首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urban trees experience site-induced stress and this leads to reduced growth and health. A site assessment tool would be useful for urban forest managers to better match species tolerances and site qualities, and to assess the efficacy of soil management actions. Toward this goal, a rapid urban site index (RUSI) model was created and tested for its ability to predict urban tree performance. The RUSI model is field-based assessment tool that scores 15 parameters in approximately five minutes. This research was conducted in eight cities throughout the Midwest and Northeast USA to test the efficacy of the RUSI model. The RUSI model accurately predicted urban tree health and growth metrics (P < 0.0001; R2 0.18–0.40). While the RUSI model did not accurately predict mean diameter growth, it was significantly correlated with recent diameter growth. Certain parameters in the RUSI model, such as estimated rooting area, soil structure and aggregate stability appeared to be more important than other parameters, such as growing degree days. Minimal improvements in the RUSI model were achieved by adding soil laboratory analyses. Field assessments in the RUSI model were significantly correlated with similar laboratory analyses. Other users may be able to use the RUSI model to assess urban tree planting sites (<5 min per site and no laboratory analyses fee), but training will be required to accurately utilize the model. Future work on the RUSI model will include developing training modules and testing across a wider geographic area with more urban tree species and urban sites.  相似文献   

2.
Urban green spaces (UGS) positively impact the population, providing essential ecosystem services and improving public health. Urban vegetation management needs to optimize mowing process costs and reducing impacts on the natural ecosystem. Thus, we implemented a general grass growth model suitable for UGS management in tropical areas, focused on lawns, public parks and squares, roadsides, and around waterways. The model incorporates local edaphoclimatic conditions to simulates the daily dynamics of leaf area index (LAI), biomass, evapotranspiration, and soil water content, going under mowing processes or not, with spatialization capability which might be integrated within geographic information system (GIS) environments. A case study assessing bahiagrass (Paspalum notatum Flüggé) vegetation species in São Carlos, southeastern Brazil, is presented, considering two scenarios to demonstrate the spatial capabilities of the model: (i) UGS as a single area, and (ii) several areas independently. For model validation, vegetation indices calculated based on data from an unmanned aerial vehicle (UAV) and CubeSat imagery (PlanetScope) were used to retrieve LAI time series, calibrated with spectral signatures from leaf ground sampling. For performance analysis, LAI time series from the model and LAI retrieved from both sensors were compared via determination coefficient (R2) and root mean square error (RMSE). Our findings suggest that the proposed model is accurate, and due to its spatialization capability and integration with a GIS, its application may help government administrations to optimize UGS mowing processes.  相似文献   

3.
Urban foresters are addressing the challenge of urban biodiversity loss through management plans in the context of rapid urbanization. Protecting the integrity of the urban ecosystem requires long-term monitoring and planning for resilience as well as effective management. The soundscape assessment has attracted attention in this field, but applying the soundscape assessment in urban ecological monitoring requires a protocol that links soundscapes to the impact of resource management on biodiversity over time. The effective processing and visualization of large-scale data also remains an important challenge. The aim of this study was to better understand the relationship between soundscape and physical environment, and examine the feasibility of this innovative soundscape approach in highly urbanized areas. Soundscape recordings were collected for 20 urban parks twice on 4 consecutive days in Spring. A total of 691,200 min of sound material were automatically obtained. In order to track the spatio-temporal patterns of a soundscape and determine its potential suitability for ecosystem monitoring, our study characterized soundscape information by adopting 4 widely used acoustic indices: acoustic diversity index (ADI), bioacoustic index (BIO), normalized difference vegetation index (NDSI), and power spectral density (PSD). Daily patterns of PSD have provided a potential connection between soundscapes and bird songs, and 1–2 kHz presented a similar pattern that was linked to human activity. Through further modeling, we tested the relationship of soundscapes to physical environment characteristics. The results showed the importance of habitat vegetation structure for acoustic diversity. More vertical heterogeneity, with an uneven canopy height or multilayered vegetation, was associated with more acoustic diversity. This suggests that clearing ground cover may have a significant negative impact on wildlife. Our results suggest that soundscape approaches provide a way to quickly synthesize large-scale recording data into meaningful patterns that can track changes in bird songs and ecosystem conditions. The proposed approach would enable regular assessment of urban parks and forests to inform adaptive planning and management strategies that can maintain or enhance biodiversity.  相似文献   

