首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
番茄粘弹性参数机器人抓取在线估计   总被引:1,自引:0,他引:1  
为了使采摘机器人在抓取过程中能够对被抓果蔬的粘弹性力学参数进行快速估计,实时优化抓取过程,减少末端执行器对被抓取对象造成机械损伤,以抓取力、变形量、作用时间为输入,建立了番茄粘弹性参数估计的人工神经网络模型。运用质构仪蠕变试验所测的力、变形和时间,以及粘弹性参数E_1、E_2、η_1、η_2作为训练数据集,确定了人工神经网络的拓扑结构和参数,并测试了网络模型的粘弹性参数估计性能。利用二指机器人末端执行器对随机番茄样本进行抓取试验,并在抓取过程中用此模型来在线估计粘弹性参数。通过与质构仪的实测值进行对比发现,当时间t≥0.2 s时,各参数的估计值与实测值之间的相对误差均在25%以内,并根据0.2 s时得到的粘弹性参数对机器人抓取力范围进行了估计。结果表明,利用此方法在机器人抓取过程中可以对被抓番茄粘弹性特性进行估计,为在线优化抓取力提供了依据。  相似文献   

2.
针对传统机械手爪存在抓持动作单一、自由度少及通用性较差等缺点,设计了一种新型的由FPA直接驱动的多指多关节采摘机械手,有效地提高了机械手的灵活性和对不同果实采摘的自适应能力。从静力学的角度,建立了弯曲关节的转角及输出力的静态模型,并利用多目标优化方法对各个关键受力的均匀性进行了优化设计,分析了三自由度手指的输出力特性。最后,通过实验方法建立了机械手的苹果抓持实验,分析了气压值与抓持能力之间的关系。实验结果表明:随着待采摘果实目标半径的增大,机械手抓取关节角度有所减小,机械手抓取关节手指内腔的压力有所降低,为新型采摘机械手的研究提供了理论借鉴和技术参考。  相似文献   

3.
气动柔性果蔬采摘机械手运动学分析与实验   总被引:1,自引:0,他引:1  
采用气动弯曲型柔性驱动器设计了一种带有柔性机械臂的多自由度果蔬采摘机械手。基于分段常曲率理论,根据柔性驱动器形变规律,建立了多关节串并联的采摘机械手运动学模型和抓持力模型,研究了机械手采摘作业时抓取模式、工作空间和手指输出力与气压的关系,并进行了相关实验验证。制作了机械手样机,并在实验室环境下进行了多种果蔬模拟采摘实验,结果表明,该果蔬机械手具有多种抓取模式,且动作灵活、柔顺可靠、易于控制,适用于球形和圆柱形果蔬自动化采摘作业。  相似文献   

4.
为实现柑橘采摘的机械化、智能化,设计了一款欠驱动式柑橘采摘末端执行器。该执行器通过三指充分抓握与偏转的融合控制,实现对不同大小及椭圆度的柑橘的稳定采摘。针对不同尺寸柑橘采摘需求,设计了双连杆并联式手指,在抓握直径差异较大的柑橘时,手指能够自动进行抓取或捏取动作,并实现被动柔顺。通过静力学分析,得到抓取力与电机输出力矩间的关系。针对不同椭圆度柑橘采摘需求,为手指根部添加旋转关节。在建立电机驱动控制系统模型的基础上,提出基于电流反馈的主动柔顺控制策略,指根能够旋转合适的角度使指面与柑橘表面紧密贴合,在防止手指棱边刮伤柑橘表皮的同时,增大接触面积、提高摩擦力。仿真结果表明,该末端执行器结构在运动学方面满足设计要求。制作物理样机并在实验室环境下进行了柑橘抓取试验,试验结果表明采摘执行器针对直径30~100mm的柑橘抓取成功率为98.3%,平均耗时5.3s。该末端执行器能够针对不同尺寸、不同形状的柑橘实现采摘功能,具有适应性强、抓取稳定、不损伤果实等优点。  相似文献   

5.
苹果采摘机器人仿生机械手静力学分析与仿真   总被引:1,自引:0,他引:1  
提出了一种应用于苹果采摘机器人末端执行器的仿生机械手。采用腱传动式仿生机械手取代了简单的夹具,提高了末端执行器在复杂环境中抓取苹果的适应性。建立了腱传动式机械手开环控制的驱动力和抓握力间的力学模型。仿真结果表明,在相同的驱动力下,腱传动仿生机械手的抓握力与其机构参数相关。其中,有效抓握力由手指的长度和厚度决定;抓握力的分布由各指节的长度比例决定;手指的初始张角决定了其可抓取苹果的半径范围;随着苹果半径的增大,有效抓握力将减小。摩擦力能够改善抓握力在各指节的分布,使抓握力分布均匀化,同时使有效抓握力变大。  相似文献   

