首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A total of 400 surface soil(0–15 cm) samples were collected from cultivated soils representing four soil series,namely,Hariharapur,Debatoli,Rajpora and Neeleswaram in Orissa,Jharkhand,Himachal Pradesh and Kerala states of India,respectively,and were analyzed to measure the contents of total and extractable Mn and Fe,to establish the relationship among total and extractable Mn and Fe and soil properties,and to characterize the spatial distribution pattern of Mn and Fe in some cultivated acid soils of India. The contents of total as well as extractable Mn and Fe varied widely with extractants and soil series. However,the amounts of Mn or Fe extracted by diethylene triamine penta-acetic acid(DTPA),Mehlich 1,Mehlich 3,0.1 mol L-1 HCl and ammonium bicarbonate DTPA(ABDTPA) were significantly correlated with each other(P 0.01). Based on the DTPA-extractable contents and the critical limits(2 mg Mn kg-1soil and 4.5 mg Fe kg-1 soil) published in the literature,Mn and Fe deficiencies were observed in 7%–23% and 1%–3% of the soil samples,respectively. The content of soil organic carbon(SOC) had greater influence on total and DTPA-extractable Fe than did soil pH. Geostatistical analysis revealed that total and DTPA-extractable Mn and Fe contents in the acid soils were influenced by soil pH,SOC content,and exchangeable cations like potassium,calcium and magnesium. Spatial distribution maps of total and DTPA-extractable Mn and Fe in soil indicated different distribution patterns.  相似文献   

2.
Abstract

The purposes for this research were: to examine the long‐term residual effects of farmland applications of municipal sludges from four treatment technologies on the total and extractable Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations in Coastal Plain soils; to investigate the effects of sludge sources and rates on the effectiveness of soil extractants to remove the various metals; and to determine correlation coefficients for soil extractable versus plant accumulation in tobacco. The extractants evaluated were Mehlich 1 and 3, and DTPA‐pH 7.3. Composite Ap horizon soil samples and tobacco leaf samples were obtained in 1984 from research plots at two sites in Maryland that were established in 1972 and 1976, respectively, using sludge materials from three wastewater treatment facilities in the Washington, D.C. metropolitan region. Similar application rates were used at both sites.

A wide range in soil pH values was found among treatments at each site. Significant (p ≤ 0.05) increases were observed in total Zn, Cu, Fe, Pb, Ni, and Cd for all sludge sources with increased rates; however, values for total soil Mn exhibited high variability in all cases. The rankings among the extractants varied for some elements depending on the sludge sources. For Zn, the rankings were Mehlich 1 > Mechlich 3 > DTPA‐pH 7.3 across all sources and rates. For Cu, Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was found for soils amended with Blue Plains digested (BPD) and Piscataway limeddigested (PLD) sludges but Mehlich 1 ≥ DTPA pH 7.3 > Mehlich 3 for Blue Plains limed compost (BPLC) and Annapolis Fe and heat treated (AFH) sludges. Concerning extractable Mn, Mehlich Mehlich 1 > Mechlich 3 > DTPH pH 7.3 was the order for BPLC and AFH sludges but Mehlich 3 > Mehlich 1 > DTPA‐pH 7.3 was observed for BPD and PLD sludges. The rankings among extractants for Fe (Mehlich 3 > Mehlich 1 > DTPA‐pH7.3), Ni (Mehlich 3 ≥ Mehlich 1 > DTPA‐pH 7.3), Pb (Mehlich 3 > DTPA‐pH 7.3 > Mehlich 1) and Cd (Mehlich 1 > Mehlich 3 > DPTA‐pH7.3) were somewhat similar across all sludge sources. Significant correlation coefficients were obtained for all three extractants for soil extractable vs. plant Zn, Cu, Ni, and Cd at both sites; however, Mehlich 3 was not significant for Mn. Also, neither of the extractants produced significant coefficients for Fe and Pb.  相似文献   

3.
Abstract

To determine the effect of incubation on DTPA‐extractable Fe, Zn, and Cu in soils with a wide pH range (4.2 ‐ 9.4) and to determine the nature of this effect, soils were incubated at field moisture capacity for 1 week with and without a sterilant (toluene). After incubation these soils as well as their air‐dry counterparts were analyzed for DTPA‐extractable Fe, Zn, and Cu.