4.
Rapid urban growth has increased the importance of restoring degraded vegetation patches within these areas. In this study, we reforested a site that was previously dominated by exotic grasses within an urban area. The goal of this study was to evaluate restoration success in a reforested site using four variables of vegetation structure, five groups of organisms, and eight variables of ecosystem processes, and compare these values with a pre-reforested site and a forested reference site using the Subjective Bray Curtis Ordination. The change in vegetation structure provided arboreal habitats that increased species diversity and ecosystem processes in the reforested site. Specifically, the development of a vertical vegetation structure was associated with: (1) a decrease in herbaceous cover, which allowed the colonization of woody seedlings; (2) a change in microclimatic conditions, which enhanced the colonization of ants and amphibians; (3) colonization of arboreal reptiles and birds; and (4) an increase in litter production, which enhanced nutrient inputs. Moreover, the Subjective Bray Curtis Ordination demonstrated an overall recovery of approximately 70%. Planting woody species was sufficient to stimulate rapid recovery of many ecosystem attributes. Future restoration projects should include multiple variables that reflect important ecosystem attributes to determine the success of a project and to direct future management efforts.  相似文献   

5.
The accessibility to hierarchy (defined based on function and size) of Urban Green Spaces (UGS) is essential for frequent and optimal use of UGS as it promotes social interaction and physical activity among city population. The issue of accessibility to UGS is one of the crucial aspects of sustainable urban planning and it is linked to growing concern over the wellbeing of urban population particularly children and lower socioeconomic groups. The following study presents use of GIS based network analysis to assess the accessibility of UGS at hierarchical levels by applying different network distance to each hierarchy of UGS in a dense and complex urban setting in a developing region. Results show that there is poor accessibility to UGS at all hierarchical levels particularly at lower hierarchy of UGS which is meant for early age children. The large variability in accessibility at all hierarchical levels is also indicative of highly varying and skewed development patterns in the study area. The studies carried out in these regions and approach applied in this study may provide useful tools to planners to identify the deficient areas for future development of UGS for balanced and sustainable planning.  相似文献   

6.
The pandemic caused by SARS-CoV-2 (COVID-19) at the beginning of 2020 has restricted the human population indoor with some allowance for recreation in green spaces for social interaction and daily exercise. Understanding and measuring the risk of COVID-19 infection during public urban green spaces (PUGS) visits is essential to reduce the spread of the virus and improve well-being. This study builds a data-fused risk assessment model to evaluate the risk of visiting the PUGS in London. Three parameters are used for risk evaluation: the number of new cases at the middle-layer super output area (MSOA) level, the accessibility of each public green space and the Indices of Multiple Deprivation at the lower-layer super output area (LSOA) level. The model assesses 1357 PUGS and identifies the risk in three levels, high, medium and low, according to the results of a two-step clustering analysis. The spatial variability of risk across the city is demonstrated in the evaluation. The evaluation of risk can provide a better metric to the decision-making at both the individual level, on deciding which green space to visit, and the borough level, on how to implement restricting measures on green space access.  相似文献   

7.
Biodiversity loss in urban landscapes is a global challenge. Climate change is a major driving force behind biodiversity loss worldwide. Using Wellington, New Zealand as a research site, the aim of this research is to show how the most suitable patches of vegetation in urban landscapes can be identified, ranked, and prioritised as potential urban wildlife sanctuaries. This is in order to protect vulnerable indigenous fauna from some of the indirect impacts of climate change such as increased predator pressures and the spread of diseases among urban fauna caused by rising temperatures. A GIS-based multi-criteria analysis of spatial composition and configuration of patches of vegetation was undertaken with reference to eight factors affecting the quality of habitat patches and accordingly fauna behaviours in urban landscapes. Results show that Zealandia, the Wellington Botanic Garden, the Town Belt, and Otari-Wilton’s Bush are respectively the most important urban sites for establishing pest-free urban wildlife sanctuaries in the study area. This research reveals that patch size should not be considered as the single most important factor for the site selection of urban wildlife sanctuaries because the collective importance of other factors may outweigh the significance of patch size as a single criterion. Lessons learned in the course of this research can be applied in similar cases in New Zealand or internationally in order to facilitate the process of site selection for the establishment of urban wildlife sanctuaries in highly fragmented urban landscapes suffering from rising temperatures and other climatic changes.  相似文献   

8.
9.
Luck  Matthew  Wu  Jianguo 《Landscape Ecology》2002,17(4):327-339
Landscape Ecology - Urbanization is arguably the most dramatic form of land transformation that profoundly influences biological diversity and human life. Quantifying landscape pattern and its...  相似文献   