6.
基于气动柔性驱动器的苹果采摘末端执行器研究   总被引:3,自引:2,他引:3  
设计了一种基于气动柔性驱动器的苹果采摘末端执行器:以气动柔性驱动器作为其弯曲关节,用力学分析的方法对弯曲关节及末端执行器进行建模,分析建立关节弯曲量及输出力与其内腔气体压力之间的数学关系;建立了末端执行器抓取苹果目标的数学模型.实验结果表明:该末端执行器有较大的输出力,能很好地抓持苹果,并具有很好的柔顺性.  相似文献   

7.
双指型农业机器人抓取球形果蔬的控制器设计   总被引:1,自引:0,他引:1  
现阶段针对苹果、番茄这类球形果蔬设计的采摘机器人末端执行器大多采用相似的双指结构,但是这类采摘机器人的抓取控制方法均是一对一的研究,研发成本偏高且产品不具有通用性。阻抗控制是常用的柔顺控制方法,能够将果蔬的受力—形变等效为环境导纳模型,不同的果蔬对应不同的导纳模型,但是基本的阻抗控制框架是一致的。因此,本文分别选取偏软和偏硬的两种球形果实,通过压缩试验模拟抓取过程,得到果实受力及形变数据,并以此计算得到果实等效刚度。接着,使用BP神经网络分别对原始数据进行训练及验证,得到各层权值。然后在Simulink中建立环境导纳模型并根据不同的果实选择不同的权值,并完成阻抗控制系统的搭建。同时,根据环境导纳模型中的等效刚度估计值实现在线调整阻抗控制器刚度参数。最后通过Matlab进行仿真验证,结果表明改进后方法对于抓取苹果和番茄两种果实,期望力超调分别为2.2%和1.5%,位置控制器输出最终分别稳定在0.55 mm和4.02 mm范围内,可验证所提方法在理论上能够实现农业机器人的柔性抓取。  相似文献   

8.
目前,香梨主要依靠人力采摘,多果聚集情况明显,采摘作业强度大、采收期短,又因常见果蔬采摘机械装置自适应能力弱、抓果不稳定,会造成较多损伤,不适合用于多果聚集的香梨采摘。为此,仿照人工采摘动作,基于欠驱动原理设计了一种“丫”形香梨采摘的机械手,由传动部件、抓取装置和指间差动系统3部分组成,单个电机驱动机械手对果实进行抓取,在辅助装置作用下完成采摘分离动作。同时,对抓取装置模型进行运动学分析,得到单指的运动空间,计算出了远指节抓取平均范围大于55mm,能满足范围内不同形状、尺寸香梨的包络抓取。通过Adams软件对抓取装置进行运动学仿真,结果显示机构运动平稳,结构设计合理。实验室台架试验结果表明:在机械臂辅助操作采摘时,机械手可实现抓取动作,抓取成功率为96%,平均采摘时间约为2.6s,验证了采摘方案可行性和机械结构设计的可靠性。研究结果可为香梨采摘装置关键结构设计提供参考依据。  相似文献   

9.
为实现球形果实自适应采摘,仿人手触觉传感设计并制作了一种用于球果采摘的无系留智能软体手爪,该手爪采用自循环供气与传感集成,将柔性薄膜触力传感器内嵌于软体手爪内并复合自循环气泵,可实现多尺寸、多类型球果自适应抓取。研究了自循环气泵工作原理,进行了结构优化、压力建模与性能测试。试制了自适应软体手爪原理样机,建立了手爪抓持力模型,并进行了静力学实验,获得了其气压下的弯曲变形和力学特性。建立了球果采摘手爪控制系统与自适应抓取机制,搭建模拟采摘实验平台,进行了自适应抓取实验验证及实验环境下的球果采摘与分拣。结果表明,通过接触力反馈与控制系统,该采摘手爪可安全有效地抓取球果,抓取尺寸范围为48.5~97 mm,最大抓取球果质量为350 g,平均采摘用时15 s,成功率为97.46%。  相似文献   