Incubated soils were significantly lower in DTPA‐extractable Fe, Zn, and Cu than air‐dry soils over all soil pH values tested but there was no significant difference in mean values for incubated soils due to the addition of toluene. The results suggest that, upon incubation at field moisture capacity, the decrease in DTPA‐extractable Fe, Zn, and Cu observed was noa‐microbial in nature.  相似文献   

4.
Salt-affected soils in arid and semi-arid tracts of the Indian Punjab are prone to deficiency of micronutrients. Nine profiles from alluvial terraces, sand dunes and palaeochannels in the southwestern Punjab were investigated for total and diethylenetriamine-penta-acetic acid (DTPA) extractable Zn, Cu, Mn and Fe. Soil physiography exerted significant influence on the spatial distribution of micronutrients. Total contents varied from 20–78 for Zn, 8–32 for Cu, and 88–466 mg kg?1 for Mn and 0.82–2.53% for Fe. DTPA-extractable contents varied from 0.10–0.98 for Zn, 0.14–1.02 for Cu, 0.54–13.02 for Fe and 0.82–9.4 mg kg?1 for Mn. Total contents were higher in fine-textured soil than in coarse-textured soils. Concentration of micronutrients in the surface layer was low and there occurred more accumulation in the Cambic horizon. Organic carbon, pH, clay, silt and calcium carbonate exerted strong influence on the distribution of micronutrients. DTPA extractable Zn, Cu, Mn and Fe increased with increasing organic carbon but decreased with increase in pH and calcium carbonate content. Total micronutrient contents increased with increase in clay, silt and calcium carbonate contents and decreased with increase in sand content.  相似文献   

5.
Long-term effects of intensive cultivation and imbalanced fertilization were studied on nutrient concentration of soil and in wheat grown on loamy sand alluvial soils belonging to Lukhi soil series located in semiarid-subtropical region of North-Western India. The same 86 farmers' fields were sampled during 2009 and 2010 which had earlier been studied during 1983 and 1984. Electrical conductivity of soil decreased, pH did not change, and organic carbon improved. In soil, K extractable in 1N NH4OAc and boiling 1N HNO3 depleted to a deficient levels in 2009 from medium levels of 1983. Similarly, DTPA extractable Cu depleted to deficient level from earlier sufficient level in 2009 from medium K and sufficient Cu levels in 1983. Consequently, K and Cu in the top two leaves of wheat decreased to a deficient level in 2010 from a sufficient level in 1984. Sulfur in soils and leaves decreased significantly. Olsen P and DTPA-extractable Zn increased, increasing their contents in leaves. DTPA-extractable manganese (Mn) and iron (Fe) improved.  相似文献   

6.
Abstract

In a field experiment conducted during three years in a sandy‐loam, calcareous soil, one aerobically digested sewage sludge (ASL) and another anaerobically digested sewage sludge (ANSL) were applied at rates of 400, 800, and 1,200 kg N/ha/year, and compared with mineral nitrogen fertilizer at rates of 0, 200, 400, and 600 kg N/ha/year in a cropping sequence of potato‐corn, potato‐lettuce, and potato, the first, second, and third year, respectively. Results showed that the highest values of soil extractable metals were obtained with aqua regia, whereas the lowest levels with DTPA. All metal (Zn, Cu, Cd, Ni, Pb, and Cr) gave significant correlations between metal extracted with the different extractants and metal loading applied with the sludges. The metal extractable ion increased over the control for Zn, Cu, Cd, Ni, Pb, and Cr extracted with DTPA, EDTA (pH 8.6) and 0.1 N HC1, for Zn, Cd, Ni, Pb, and Cr extracted with EDTA (pH 4.65) and AB‐DTPA, and for Zn, Cd, Ni, and Cr extracted with aqua regia. The level of metal‐DTPA extractable resulted highly correlated with that obtained by the other methods, except the Ni‐aqua regia extractable. The soil extractable elements which showed significant correlations with metals in plant were: Zn, Cu, Cd, and Ni in potato leaves, Cd, Ni, and Pb in corn grain, and Zn and Cd for lettuce wrapper leaves. In general, all the chelate based extractants (DTPA, EDTA pH 4.6, EDTA pH 8.6, AB‐DTPA) were equally useful as indicator of plant available metals in the soil amended with sludge.  相似文献   

