrigation and cooling water;it was higher in the AC-cooled greenhouse than in the EV-cooled greenhouse in both summer and winter seasons by almost 98.0%–99.4%.The EUE in the EV-cooled greenhouse was higher in both seasons.Financial analysis showed that in winter,gross return,net return and benefit-to-cost ratio were better in the EVcooled greenhouse,while in summer,those were higher in the AC-cooled greenhouse.The values of internal rate of return in the AC-and EV-cooled greenhouses were 63.4%and 129.3%,respectively.In both greenhouses,lettuce investment was highly sensitive to changes in price,yield and energy cost.The financial performance of the AC-cooled greenhouse in summer was better than that of the EV-cooled greenhouse and the pattern was opposite in winter.Finally,more studies on the optimum LED light intensity for any particular crop have to be conducted over different growing seasons in order to enhance the yield quantity and quality of crop.  相似文献   

2.
Identifying water vapor sources in the natural vegetation of the Tianshan Mountains is of significant importance for obtaining greater knowledge about the water cycle, forecasting water resource changes, and dealing with the adverse effects of climate change. In this study, we identified water vapor sources of precipitation and evaluated their effects on precipitation stable isotopes in the north slope of the Tianshan Mountains, China. By utilizing the temporal and spatial distributions of preci...  相似文献   

3.
Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.  相似文献   

4.
Hyperspectral remote sensing technology is widely used to detect element contents because of its multiple bands,high resolution,and abundant information.Although researchers have paid considerable attention to selecting the optimal bandwidth for the hyperspectral inversion of metal element contents in rocks,the influence of bandwidth on the inversion accuracy are ignored.In this study,we collected 258 rock samples in and near the Kalatage polymetallic ore concentration area in the southwestern part of Hami City,Xinjiang Uygur Autonomous Region,China and measured the ground spectra of these samples.The original spectra were resampled with different bandwidths.A Partial Least Squares Regression(PLSR)model was used to invert Cu contents of rock samples and then the influence of different bandwidths on Cu content inversion accuracy was explored.According to the results,the PLSR model obtains the highest Cu content inversion accuracy at a bandwidth of 35 nm,with the model determination coefficient(R2)of 0.5907.The PLSR inversion accuracy is relatively unaffected by the bandwidth within 5-80 nm,but the accuracy decreases significantly at 85 nm bandwidth(R2=0.5473),and the accuracy gradually decreased at bandwidths beyond 85 nm.Hence,bandwidth has a certain impact on the inversion accuracy of Cu content in rocks using the PLSR model.This study provides an indicator argument and theoretical basis for the future design of hyperspectral sensors for rock geochemistry.  相似文献   

5.
The criteria used by International Union for Conservation of Nature(IUCN) for its Red List of Ecosystems(RLE) are the global standards for ecosystem-level risk assessment, and they have been increasingly used for biodiversity conservation. The changed distribution area of an ecosystem is one of the key criteria in such assessments. The Stipa bungeana grassland is one of the most widely distributed grasslands in the warm-temperate semi-arid regions of China. However, the total distribution area of this grassland was noted to have shrunk and become fragmented because of its conversion to cropland and grazing-induced degradation. Following the IUCN-RLE standards, here we analyzed changes in the geographical distribution of this degraded grassland, to evaluate its degradation and risk of collapse. Past(1950-1980) distribution areas were extracted from the Vegetation Map of China(1:1,000,000). Present realizable distribution areas were equated to these past areas minus any habitat area losses. We then predicted the grassland’s present and future(under the Representative Concentration Pathway 8.5 scenario) potential distribution areas using maximum entropy algorithm(MaxEnt), based on field survey data and nine environmental layers. Our results showed that the S. bungeana grassland was mainly distributed in the Loess Plateau, Hexi Corridor, and low altitudes of the Qilian Mountains and Longshou Mountain. This ecosystem occurred mainly on loess soils, kastanozems, steppe aeolian soils and sierozems. Thermal and edaphic factors were the most important factors limiting the distribution of S. bungeana grassland across China. Since 56.1% of its past distribution area(4.9×10~4 km^2) disappeared in the last 50 a, the present realizable distribution area only amounts to 2.2×10~4 km^2. But only 15.7% of its present potential distribution area(14.0×10~4 km^2) is actually occupied by the S. bungeana grassland. The future potential distribution of S. bungeana grassland was predicted to shift towards northwest, and the total area of this ecosystem will shrink by 12.4% over the next 50 a under the most pessimistic climate change scenario. Accordingly, following the IUCN-RLE criteria, we deemed the S. bungeana grassland ecosystem in China to be endangered(EN). Revegetation projects and the establishment of protected areas are recommended as effective ways to avert this looming crisis. This empirical modeling study provides an example of how IUCN-RLE categories and criteria may be valuably used for ecosystem assessments in China and abroad.  相似文献   

