首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Predicted future changes in air temperature and atmospheric CO(2) concentration ([CO(2)]), coupled with altered precipitation, are expected to substantially affect tree growth. Effects on growth may vary considerably across a species range, as temperatures vary from sub-optimal to supra-optimal for growth. We performed an experiment simultaneously at two locations in the current range of loblolly pine, a cool site and a warm site, to examine the effect of future climate conditions on growth of loblolly pine seedlings in contrasting regions of the species range. At both sites 1-year-old loblolly pine seedlings were grown in current (local ambient temperature and [CO(2)]) and predicted future atmospheric conditions (ambient +2 °C temperature and 700 μmol mol(-1) [CO(2)]). Additionally, high and low soil moisture treatments were applied within each atmospheric treatment at each site by altering the amount of water provided to the seedlings. Averaged across water treatments, photosynthesis (A(net)) was 31% greater at the cool site and 34% greater at the warm site in elevated temperature and [CO(2)] compared with ambient temperature. Biomass accumulation was also stimulated by 38% at the cool site and by 24% at the warm site in that treatment. These results suggest that a temperature increase of 2 °C coupled with an increase in [CO(2)] (predicted future climate) will create conditions favorable for growth of this species. Reduced soil moisture decreased growth in both current and predicted atmospheric conditions. Biomass accumulation and A(net) were reduced by ~39 and 17%, respectively, in the low water treatment. These results suggest that any benefit of future atmospheric conditions may be negated if soil moisture is reduced by altered precipitation patterns.  相似文献   

2.
We investigated the impact of seasonal soil water deficit on the processes driving net ecosystem exchange of carbon (NEE) in old-growth and recently regenerating ponderosa pine (Pinus ponderosa Doug. ex Laws.) stands in Oregon. We measured seasonal patterns of transpiration, canopy conductance and NEE, as well as soil water, soil temperature and soil respiration. The old-growth stand (O) included two primary age classes (50 and 250 years), had a leaf area index (LAI) of 2.1 and had never been logged. The recently regenerating stand (Y) consisted predominantly of 14-year-old ponderosa pine with an LAI of 1.0. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. By August, soil volumetric water content within the upper 30 cm had declined to a seasonal minimum of 0.07 at both sites. Between April and June, both stands showed similar rates of transpiration peaking at 0.96 mm day(-1); thereafter, trees at the Y site showed increasing drought stress with canopy stomatal resistance increasing 6-fold by mid-August relative to values for trees at the O site. Over the same period, predawn water potential (psi(pd)) of trees at the Y site declined from -0.54 to -1.24 MPa, whereas psi(pd) of trees at the O site remained greater than -0.8 MPa throughout the season. Soil respiration at the O site showed a strong seasonal correlation with soil temperature with no discernible constraints imposed by declining soil water. In contrast, soil respiration at the Y site peaked before seasonal maximal soil temperatures and declined thereafter with declining soil water. No pronounced seasonal pattern in daytime NEE was observed at either site between April and September. At the Y site this behavior was driven by concurrent soil water limitations on soil respiration and assimilation, whereas there was no evidence of seasonal soil water limitations on either process at the O site.  相似文献   

3.
Abstract

Optimal water and nutrient treatment effects on soil mi-crobial characteristics, including microbial functional diversity and mi-crobial biomass carbon (C) and nitrogen (N) were assessed at a loblolly pine plantation on a Sandhills site after 6 years of continuous fertilization and irrigation. Fertilization significantly increased soil C and N and microbial C and N. Irrigation significantly increased soil C and N, and microbial C. Fertilization, irrigation, and their interaction changed soil microbial selection of carbon compounds, but did not influence the numbers of carbon compounds utilized by soil microbes, as measured by the BIOLOG method suggesting that soil microbial species may have changed. The increases in soil microbial biomass and soil C and N indicate that the fertilization and irrigation treatments have had a positive effect on soil productivity on this very sandy site.  相似文献   