7.
稻草与生石灰对设施土壤微量元素含量和番茄产量的影响   总被引:3,自引:0,他引:3  
为了探究设施内添加稻草与生石灰对土壤微量元素含量和番茄产量的影响,以长期施肥定位试验为依托,比较了施用鸡粪(M)的基础上,添加稻草(MR)、生石灰(MCa)、稻草与生石灰同时添加(MRCa)各处理全土及各粒级团聚体中有效态Fe、Mn、Cu、Zn含量和番茄产量的变化。结果表明:(1)添加稻草可增加土壤中有效态Fe、Mn、Zn含量,MR处理较M处理分别增加3.2%,80.9%,15.1%,对有效态Cu含量无显著影响;添加生石灰也可增加土壤中微量元素含量,其中Mn含量增加显著。土壤中有效态Fe、Mn、Cn、Zn含量与pH呈极显著负相关(P<0.01),与有机质含量呈极显著正相关(P<0.01)。(2)随着土壤团聚体粒级的减小,有效态微量元素含量呈下降趋势。添加稻草和生石灰可增加1~0.25mm粒级中有效态Mn含量,MRCa处理较其他处理增加6.6%~46.6%;添加稻草可增加<0.25mm粒级中有效态Zn含量。土壤中有效态Fe含量与<1mm粒级中含量呈显著正相关(P<0.01);土壤中有效态Mn、Zn含量分别与各粒级中含量呈显著正相关(P<0.01);土壤中有效态Cu含量与1~0.25mm粒级中含量呈显著正相关(P<0.01)。(3)施入稻草或生石灰可增加番茄产量,且稻草和生石灰同时施入产量最高,MRCa处理较MCa、MR处理分别增加12.6%,33.8%。土壤有效态Fe、Cu含量与产量正相关,其中有效态Fe含量对产量具有直接作用,决策系数最高,土壤有效态Cu含量对产量具有间接作用。因此,可以通过长期添加稻草和适量生石灰缓解设施土壤微量元素短缺的现状,且可获得最高作物产量,为设施内土壤可持续利用和设施农业可持续发展提供保障。  相似文献   

8.
A two‐year lysimeter experiment was conducted using winter wheat plants on two texturally contrasting soils (soil A and soil B). The main objective of this study was to evaluate the influence of increasing doses (5, 10, 15, 20, and 251 ha‐1) of solid phase from pig slurry (SP) on soil extractable copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) and on wheat micronutrients composition and uptake. As the control, a basic dressing of NPK fertilizer was applied. Results showed that increasing additions of SP significantly enhanced extractable Cu, Zn, Fe, and Mn content on the topsoil for both soils tested. In addition, a significant increase was detected for extractable Cu, Zn, and Mn content with increasing application rates of SP for subsoil A, but no significant differences were detected for subsoil B. A significant increase in the contents of Fe, Mn, and Zn in the plants as well as total uptakes were observed from increasing doses of SP. Copper content in the plants was not significantly affected. Finally, a strong pH effect was exerted in the Mn and Zn uptake by the plants.  相似文献   

9.
Abstract

Agricultural use of sewage sludges can be limited by heavy metal accumulations in soils and crops. Information on background levels of total heavy metals in soils and changes in soil metal content due to sludge application are; therefore, critical aspects of long‐term sludge monitoring programs. As soil testing laboratories routinely, and rapidly, determine, in a wide variety of agricultural soils, the levels of some heavy metals and soil properties related to plant availability of these metals (e.g. Cu, Fe, Mn, Zn, pH, organic matter, texture), these labs could participate actively in the development and monitoring of environmentally sound sludge application programs. Consequently, the objective of this study was to compare three soil tests (Mehlich 1, Mehlich 3, and DTP A) and an USEPA approved method for measuring heavy metals in soils (EPA Method 3050), as extractants for Cd, Cu, Ni, Pb and Zn in representative agricultural soils of Delaware and in soils from five sites involved in a state‐monitored sludge application program.