6.
As important freshwater resources in alpine basins,glaciers and snow cover tend to decline due to climate warming,thus affecting the amount of water available downstream and even regional economic development.However,impact assessments of the economic losses caused by reductions in freshwater supply are quite limited.This study aims to project changes in glacier meltwater and snowmelt of the Urumqi River in the Tianshan Mountains under future climate change scenarios(RCP2.6(RCP,Representative Concentration Pathway),RCP4.5,and RCP8.5)by applying a hydrological model and estimate the economic losses from future meltwater reduction for industrial,agricultural,service,and domestic water uses combined with the present value method for the 2030 s,2050 s,2070 s,and 2090 s.The results indicate that total annual glacier meltwater and snowmelt will decrease by 65.6%and 74.5%under the RCP4.5 and RCP8.5 scenarios by the 2090 s relative to the baseline period(1980-2010),respectively.Compared to the RCP2.6 scenario,the projected economic loss values of total water use from reduced glacier meltwater and snowmelt under the RCP8.5 scenario will increase by 435.10×106 and 537.20×106 CNY in the 2050 s and 2090 s,respectively,and the cumulative economic loss value for 2099 is approximately 2124.00×106 CNY.We also find that the industrial and agricultural sectors would likely face the largest and smallest economic losses,respectively.The economic loss value of snowmelt in different sectorial sectors is greater than that of glacier meltwater.These findings highlight the need for climate mitigation actions,industrial transformation,and rational water allocation to be considered in decision-making in the Tianshan Mountains in the future.  相似文献   

7.
The implementation of the Grain for Green Program(GGP)has changed the development track of the agricultural eco-economic system in China.In response to the results of a lag study that investigated the coupling between the GGP and the agricultural eco-economic system in a loess hilly region,we used a structural equation model to analyze the survey data from 494 households in Ansai,a district of Yan’an City in Shaanxi Province of China in 2015.The model clarified the direction and intensity of the coupling between the GGP and the agricultural eco-economic system.The coupling benefits were derived through linkages between the program and various chains in the agricultural eco-economic system.The GGP,the agroecosystem of Ansai and their potential coupling effects were in a state of general coordination.The agroecosystem directly affected the coupling effect,with the standardized path coefficient of 0.87,indicating that the agroecosystem in Ansai at this stage provided basic material support for the coupling between the GGP and the agricultural eco-economic system.The direct path coefficient of agroeconomic system impacted on the coupling effect was-0.76,indicating that partial contradictions occurred between the agroeconomic system and the coupling effect.Therefore,although the current agroecosystem in Ansai should be provided sufficient agroecological resources for the benign coupling between the program and the agricultural eco-economic system,agricultural development failed to effectively transform agroecological resources into agricultural economic advantages in this region,which resulted in a relative lag in the development of the agricultural economic system.Thus,the coupling between the GGP and the agricultural eco-economic system was poor.To improve the coupling and the sustainable development of the agricultural eco-economic system in cropland retirement areas,the industrial structure needs to be diversified,the agricultural resources(including agroecological resources,agricultural economic resources and agricultural social resources)need to be rationally allocated,and the chain structure of the agricultural eco-economic system needs to be continuously improved.  相似文献   