10.
The objective benefits that humans derive from natural ecosystems and their enduring manifestation in urban green spaces (UGS) is well-know. Nevertheless, citizens’ preference, and perceived necessity of UGS is not always evident and therefore often not accounted for, especially in the context of urban planning decisions, where it could positively influence the effectiveness of greening strategies. This information is especially important in the Mediterranean islands, due to their unique character. Here we address these aspects, including the way they are affected by UGS perceived adequacy, accessibility, maintenance, distance, and other self-reported obstacles using a questionnaire completed by 703 residents of the Island of Crete, Greece. To integrate results, main covariates are compiled into the newly developed public UGS approval index. Survey results show that, 87.82 % of the participants consider public UGS highly necessary for their wellbeing, while only 69.22 % consider private UGS equally necessary. Nevertheless, private UGS were the most frequently visited green at 16.3 ± 0.7 days/month. Public UGS is considered more necessary for female respondents, under 35 years, living in an apartment in the city. However, it emerged that despite the significantly higher need for public UGS in the urban centers of the island, residents consider UGS inadequate and often inaccessible for people with mobility problems. Integration of the results in the new approval index, shows that citizens of Crete, are on average neutral or disapprove of local public UGS. The outcomes can be used for targeted interventions at existing and strategic planning in new UGS.  相似文献   

11.
Artificial urban land uses such as commercial and residential buildings, roads, and parking lots covered by impervious surfaces can contribute to the formation of urban heat islands (UHIs), whereas vegetation such as trees, grass, and shrubs can mitigate UHIs. Considering the increasing area of parking lots with little vegetation cover in Nagoya, Japan, this study evaluated the potential for UHI mitigation of greening parking lots in Nagoya. The relationships between land surface temperature (LST) and land use/land cover (LULC) in different seasons were analyzed using multivariate linear regression models. Potential UHI mitigation was then simulated for two scenarios: (1) grass is planted on the surface of each parking lot with coverage from 10 to 100% at an interval of 10% and (2) parking lots are covered by 30% trees and 70% grass. The results show that different LULC types play different roles in different seasons and times. On average, both scenarios slightly reduced the LST for the whole study area in spring or summer. However, for an individual parking lot, the maximum LST decrease was 7.26 °C in summer. This research can help us understand the roles of vegetation cover and provide practical guidelines for planning parking lots to mitigate UHIs.  相似文献   

12.
13.
There is a growing body of evidence indicating that exposure to, and activities in, nature have beneficial effects on human health. Since a majority of people in many countries live in urban areas, availability and use of urban green areas is of increasing importance to public health. In the present study we measured urban residents’ (Trondheim, Norway) recreational preferences for urban park landscapes varying in vegetation density, and aimed at an identification of background variables and environmental value orientations that we hypothesised to influence such preferences. The results showed that moderately dense scenes received the highest preference ratings. Socio-demographic variables and value orientations predicted preferences for moderate to densely vegetated scenes: A curvi-linear effect of age of respondents was found, with subjects in their mid-40s expressing a higher preference for moderate to dense vegetation, compared to younger and older subjects. Preference for moderate to dense vegetation also increased as the educational levels of the respondents increased. The preference was lower among people living in apartment blocks, relative to those living in detached houses. Of attitudinal and value-related variables, interest in wildlife, and pro-ecological value orientation (measured with the NEP scale) predicted preference for urban parks with moderate and dense vegetation. The existence of preference for relatively dense vegetation in urban parks in segments of the population has consequences for the designing of urban parks in Norway.  相似文献   

14.
Green Infrastructure (GI) connects different types of green features via various scales, thereby supporting urban biodiversity and service provision. This study presents a methodology capable of identifying multiple functions to assess GI in less-developed countries, where such methodologies are lacking. GI was assessed based on a high-resolution land use classification using both landscape metrics and spatial data within an urbanized region of San José, Costa Rica, at different scales (watershed, neighbourhood, object). Results showed highly fragmented green spaces (often <10 ha), typically unable to support high levels of biodiversity, along with a low amount of green space per inhabitant (<7.4 m²) within the watershed. Substantially higher tree cover (x6) and tree density (x5) were found in the greenest neighbourhood in comparison to the least green neighbourhood. Potential areas for new GI in the form of green roofs (4.03 ha), permeable pavement (27.3), and potential retention areas (85.3) were determined. Several green spaces (n = 11) were identified as promising GI sites with the potential to increase provision (18.6 m²/inhabitant). The adopted methodology demonstrates the potential of GI for increasing recreational green space access, runoff reduction, and flood retentions while supporting biodiversity, validating its utility in guiding decision-making and policy generation.  相似文献   