Soil tests extracted less than 30% of total (EPA 3050) metals from most soils, with average percentages of total metal extracted (across all soils and metals) of 15%, 32%, and 11% for the Mehlich 1, Mehlich 3, and DTPA, respectively. Statistically significant correlations between total and soil test extractable metal content were obtained with all extractants for Cu, Pb, and Zn, but not Cd and Ni. The Mehlich 1 soil test was best correlated with total Cu and Zn (r=0.78***, 0.60***, respectively), while the chelate‐based extractants (DTPA and Mehlich 3) were better correlated with total Pb (r=0.85***, 0.63***). Multiple regression equations for the prediction of total Cu, Ni, Pb, and Zn, from soil test extractable metal in combination with easily measured soil properties (pH, organic matter by loss on ignition, soil volume weight) had R2 values ranging from 0.41*** to 0.85***, suggesting that it may be possible to monitor, with reasonable success, heavy metal accumulations in soils using the results of a routine soil test.  相似文献   

10.
A survey was conducted in order to estimate micronutrient levels in plants and soils of 215 farms in Greece cultivated with sugar beet. Soils were analyzed for particle-size distribution, pH, organic carbon (C), CaCO3, and DTPA-extractable copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn). Sugar beet leaves were analyzed for the same metals. Also, aboveground biomass (top), root, and raw sugar yields were recorded. DTPA-extractable Fe and Mn were above critical levels in all cases, whereas Cu and Zn were above critical levels in 49% and 24% of the soil samples, respectively. Concentrations of the four metals in plant tissue were similar or higher than the sufficiency range. Concentrations of DTPA-extractable Fe and Mn, and plant Zn and Mn, were significantly and negatively correlated with soil pH. Soil pH and DTPA-extractable Fe seemed to have a significant positive impact on root, top, and raw sugar yields. However, in all cases, less than 14% of the variance of the sugar beet parameters was explained by soil characteristics.  相似文献   

11.
Soil and plant samples were collected from an ongoing long-term experiment (LTE) at the Indian Agricultural Research Institute farm, New Delhi, to study the distribution of various fractions of iron (Fe) and their contribution to availability and plant uptake in a maize–wheat sequence. The optimum dose-based treatments adopted for the study were nitrogen (N), nitrogen–phosphorus (NP), nitrogen–phosphorus–potassium (NPK), NPK + farmyard manure (FYM), NPK+ zinc (Zn), and control (no fertilizer or manure). Different fractions of Fe in the soil were sequentially extracted using different extractants. Diethylenetriaminepentaacetic acid (DTPA)–extractable Fe did not differ significantly among the treatments as a result of continuous cropping for more than three decades. The overall mean total iron (Fe) content varied from 2.36 to 2.61% under different treatments. Residual Fe constitutes a major portion of total Fe in all four layers of soil. The Fe associated with easily reducible Mn and organic matter contributed directly to DTPA-extractable Fe both in pre-maize and post-wheat soil. Residual Fe contributed directly to uptake Fe by maize and wheat crops.  相似文献   