8.
Ecosystems in high-altitude regions are more sensitive and respond more rapidly than other ecosystems to global climate warming.The Qinghai-Tibet Plateau(QTP)of China is an ecologically fragile zone that is sensitive to global climate warming.It is of great importance to study the changes in aboveground biomass and species diversity of alpine meadows on the QTP under predicted future climate warming.In this study,we selected an alpine meadow on the QTP as the study object and used infrared radiators as the warming device for a simulation experiment over eight years(2011-2018).We then analyzed the dynamic changes in aboveground biomass and species diversity of the alpine meadow at different time scales,including an early stage of warming(2011-2013)and a late stage of warming(2016-2018),in order to explore the response of alpine meadows to short-term(three years)and long-term warming(eight years).The results showed that the short-term warming increased air temperature by 0.31℃and decreased relative humidity by 2.54%,resulting in the air being warmer and drier.The long-term warming increased air temperature and relative humidity by 0.19℃and 1.47%,respectively,and the air tended to be warmer and wetter.The short-term warming increased soil temperature by 2.44℃and decreased soil moisture by 12.47%,whereas the long-term warming increased soil temperature by 1.76℃and decreased soil moisture by 9.90%.This caused the shallow soil layer to become warmer and drier under both short-term and long-term warming.Furthermore,the degree of soil drought was alleviated with increased warming duration.Under the long-term warming,the importance value and aboveground biomass of plants in different families changed.The importance values of grasses and sedges decreased by 47.56%and 3.67%,respectively,while the importance value of weeds increased by 1.37%.Aboveground biomass of grasses decreased by 36.55%,while those of sedges and weeds increased by 8.09%and 15.24%,respectively.The increase in temperature had a non-significant effect on species diversity.The species diversity indices increased at the early stage of warming and decreased at the late stage of warming,but none of them reached significant levels(P>0.05).Species diversity had no significant correlation with soil temperature and soil moisture under both short-term and long-term warming.Soil temperature and aboveground biomass were positively correlated in the control plots(P=0.014),but negatively correlated under the long-term warming(P=0.013).Therefore,eight years of warming aggravated drought in the shallow soil layer,which is beneficial for the growth of weeds but not for the growth of grasses.Warming changed the structure of alpine meadow communities and had a certain impact on the community species diversity.Our studies have great significance for the protection and effective utilization of alpine vegetation,as well as for the prevention of grassland degradation or desertification in high-altitude regions.  相似文献   

9.
Snow avalanches are a common natural hazard in many countries with seasonally snow-covered mountains.The avalanche hazard varies with snow avalanche type in different snow climate regions and at different times.The ability to understand the characteristics of avalanche activity and hazards of different snow avalanche types is a prerequisite for improving avalanche disaster management in the mid-altitude region of the Central Tianshan Mountains.In this study,we collected data related to avalanche,snowpack,and meteorology during four snow seasons(from 2015 to 2019),and analysed the characteristics and hazards of different types of avalanches.The snow climate of the mid-altitude region of the Central Tianshan Mountains was examined using a snow climate classification scheme,and the results showed that the mountain range has a continental snow climate.To quantify the hazards of different types of avalanches and describe their situation over time in the continental snow climate region,this study used the avalanche hazard degree to assess the hazards of four types of avalanches,i.e.,full-depth dry snow avalanches,full-depth wet snow avalanches,surface-layer dry snow avalanches,and surface-layer wet snow avalanches.The results indicated that surface-layer dry snow avalanches were characterized by large sizes and high release frequencies,which made them having the highest avalanche hazard degree in the Central Tianshan Mountains with a continental snow climate.The overall avalanche hazard showed a single peak pattern over time during the snow season,and the greatest hazard occurred in the second half of February when the snowpack was deep and the temperature increased.This study can help the disaster and emergency management departments rationally arrange avalanche relief resources and develop avalanche prevention strategies.  相似文献   