15.
Although there is a common trend towards increasing green space in modern cities, urban green spaces provide not only ecosystem services but also disservices for urban dwellers. However, the relationship between urban greenness and ecosystem disservices has been poorly examined. We aimed to understand the effect of greenness level on the abundance and species composition of hornets – critical pests in Japan and to identify the best spatial scale for estimating their abundance with reference to greenness levels. We used a dataset that contained eight years of abundance data for four hornet species at 11 sites in Nagoya city. The levels of greenness around the hornet sampling points were measured using averages from the Normalized Difference Vegetation Index (NDVI) with radiuses of 0.1–10.0 km. We analysed the relationship between abundance and species composition of hornets and NDVI at different spatial scales using generalized linear mixed models. Higher NDVI values positively affected the abundance of all the hornet species except Vespa analis. The abundances were estimated most effectively using the NDVI average with a 1–2 km radius for all species. The species composition of hornets drastically changed along the gradient of NDVI values; V. mandarinia was dominant in greener areas (over 0.2–0.3 NDVI average with a 2 km radius) and V. analis in less green areas (below 0.2–0.3 NDVI average). Our study showed that the abundance and species composition of hornets were both strongly associated with the level of urban greenness. This suggests that increases in the greenness of urban areas can increase hornet abundance and alter the species composition of hornets; a more aggressive species, V. mandarinia, may also increase in urban areas, although V. analis is currently the most critical species according to regional consultants. Balancing ecosystem services and disservices has become crucial for the planning and management of green spaces, particularly when urban green space increases. We also demonstrate how human tolerance towards wildlife may have to be improved in order to live in greener environment where wildlife can be expected.  相似文献   

16.
The importance of biodiversity conservation is well recognized, and the loss of biodiversity is particularly evident in highly urbanized areas. On the other hand, green spaces inside cities, as parks, can provide a resource for maintaining and increasing biodiversity, especially for bird species. However, only a few studies have addressed the effects of vegetation structure and land use composition on different components of biodiversity.Here, we explored the response of bird community composition to environmental differences related to land use composition and vegetation structure in green spaces in the city of Beijing, China. We compared the values of taxonomic diversity, functional diversity and community evolutionary distinctiveness in breeding bird communities, among ten urban parks of the world's third most populous city. Variation partitioning analysis and generalized linear mixed models were used to explore the unique and shared effects of land use composition and vegetation structure on each biodiversity metric.Park size was not associated with the diversity of bird communities in Beijing. Land use composition was the best predictor of change in bird community composition, followed by vegetation structure at ground level and the intersection between land use and vegetation structure at tree level. Water coverage increased bird species richness, while the presence of large trees increased both taxonomic diversity and bird functional richness in urban parks. Finally, the presence of patches of deciduous trees showed a positive effect on the average score of evolutionary distinctiveness of bird communities. In conclusion, we highlight that different elements of the environment are supporting different components of bird community diversity.  相似文献   

17.
With accelerating urbanization, insect pollinators in urban ecosystems face challenges such as reduced pollen sources, habitat fragmentation, and damage to the nesting environment. Urban green spaces (UGS) are essential for the stability of pollinator communities. However, little is known about the relationship between vertical layer heterogeneity and horizontal layer complexity of vegetation structure in UGS and pollinator communities. The present study aimed to assess how vegetation structure and environmental characteristics shape the insect pollinator community in UGS. To this end, this study was conducted with seven typical vegetation types which were selected according to the biotope mapping classification system (BMCS) in the ring parks around Hefei City, in Anhui province, China. A total of 11,401 pollinators belonging to 6 orders and 34 families were identified during the eight-month survey. Among the seven habitats under the BMCS, mainly successional short-cut shrub and partly open green space, trees two- or multi-layered broad-leaved mixed forest and partly closed green space, and mainly successional tall grass and partly open green space were identified as high-quality insect pollinator habitats. According to the results of the generalized linear regression, the explanatory power of the four best-fitting generalised linear models is relatively high (over 77%). In four optimal models, the effect of vegetation structure on pollinator community was greater than that of environmental characteristics. The redundancy discriminant analysis showed that the flowering abundance of nectar plants, herb richness, and shrub coverage rate were the three most important factors influencing insect pollinator communities, with a cumulative explanatory power of up to 78.8%. Pollinator abundance was positively influenced by spontaneous herbs and low-intensity management. However, high-intensity management, low diversity of plants, low nectar plant richness, ignoring seasonal nectar plant configuration, and dense tree distribution could limit pollinator reproduction and population growth. These results reflect the status of insect pollinator community in UGS in Hefei city and present a possible direction for improving urban green habitats and plant configurations.  相似文献   