12.
Abstract

Alfisols, Vertisols, Inceptisols, Aridisols, Mollisols, and Entisols were sampled (0–30 cm) from 32 locations across Ethiopia. The soils were analyzed for copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) contents using 0.005 M diethylene triamine pentaacetic acid (DTPA), 0.05 M hydrochloric acid (HC1), and 0.02 M ethylene diamine tetraacetic acid (EDTA) extractants. EDTA extracted more of each micronutrient than DTPA, which extracted greater amounts than HC1. The quantities of EDTA and DTPA‐extractable micronutrients were significantly correlated, and were in the order: Mn>Fe>Cu>Zn. The order of HCl‐extractable micronutrients was Mn>Fe>Zn>Cu. Micronutrient contents of Mollisols, Vertisols, and Alfisols were usually greater than those of the other soils, and Entisols usually had the lowest micronutrient contents. The contents were mostly positively correlated with clay and Fe2O3 contents, but negatively correlated with soil pH and A12O3contents. While comparison of DTPA‐ and EDTA‐extractable micronutrients with critical levels showed that most soils had adequate amounts of the micronutrients for crops, the amounts extracted by HC1 were below critical levels in most soils. Since the critical levels that were used in the comparisons were not established in Ethiopia, calibration of the soil contents of these micronutrients with crops grown in Ethiopia is required to identify the most suitable extractant(s).  相似文献   

13.
Eucalyptus is the most widely planted forest species in Brazil (~3.4 million hectares). Ongoing rotations and high yields lead to the occurrence of copper (Cu), manganese (Mn), iron (Fe), and zinc (Zn) deficiency symptoms. The objectives of this work were to identify the most appropriate extractant for evaluating micronutrient availability in commercial Eucalyptus plantations and to evaluate the influence of soil properties on Eucalyptus foliar micronutrient contents. Soil micronutrient contents were extracted by Mehlich 1, Mehlich 3, and diethylenetriaminepentaacetic acid (DTPA). Mehlich 1 and Mehlich 3 extracted the greatest amounts for all micronutrients analyzed. Foliar Cu, Mn, and Zn contents showed significant and positive relationships with soil Cu, Mn, and Zn contents extracted by the three solutions. Soil organic carbon (SOC), soil clay content, and soil pH improved significantly the power of regression models in estimating foliar micronutrient contents. The improvement was greater for Mehlich 3 and DTPA extractants than for Mehlich 1.  相似文献   

14.
The effect of elemental sulphur (S) and S containing waste applications on soil pH treated with 0–2,000 kg ha‐l elemental S, and 0–100 tons ha‐1 of waste was determined in the field and the pots. Sorghum (Sorghum bicolor L.) was grown in a Lithic Xerorthent soil which was taken from where the field experiment was conducted in pots receiving 5 kg soil. Plants were harvested 20 weeks after planting or 30 weeks after the applications for determination of dry matter yield and phosphorus (P), iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) uptake by shoots. EC, NaHCO3‐extractable P, and DTPA‐extractable Fe, Zn, Mn, Cu also were measured in pot soil at the 5th, 10th, and 30th weeks. All treatments led to a decrease in soil pH though pH tended to increase again during course of time in both field and pot experiments. The both elemental S and waste applications in pot experiment caused an increase in dry matter yield and P, Fe, zinc (Zn), Mn and Cu uptake (mg pot‐1) by shoots in sorghum plant. There was also an increase in EC of soil due to both applications of S. The concentration of available P extracted by NaHCO3 in the pot soil, though not significantly different, was slightly higher compared with the control. Waste applications increased DTPA‐extractable Fe content of the soil, DTPA‐extractable Mn and DTPA‐extractable Cu. DTPA‐extractable Zn content, however, was reduced by the same applications.  相似文献   