10.
The gradual shrinkage of the Aral Sea has led to not only the degradation of the unique environments of the Aral Sea,but also numerous and fast developing succession processes in the neighborhood habitats surrounding the sea.In this study,we investigated the vegetative succession processes related to the Aral Sea shrinkage in the Eastern Cliff of the Ustyurt Plateau in Republic of Uzbekistan,Central Asia.We compared the results of our current investigation(2010–2017)on vegetative communities with the geobotany data collected during the 1970s(1970–1980).The results showed great changes in the mesophytic plant communities and habitat aridization as a result of the drop in the underground water level,which decreased atmospheric humidity and increased the salt content of the soil caused by the shrinkage of the Aral Sea.In the vegetative communities,we observed a decrease in the Margalef index(DMg),which had a positive correlation with the poly-dominance index(I-D).The main indications of the plant communities'transformation were the loss of the weak species,the appearance of new communities with low species diversity,the stabilization of the projective cover of former resistant communities,as well as the appearance of a new competitive species,which occupy new habitats.  相似文献   

11.
药液表面张力和黏度对草甘膦药效的影响及其机理研究   总被引:1,自引:0,他引:1  
通过添加有机硅助剂和丙三醇调节草甘膦药液的表面张力和黏度,测定其对草甘膦药液液滴的物理性状及生物活性的影响。结果表明:降低药液的表面张力,雾滴的铺展直径增加,干燥时间缩短,药液的黏度以及在杂草叶片表面的最大稳定持留量没有显著性变化;草甘膦对杂草的防效表现为先升高后降低,对阔叶杂草最高目测防效和鲜重防效可提高42%和41%,对禾本科杂草防效可提高37%和37%。增加草甘膦的药液黏度,药液在杂草叶片上的最大稳定持留量增加,表面张力降低,对雾滴的干燥时间和铺展直径影响很小;草甘膦对阔叶杂草最高目测防效和鲜重防效可提高42%和41%,对禾本科杂草的防效可提高42%和42%。适当降低草甘膦药液的表面张力或增加其黏度均可提高其对杂草的防除效果。  相似文献   

12.
为明确宁夏四类主要草原的蝗虫物种组成、多样性和对天敌、植被、土壤及其气候等生物和非生物因子的响应,2019-2020年在宁夏温性草甸草原、温性草原、温性荒漠草原和温性草原化荒漠四类草原对蝗虫及天敌物种进行了调查采集,通过物种数、个体数、多样性指数、优势度指数、丰富度指数及均匀性指数分析蝗虫、天敌和昆虫的多样性,并就草原蝗虫优势种和多样性对天敌、植被、土壤及气候等生物和非生物因子的响应进行分析。结果表明,共采集鉴定草原蝗虫和天敌个体数分别有743头和3592头,物种数分别有27种和24种;温性草原上发生的蝗虫和天敌物种和数量均最多,蝗虫和天敌的物种分别为23种和21种,数量分别为432头和1682头;温性草原化荒漠上发生的蝗虫和天敌物种和数量均最少,蝗虫和天敌的物种分别为8种和7种,数量分别为34头和132头。蝗虫优势种有白纹雏蝗Chorthippus albonemus、短星翅蝗Calliptamus abbreviatus和亚洲小车蝗Oedaleus asiaticus三种,天敌优势种有直角通缘步甲Pterostichus gebleri、麻步甲Carabus brandti和短翅伪葬步甲Pseudotaphoxenus brevipennis三种。温性草原无论是在草原蝗虫群落中,还是整个昆虫和天敌群落中,其丰富度指数均显著高于其他三类草原;草原蝗虫多样性指数和丰富度指数与天敌多样性指数和丰富度指数间均存在极显著正相关关系,与天敌优势度指数间存在极显著负相关关系;短星翅蝗和亚洲小车蝗发生均与天敌直角通缘步甲呈显著正相关关系,白纹雏蝗与禾本科植被盖度、高度、生物量,菊科植被盖度、生物量、频度、高度、土壤饱和持水量、毛管持水量、田间持水量、毛管孔隙度、总孔隙度、有机质、碱解氮、海拔和降水量间均呈显著正相关关系,与土壤容重、pH、平均气温和最高气温间均呈极显著负相关关系。  相似文献   