10.
为探究不同振动参数组合对苹果采摘效果的影响,建立苹果树二级树枝振动力学模型,解析分析得到影响苹果脱落的主要因素为振动频率、振幅及夹持位置。测量苹果树形态特征并基于矮砧密植整形原理建立纺锤形苹果树三维模型,利用ANSYS软件对苹果树模型进行有限元仿真分析,仿真结果表明,振动频率4~8Hz、振幅20~30mm、夹持位置0.35l~0.65l(l为二级树枝长度)时,对果树损伤较小且苹果易脱落。设计四因素三水平振动采摘试验,以确定苹果树不同位置树枝最佳的振动参数组合,利用Design-Expert软件对试验数据进行分析和响应面优化,参数优化结果为:采摘苹果树上层苹果时,振动频率为5Hz,振幅为28mm,夹持位置为0.40l;采摘苹果树中层苹果时,振动频率为4Hz,振幅为30mm,夹持位置为0.43l;采摘苹果树下层苹果时,振动频率为8Hz,振幅为20mm,夹持位置为0.65l;通过验证试验得到苹果树上层、中层、下层摘净率为96.4%、94.8%、93.2%,与优化值相近,表明优化模型可靠。  相似文献   

11.
为了减少采摘机器人在采摘苹果的过程中对苹果果皮造成挤压和碰撞等机械损伤,对苹果机械损伤规律进行研究。以成熟红富士苹果为试验材料,采用CMT6502型精密型微控电子万能试验机进行压缩试验。通过分析苹果方块受压时的力学特性,建立其受压力学模型,计算得到苹果的抗压弹性模量为2.091 MPa,受压时的最大弹性限度0.130 MPa,苹果方块受压时的弹性模量变化基本保持在5~7 MPa。当苹果方块受到的应力值达到其下屈服极限0.125 MPa时,苹果方块形变加快。此研究可为苹果的机械损伤做出较为合理的预判。   相似文献   

12.
设计了一种基于气动柔性驱动器的苹果采摘末端执行器:以气动柔性驱动器作为其弯曲关节,用力学分析的方法对弯曲关节及末端执行器进行建模,分析建立关节弯曲量及输出力与其内腔气体压力之间的数学关系;建立了末端执行器抓取苹果目标的数学模型。实验结果表明:该末端执行器有较大的输出力,能很好地抓持苹果,并具有很好的柔顺性。  相似文献   

13.
采摘机器人作业过程中,果实的机械损伤是影响采摘效果的主要因素之一。为了降低采摘机械手对果实的伤害、缩短设计周期、降低实验成本,提出了一种新的机械手夹紧装置的优化设计方法。该方法利用软件的联合虚拟仿真功能,实现了虚拟环境下夹持机构夹紧力的计算与同步优化。同时,构建了采摘机械手虚拟样机多体系统框架,设计了采摘机械手仿真计算的多体动力学模型,利用Pro/E软件建立了机械手的数字化模型,并导入ADAMS中进行了模拟仿真分析;通过计算得到了不同机械手手指尺寸的夹紧力大小。由夹紧力的多组仿真结果可以得到:在不超过水果破碎夹紧力阈值时,最大夹紧力所对应的机械手手指长宽比,从而有效缩短了机械手的设计周期,提高了设计效率,为采摘机器人的研究提供了重要的数据参考。  相似文献   

14.
为解决高酸苹果收获过程中的效率低、果实摘净率低、损伤率高等问题,根据我国青岛地区高酸苹果实际收获需要,设计了一种液压控制的高酸苹果振动式采摘机。基于振动式采摘机工作原理,完成振动采摘装置、激振装置、液压控制系统的结构设计,计算分析夹持钳对树干的夹持力为7 254 N,夹持钳夹持高度范围为12~103 cm。建立高酸苹果果实-树枝单摆动力学模型,分析果实脱落条件,得到果实振动微分方程,确定振动频率、振幅、夹持高度为采摘效果主要影响因素;利用ANSYS软件对果树模型进行自由模态响应与谐响应仿真分析,结果表明:振动频率9~12 Hz、振幅1~2 cm、夹持高度40~70 cm时,三级、最次级树枝位移最明显。为确定采摘机最优工作参数,进行三因素三水平组合田间试验,得到果实摘净率、果实损伤率的回归模型,利用Design-Expert软件对试验数据和回归模型响应曲面进行分析优化,当振动频率为10.0 Hz、振幅为1.6 cm、夹持高度为58.7 cm时,果实摘净率为95.9%、果实损伤率为1.3%,满足高酸苹果采收的质量要求。  相似文献   