15.
苏南地区土壤重金属向蔬菜的迁移研究   总被引:12,自引:0,他引:12  
Vegetable fields in peri-urban areas receive large amounts of extraneous heavy metals because of rapid urbanization and industrialization in China. The concentrations of Cu, Zn, and Pb in 30 soil samples and 32 vegetable samples, collected from 30 different sites in southern Jiangsu Province of China, were measured and their transfer from soil to vegetable was determined. The results showed that the soil samples had wide ranges of pH (4.25-7.85) and electrical conductivity (EC) (0.24-3.42 dS m-1). Among the soil samples, there were four soil samples containing higher Cu and two soil samples containing higher Zn concentrations than those specified in the Chinese Soil Environmental Quality Standard II. However, no vegetable sample was found to contain a high level of Cu or Zn. In contrast, one vegetable sample contained 0.243 mg Pb kg-1 FW, which was above the Chinese Food Hygiene Standard, whereas the corresponding soil Pb concentration was lower than the Chinese Soil Environmental Quality Standard II. The transfer coefficients of Cu of all vegetable samples exceeded the suggested coefficient range, implying that extraneous Cu had high mobility and bioavailability to vegetables. There was no significant correlation between extractable soil heavy metal concentrations with four kinds of extractants and soil pH, EC, heavy metal concentrations in vegetables and soils, except that soil pH correlated well with the extractable soil Cu, Zn, and Pb concentrations with 1.0 mol L-1 NH4NO3. Moreover, diethylenetriamine pentaacetic acid (DTPA) extraction method was a more effcient method of extracting heavy metals from the soils independent of soil pH and EC than other three methods used.  相似文献   

16.
Micronutrient status in soils and crops can be affected by different fertilization practices during a long-term field experiment. This paper investigated the effects of different fertilization treatments on total and DTPA-extractable micronutrients in soils and micronutrients in crops after 16 year fertilization experiments in Fengqiu County, Henan Province, China. The treatments of the long-term experiment included combinations of various rates of N, P and K in addition to two rates of organic fertilizer (OF) treatments. Winter wheat and summer maize were planted annually. Soil macro- and micronutrients along with pH and organic matter (OM) were analyzed. Grains and above ground parts of both crops in the final year were harvested and analyzed for Cu, Zn, Fe and Mn. The results showed that soil Cu, Zn, Fe and Mn concentrations did not change among the different treatments to a significant level, except for a slight decrease of soil Zn in the CK (no fertilizer application) compared to the OF treatment. The DTPA-extractable soil Zn, Fe and Mn concentrations increased from 0.41 to 1.08 mg kg−1, from 10.3 to 17.7 mg kg−1, and from 9.7 to 11.8 mg kg−1, respectively, with increasing soil OM content, thus showing the importance of soil OM in micronutrient availability for crops. The NPK treatment also had higher DTPA-extractable micronutrient concentrations in soil. Deficiency of N or P resulted in a low yield but high micronutrient concentrations in crops except Cu in maize stalks. Higher available soil P significantly decreased crop micronutrients, possibly because of their precipitation as metal phosphates. Maize stalks contained higher concentrations of micronutrients than those of wheat straw, whereas wheat grain had higher micronutrients than those of corn grain. The transfer coefficients (TCs) of micronutrients from straw to grain were significantly different between winter wheat (1.63–2.52 for Cu; 2.31–3.82 for Zn; no change for Fe; 0.55–0.84 for Mn) and summer maize (0.24–0.50 for Cu; 0.50–1.21 for Zn; 0.02–0.04 for Fe; 0.07–0.10 for Mn). In conclusion, application of organic matter significantly increased the DTPA-extractable concentrations of Zn, Fe and Mn compared to the CK, grain and vegetative tissue in the CK and NK had higher micronutrient concentrations than those in other treatments.  相似文献   

17.
Abstract

Three different chemical extractants were evaluated as to their extraction efficiency for copper (Cu), zinc (Zn), lead (Pb), aluminium (Al), iron (Fe), chromium (Cr), manganese (Mn), potassium (K), magnesium (Mg), and calcium (Ca) on forest soil profiles from the Romanian Carpathians. The extractants were hot 14 M nitric acid (HNO3), 0.05 M hydrochloric acid (HCl), and 0.1 M sodium pyrophosphate. By comparing amounts extracted by 0.05 M HCl and 0.1 M sodium pyrophosphate relative to that dissolved by hot 14 M HNO3, some conclusions were drawn concerning the chemical forms of the metals in the extractable pool. The amount released by 0.05 M HCl was generally less than 10% of the HNO3‐extractable fraction but showed considerable variation among the elements studied. The relative amount extracted by pyrophosphate increased with organic‐matter content of the soils for Cu, Zn, Pb, Al, Fe, and Cr; stayed more or less constant for Mn, K, and Mg; and decreased for Ca. These findings are discussed with respect to the different binding forms of the metals in the soil and the processes affecting their mobility. From the present results, the metals were ranked as follows with respect to their ability to form organic complexes in natural soils: Cu>Cr, Pb>Ca>Al>Fe, Zn, Mn, K>Mg. However, the use of cold dilute HCl as a fractionation step may be questionable in cases of soils with a high content of substances possessing large neutralization capacity for protons.  相似文献   