13.
South American leaf blight (SALB), the most dangerous disease of the rubber tree, is responsible for the lack of significant natural rubber production in South America and is a major threat to rubber tree plantations in Asia and Africa. Although the selection of resistant clones is the preferred disease control method, greater knowledge is required of the relationship between host and pathogen, in order to construct more durable resistance. Based on small-scale trials, this study set out to compare the dynamics of SALB on two highly susceptible and one moderately susceptible clone and to analyse the effect of host phenology on disease severity, at leaflet and flush scales. Clonal resistance was found to have a noticeable effect on disease severity, asexual sporulation and stromatal density at both leaflet and flush levels, and on disease dynamics at a leaflet level; time for symptom and sporulation appearance were longer on the moderately susceptible clone than on the susceptible clones. On the moderately susceptible clone, the stromatal density was largely dependent on disease severity. The phenology did not differ among the three clones and could not be considered as a factor in genetic resistance to SALB. However, for the three clones, the position of the leaflet in the flush affected the duration of the immature stages and the disease: the shorter the duration of leaflet development, the lower the disease severity, the sporulation intensity and the stromatal density.  相似文献   

14.
民勤沙区不同稳定性沙丘植被生境条件研究   总被引:9,自引:3,他引:9  
固定、半固定和流动沙丘生境条件测定结果表明:固定沙丘优势种均生长不良,枯梢、死亡普遍,其伴生植物的种类和密度均很小;沙丘水分条件决定了其生境条件,固定沙丘水分条件最差亦即生境条件最差;固定沙丘和半固定沙丘表面易形成粘粒、粉粒结皮,其表土层田间持水量大,影响降水下渗;固定沙丘表面田间持水量大是影响降水下渗的关键,其沙丘表土层粘粒、粉粒含量高是导致其田间持水量大的关键。其伴生草本植物密度并不随表土层田间持水量大而增加的原因,主要是由于当地降水少、气候干燥、表土层土壤水分易蒸发损耗所致。  相似文献   

15.
Eighteen species of rodents are pests in agriculture, horticulture, forestry, animal and human dwellings and rural and urban storage facilities in India. Their habitat, distribution, abundance and economic significance varies in different crops, seasons and geographical regions of the country. Of these, Bandicota bengalensis is the most predominant and widespread pest of agriculture in wet and irrigated soils and has also established in houses and godowns in metropolitan cities like Bombay, Delhi and Calcutta. In dryland agriculture Tatera indica and Meriones hurrianae are the predominant rodent pests. Some species like Rattus meltada, Mus musculus and M. booduga occur in both wet and dry lands. Species like R. nitidus in north-eastern hill region and Gerbillus gleadowi in the Indian desert are important locally. The common commensal pests are Rattus rattus and M. musculus throughout the country including the islands. R. rattus along with squirrels Funambulus palmarum and F. tristriatus are serious pests of plantation crops such as coconut and oil palm in the southern peninsula. F. pennanti is abundant in orchards and gardens in the north and central plains and sub-mountain regions. Analysis of the information available on the damage and economic losses caused by rodents in rice, wheat, sugarcane, maize, pearl millet, sorghum, oil seed, legume and vegetable crop fields, horticulture and forestry, poultry farms, and rural and urban dwellings and storage facilities clearly shows that chronic damage ranging from 2% to 15% persists throughout the country and severe damage, sometimes even up to 100% loss of the field crop, is not rare. Several traditional and modern approaches and methods of rodent control are being used. The existing knowledge of the environmental, cultural, biological, mechanical and chemical methods of rodent control in India is reviewed. Considerable variations exist in the susceptibility of the pest species to different methods, particularly to rodenticides and trapping, their field applicability, efficacy and economics in different crops, seasons and geographical regions, behavioural responses of the pest species to these methods in different ecological conditions and their adoption by farmers in different regions of India. Environmental and cultural techniques, such as clean cultivation, proper soil tillage and crop scheduling, barriers, repellents and proofing which may reduce rodent harbourage, food sources and immigration have long lasting effects but are seldom adopted. However, their significance in relation to normal agricultural practices, intensification and diversification are discussed. Rodenticides, which provide an immediate solution to the rodent problem, form the major component of rodent control strategies in India. Poison baiting of rodents with zinc phosphide and burrow fumigation with aluminium phosphide are common in agricultural fields and recently Racumin (coumatetralyl) and bromadiolone have been introduced for the control of both agricultural and commensal rodent pests in India. Methods and timings of campaigns and successes and problems in implementation of rodent control are also reviewed.  相似文献   