18.
The urban green space is an important inducer of pollen allergy. In recent years, the incidence of pollen allergy in China has increased from 5 % to 17.8 %, and it still rapidly increases. However, only few assessment methods of pollen allergy risk have been developed and applied in the urban green spaces. The feasibility and the accuracies of the assessment results of these methods has been unknown. Therefore, in this paper, the two best-known methods, total pollen concentration monitoring method and urban green zone allergenicity index (IUGZA) method, were both used to assess the pollen allergy risk of the same urban park (the People’s Park of Chengdu City, China). The impact factors and prediction consistency of both models were compared. The results showed that the proportion of medium and highly allergenic tree species reached up to 75.93 % in People’s Park. The total IUGZA value of this park was 0.69. A total of 36,171 pollen grains were collected here. The average pollen concentration of this park was 125.88 grains/cm2 per day. Both methods showed that the pollen allergy risk of the People's Park was the highest in spring. Correlation analysis showed that no vegetation characteristics of this park were correlated with IUGZA values and total pollen concentration. However, pollen concentration was extremely significantly correlated with air temperature and solar radiation in autumn and winter. Kendall’s concordance coefficient identified a super high consistency between total pollen concentration and IUGZA values in this park. This result means that both methods for assessing the risk of pollen allergy are effective. Based on the total pollen concentration, a polynomial formula was established for succinctly calculating the IUGZA. A three-step greening strategy is proposed to minimize the volume of allergen production and increase the well-being of users of urban parks in Chengdu City.  相似文献   

19.
Many organisms persist in fragmented habitat where movement between patches is essential for long-term demographic and genetic stability. In the absence of direct observation of movement, connectivity or isolation metrics are useful to characterize potential patch-level connectivity. However, multiple metrics exist at varying levels of complexity, and empirical data on species distribution are rarely used to compare performance of metrics. We compared 12 connectivity metrics of varying degrees of complexity to determine which metric best predicts the distribution of prairie dog colonies along an urban gradient of 385 isolated habitat patches in Denver, Colorado, USA. We found that a modified version of the incidence function model including area-weighting of patches and a cost-weighted distance surface best predicted occupancy, where we assumed roads were fairly impermeable to movement, and low-lying drainages provided dispersal corridors. We also found this result to be robust to a range of cost weight parameters. Our results suggest that metrics should incorporate both patch area and the composition of the surrounding matrix. These results provide guidance for improved landscape habitat modeling in fragmented landscapes and can help identify target habitat for conservation and management of prairie dogs in urban systems.  相似文献   

20.
Environmental and urban forest managers in cities located in highly biodiverse regions may need to balance biodiversity conservation with the provision of ecosystem services to people. However, striking this balance is not easy and many competing factors influence the decision-making process. Set in the Perth Metropolitan Area, located in the global biodiversity hotspot of the Southwestern Australia Floristic Province, this study aimed to understand: (i) the extent to which a benefits-oriented approach is used by local governments to optimise biodiversity and human wellbeing urban forest outcomes, and (ii) what other factors influence the decision-making process shaping urban forest composition. Using a social-ecological framework, we conducted semi-structured interviews with 29 local government practitioners. We found that biodiversity conservation is actively considered in the planning and management of urban forest in natural areas and parks, but rarely in streetscapes. Maximising shade and cooling, and to a lesser extent enhancing sense of place, were the key benefits actively sought in streetscapes. Parks appeared to straddle the middle ground as areas with most flexibility to accommodate multiple biodiversity and human wellbeing benefits. Yet, benefits were only some of a multitude of social-ecological factors influencing the decision-making process shaping urban forest composition. In particular, streetscapes were affected by a large number of social and political factors (e.g., perceived risk and nuisance, ad-hoc decisions by elected members), many of them leading to suboptimal urban forest outcomes. For a benefits-oriented approach to prevail in complex and contested urban spaces it is important that the decision-making process is evidence-informed and capable of handling the challenges and conflicts that are likely to arise. Reactive decision-making results in a conservative, “safe” species palette that over time defines streetscapes by what they do not do (creating disservices) rather than what they do (delivering multiple biodiversity and wellbeing benefits), which ultimately is not a desired outcome in the context of an increasingly urbanized world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号