18.
Nutrient distributions under no tillage (NT) compared with conventional disk-and-bed tillage (CT) management in the warm, humid region of the southeastern USA need to be assessed so that future placement, quantity, and type of fertilizers can be altered, if necessary, to efficiently match crop demands. We determined soil-profile distributions of pH, N, P, S, K, Ca, Mg, Na, Zn, Fe, Mn, and Cu to a depth of 0.9 m at the end of 8.5 years of continuous CT and NT management on a Weswood silty clay loam (fine, mixed, thermic Fluventic Ustochrept) in southcentral Texas. Most dramatic changes occurred within the 0–0.05 m depth, where soil under NT had lower pH, Fe, and Cu than under CT, but greater P, K, Zn, and Mn. Greater P and K under NT than under CT also occurred below the till-zone (0.15–0.3 m). At a depth of 0–0.3 m, soil under NT contained greater amounts of extractable P, K, Zn, Fe, Mn, and Cu than under CT. Nitrogen fertilization had little effect on nutrient distributions, except resulting in greater extractable K at 0–0.05 m and greater nitrate at 0–0.15 m. Few changes in soil-profile distributions were observed for extractable S, Ca, Mg, and Na. Long-term continuous use of NT on this fine-textured, high-fertility (except for N) soil had no apparent adverse effects on nutrient distributions relative to CT, but enhanced conservation and availability of P, K, Zn, Fe, Mn, and Cu near the soil surface where crop roots proliferate.  相似文献   

19.
Reasons for chlorosis of vine (Vitis vinifera L.) under field conditions
  • 1 Analysis of leaf and soil samples from green and chlorotic vineyards did not result in a clear correlation between chlorosis and one of the soil factors determined (pH, concentration of HCO3?, water soluble P, DTPA-extractable Fe, Mn, Zn, Cu).
  • 2 In severe chlorotic leaves the concentration of all elements investigated was increased, while in weak chlorotic leaves the concentration of Fe, Mn, Zn, Cu and P stayed unchanged.
  • 3 There was no change neither in the P: Fe nor in the K: Ca ratio of the leaves due to chlorosis, but significant differences existed in the ratio extractable Fe: total Fe and total P: extractable Fe between green and chlorotic leaves.
  • 4 The increased amount of Mn and Zn in severe chlorotic leaves reached a 100 %, the also increased amount of Fe only a 20% extractability by 0,5 n HCl, which together with the high P-concentration can be assumed as a main reason for chlorosis.
  相似文献   

20.
利用O3-FACE平台研究近地面臭氧浓度升高(目标值比周围大气高50%)对2009—2010年间麦季各生育期不同深度(0~5cm,5~10cm和10~15cm)耕层土壤微量元素有效性和成熟期地上部分微量元素累积量的影响。结果表明,近地层大气O3浓度增加提高了麦季耕层(0~15cm)土壤中有效性Fe、Mn含量,降低了有效性Cu、Zn含量,对Zn的减幅达27.3%(P〈0.05);大气O3浓度升高对土壤5~10cm土层DTPA提取态Fe、Mn、Cu、Zn的影响最大;高O3浓度显著降低了5~10cm和10~15cm土壤DTPA-Zn含量(P〈0.05)。O3浓度升高降低了小麦成熟期生物量和微量元素累积量。对不同层次土壤有效态微量元素和成熟期微量元素累积量对O3浓度升高响应进行了分析,同时指出应从土壤性质和作物生长两个方面进一步研究全球大气环境变化对土壤有效态微量元素的影响机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号