15.
以苹果采摘机工作过程中的质量监测和采摘量统计为研究对象,通过传感装置和显示终端对苹果采摘过程进行监测,并利用单片机计数程序对采摘频率、采摘间隔序列及采摘准确数等数据进行统计,经通信系统传输至监测显示终端,通信系统采用应答模式数据通信协议实现了可靠准确的数据传输。试验结果表明:利用通信数据算法建立的苹果采摘机通信系统在进行采摘过程监测时,准确率可达到90%,信息数据传输过程可靠稳定。  相似文献   

16.
一种抓取果实的欠驱动手指机构设计与静力学分析   总被引:1,自引:0,他引:1  
为了给类球形果实采摘机器人提供一种拟人手指的末端执行器,设计了一种欠驱动手指机构。通过设置指节限位块,并在中间传力机构两个转动副处添加不同刚度系数的扭簧,使欠驱动手指机构各指节在限位块约束的角度范围内依序转动,包络抓取物体时其构型稳定,并能保证各指节回程运动能回到手指机构的初始位置。同时,利用虚功原理建立了手指在包络抓取物体时各指节与物体之间的接触分力与总驱动力之间的静力学模型,通过ADAMS的动力学求解器对手指机构进行动力学计算。结果表明:设计的欠驱动手指机构包络抓取球形果实时运动确定,且能回到初始位置;ADAMS仿真结果和力学模型计算结果之间的3个接触分力误差分别为0.0 3 8、0.1 2 5 1、0.0 0 4 1 N,验证了静力学模型的正确性,可以为手指机构的柔性抓取控制提供参考。  相似文献   

17.
为了对五自由度关节式收获机器人五自由度关节机器人末端执行器的位姿和运动进行描述,运用传统的D-H法建立各关节运动学数学模型,进行运动学正、逆解,求得末端执行器的位置关系式。基于UG软件建立了该机械手的三维立体模型,并通过ADMAS软件对机械手抓取、采摘和放下过程进行仿真分析,确定其运动轨迹。结果表明:所建立的运动学方程正确,设计的机械手满足工作要求,有较强的操作性,为收获采摘机械手的设计制造奠定了基础。  相似文献   

18.
基于轨道平移式果蔬采摘机器人作业原理,建立了果蔬柔性采摘机器人作业质量测试方法,确定了采摘效率、果实采摘尺寸范围、最大抓握输出力、抓取成功率及果实破损率等作业指标的测定方法。依据提出的方法对FHR-2型柔性果蔬采摘机器人进行了设施温室大果番茄采收试验,结果表明,采摘效率8个/min,果实采摘尺寸范围30~92 mm,最大抓握输出力22.5 N,抓取成功率72.9%,果实破损率0,能够满足大果番茄的采摘要求。建立的测试方法能够对番茄采摘机器人进行作业质量测试,机器人的图像识别系统参数需进一步优化,以提高作业质量。  相似文献   

19.
基于轨道平移式果蔬采摘机器人作业原理,建立了果蔬柔性采摘机器人作业质量测试方法,确定了采摘效率、果实采摘尺寸范围、最大抓握输出力、抓取成功率及果实破损率等作业指标的测定方法。依据提出的方法对FHR-2型柔性果蔬采摘机器人进行了作业质量测试。结果表明:产品的采摘效率为8个/min,果实采摘尺寸范围为30mm~92mm,最大抓握输出力2.3kg,抓取成功率72.9%,果实破损率为0%,能够满足大果番茄的采摘要求。建立的测试方法能够对番茄采摘机器人进行作业质量测试,产品的图像识别系统参数需进一步优化,以提高机器人作业质量。  相似文献   

20.
针对球形果实采摘问题,采用气动多向弯曲柔性驱动器设计了2种规格带有回转腕部功能的多自由度3指采摘柔性手爪。该采摘柔性手爪采用中心对称结构,其柔性手指与驱动器复合一体,在气压下可产生贴合球果表面的弧状变形,3指协同配合运动抓取球果,并通过腕部旋扭分离方式完成采摘。研究了“刚柔耦合”驱动器的材料和制造工艺,建立了柔性驱动器形变模型,获得了其气压下的形变特性,并进行了相关实验验证。试制了采摘柔性手爪物理样机,研究分析了柔性手爪的工作空间、抓取模式和采摘时的力学性能,并在实验室搭建的采摘平台上进行了多种球果模拟采摘实验。结果表明,该采摘柔性手爪具有3种抓取模式,物形适应性好,抓取柔顺可靠、动作灵活,采摘主动安全、损伤小,适于多种球果的采摘。该柔性手爪采摘球果的尺寸范围为30~130 mm,三指交错强力握取球果的最大质量为1.28 kg。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号