16.
Effects of mowing on the composition and diversity of grasslands varied with climate change (e.g., precipitation and temperature). However, the interactive effects of long-term mowing and climate change on the diversity and stability of leguminous and non-leguminous species in the semi-arid grasslands are largely unknown. Here, we used in situ monitoring data from 1982 to 2011 to examine the effects of continuous mowing and climate change on the plant biomass and diversity of leguminous and non-leguminous species, and soil total nitrogen in the typical semi-arid grasslands of northern China. Results showed that the biomass and diversity of leguminous species significantly decreased with the increasing in the biomass and diversity of non-leguminous species during the 30-a period. Variations in biomass were mainly affected by the long-term mowing, while variations in diversity were mainly explained by the climate change. Moreover, the normalized change rates of diversity in leguminous species were significantly higher than those in non-leguminous species. Mowing and temperature together contributed to the diversity changes of leguminous species, with mowing accounting for 50.0% and temperature 28.0%. Temporal stability of leguminous species was substantially lower than that of non-leguminous species. Consequently, soil total nitrogen decreased in the 2000s compared with the 1980s. These findings demonstrated that leguminous species were more sensitive to the long-term mowing and climate change than non-leguminous species in the semi-arid grasslands. Thus, reseeding appropriate leguminous plants when mowing in the semi-arid grasslands may be a better strategy to improve nitrogen levels of grassland ecosystems and maintain ecosystem biodiversity.  相似文献   

17.
巴里坤山地基岩对盆地松散沉积化学成分的控制   总被引:3,自引:1,他引:3  
通过对比新疆巴里坤地区基岩、湖积物和土壤中相关化学成分发现 ,研究区基岩相对陆壳贫Mg ,Ca ,Fe ,Al等主要成分和Cr,V ,P ,Zn等微量元素 ;湖积物则出现了Ca ,Mg ,(Fe)相对基岩的富集 ,Al,Cr,Ba ,V的进一步贫化 ;在较干旱环境下形成的土壤基本保持了基岩的P ,K含量特征 ,表明该地松散沉积物既有对基岩化学成分的继承 ,又有在此基础上的地球化学分异。  相似文献   

18.
Global warming is having a profound impact on global ecological systems,and has inevitably induced changes in the cryosphere,one of the five layers of the earth.Major changes include the shrinking and reduction in the area and volume of both the mountain glaciers and the ice caps covering the North and South poles,and the melting of permafrost and thickening of the active frost layer.Swift changes in the cryosphere have inevitably induced ecological and environmental changes in its zone.While some of these changes are beneficial to mankind,such as an increase in water circulation,short term increases in water volumes and the enlargement of the cultivatable area,others are extremely hazardous,like the flooding of lowlands caused by an increased sea level elevation,debris flow caused by glaciers,glacier lake bursts,undermined building safety caused by permafrost melting,the deterioration of alpine cold meadows,and the surface aridization and desertification of land.Tibet,having a major part of the cryosphere in China,is home to the most widely spread glaciers and permafrost,which play a vital role in regulating water resources,climate,environment and the ecological safety in China and Asia.However,due to global warming,the glaciers and permafrost in Tibet have recently changed dramatically,exhibiting shrinkage and melting,which threatens long-term water resources,and the ecological and environmental safety of China.Based on existing research,this paper discusses the relationship between global warming and the melting and shrinkage of the cryosphere.The results show that the cryosphere's melting and shrinkage in Tibet are the direct result of global warming.The melting of glaciers has led to a series of disasters,such as changes in river runoff,the heightened frequency of debris flows induced by glaciers and the outbursts of glacier lakes.The melting of the permafrost also resulted in a series of ecological and environmental problems in Tibet,such as the degradation and population succession of the alpine grassland and meadows,the aridization of the land surface,and the occurrence of freeze-thaw erosion.  相似文献   

19.
This study showed that several mechanisms of the basal resistance of winter triticale to Microdochium nivale are cultivar‐dependent and can be induced specifically during plant hardening. Experiments and microscopic observations were conducted on triticale cvs Hewo (able to develop resistance after cold treatment) and Magnat (susceptible to infection despite hardening). In cv. Hewo, cold hardening altered the physical and chemical properties of the leaf surface and prevented both adhesion of M. nivale hyphae to the leaves and direct penetration of the epidermis. Cold‐induced submicron‐ and micron‐scale roughness on the leaf epidermis resulted in superhydrophobicity, restricting fungal adhesion and growth, while the lower permeability and altered chemical composition of the host cell wall protected against tissue digestion by the fungus. The fungal strategy to access the nutrient resources of resistant hosts is the penetration of leaf tissues through stomata, followed by biotrophic intercellular growth of individual hyphae and the formation of haustoria‐like structures within mesophyll cells. In contrast, a destructive necrotrophic fungal lifestyle occurs in susceptible seedlings, despite cold hardening of the plants, with the host epidermis, mesophyll and vascular tissues being digested and becoming disorganized as a result of the low chemical and mechanical stability of the cell wall matrix. This work indicates that specific genetically encoded physical and mechanical properties of the cell wall and leaf tissues that depend on cold hardening are factors that can determine plant resistance against fungal diseases.  相似文献   

20.
Sandy grassland in northern China is a fragile ecosystem with poor soil fertility. Exploring how plant species regulate growth and nutrient absorption under the background of nitrogen (N) deposition is crucial for the management of the sandy grassland ecosystem. We carried out a field experiment with six N levels in the Hulunbuir Sandy Land of China from 2014 to 2016 and explored the Agropyron michnoi Roshev. responses of both aboveground and belowground biomasses and carbon (C), N and phosphorus (P) concentrations in the plant tissues and soil. With increasing N addition, both aboveground and belowground biomasses and C, N and P concentrations in the plant tissues increased and exhibited a single-peak curve. C:N and C:P ratios of the plant tissues first decreased but then increased, while the trend for N:P ratio was opposite. The peak values of aboveground biomass, belowground biomass and C concentration in the plant tissues occurred at the level of 20 g N/(m2·a), while those of N and P concentrations in the plant tissues occurred at the level of 15 g N/(m2·a). The maximum growth percentages of aboveground and belowground biomasses were 324.2% and 75.9%, respectively, and the root to shoot ratio (RSR) decreased with the addition of N. N and P concentrations in the plant tissues were ranked in the order of leaves>roots>stems, while C concentration was ranked as roots>leaves>stems. The increase in N concentration in the plant tissues was the largest (from 34% to 162%), followed by the increase in P (from 10% to 33%) and C (from 8% to 24%) concentrations. The aboveground biomass was positively and linearly correlated with leaf C, N and P, and soil C and N concentrations, while the belowground biomass was positively and linearly correlated with leaf N and soil C concentrations. These results showed that the accumulation of N and P in the leaves caused the increase in the aboveground biomass, while the accumulation of leaf N resulted in the increase in the belowground biomass. N deposition can alter the allocation of C, N and P stoichiometry in the plant tissues and has a high potential for increasing plant biomass, which is conducive to the restoration of sandy grassland.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号