4.
Pools of macro-nutrients in soil and vegetation were studied in an old fertilization experiment with a large previous input of N. Different doses of N, in the form of urea, had been added four times during a 20-year period. In total, between 480 and 2400 kg N ha−1 had been given. The experiment was established in a relatively productive Norway spruce stand and the expectation was that the large N input would cause an accelerated leaching of N, especially nitrate, accompanied by soil acidification and losses of several nutrients. The aim was to test for possible residual effects. Thirteen years after the last N addition, samples from the aboveground part of trees, field layer, S-layer, humus layer and mineral soil (0–10 cm) were analyzed for concentrations of most major nutrients. Nutrient pools were calculated. In the humus layer, the concentration of N increased and the C/N-ratio decreased with increasing N dose. The calculated recovery of added N in soil including ground vegetation was complete for the lowest N dose, while it was 25–50% for higher doses. The amount of N retained was unaffected by the N dose. The amount of extractable P in the upper part of the mineral soil was negatively correlated with N dose, as was also the concentration of total P in the S-layer. Neither soil pH, nor concentrations or amounts of Ca, Mg and K were affected by the previous fertilization. The calculated total soil-plant pool was only influenced by N dose in the case of P, which was 20% lower at the highest N dose compared with unfertilized conditions. Despite the large extra N input, the nutritional changes in plants and soil of the actual study site seemed surprisingly small.  相似文献   

5.
Leaf-level studies of Metrosideros polymorpha Gaud. (Myrtaceae) canopy trees at both ends of a substrate age gradient in the Hawaiian Islands pointed to differential patterns of adjustment to both nutrient limitation and removal of this limitation by long-term (8-14 years) nitrogen (N), phosphorus (P) and N + P fertilizations. The two study sites were located at the same elevation, had similar annual precipitation, and supported forests dominated by M. polymorpha, but differed in the age of the underlying volcanic substrate, and in soil nutrient availability, with relatively low N at the young site (300 years, Thurston, Hawaii) and relatively low P at the oldest site (4,100,000 years, Kokee, Kauai). Within each site, responses to N and P fertilization were similar, regardless of the difference in soil N and P availability between sites. At the young substrate site, nutrient addition led to a larger mean leaf size (about 7.4 versus 4.8 cm2), resulting in a larger canopy leaf surface area. Differences in foliar N and P content, chlorophyll concentrations and carboxylation capacity between the fertilized and control plots were small. At the old substrate site, nutrient addition led to an increase in photosynthetic rate per unit leaf surface area from 4.5 to 7.6 micromol m(-2) s(-1), without a concomitant change in leaf size. At this site, leaves had substantially greater nutrient concentrations, chlorophyll content and carboxylation capacity in the fertilized plots than in the control plots. These contrasting acclimation responses to fertilization at the young and old sites led to significant increases in total carbon gain of M. polymorpha canopy trees at both sites. At the young substrate site, acclimation to fertilization was morphological, resulting in larger leaves, whereas at the old substrate site, physiological acclimation resulted in higher leaf carboxylation capacity and chlorophyll content.  相似文献   

6.

Context

Forest ecosystem carbon uptake is heavily affected by increasing drought in the Mediterranean region.

Aims

The objectives of this study were to assess the capacity of a modified 3-PG model to capture temporal variation in gross primary productivity (GPP), and ecosystem net carbon uptake (NEE) in two Mediterranean forest types.

Methods

The model was upgraded from a monthly (3-PG) to a daily time step (3-PGday), and a soil water balance routine was included to better represent soil water availability. The model was evaluated against seasonal GPP and NEE dynamics from eddy covariance measurements.

Results

Simulated and measured soil water content values were congruent throughout the study period for both forest types. 3-PGday effectively described the following: GPP and NEE seasonal patterns; the transition of forest ecosystems from carbon sink to carbon source; however, the model overestimated diurnal ecosystem respiration values and failed to predict ecosystem respiration peaks.

Conclusions

The model served as a rather effective tool to represent seasonal variation in gross primary productivity, and ecosystem net carbon uptake under Mediterranean drought-prone conditions. However, its semi-empirical nature and the simplicity inherent in the original model formulation are obstacles preventing the model working well for short-term daily predictions.  相似文献   

7.
Soils in some parts of the world are known to be severely phosphorus (P) deficient. As little as 20 kg P ha−1 have produced large growth responses in forest stands. If increased tree growth and augmented P cycling are caused by a one-time P application, a valid question is whether the effect of the initial fertilization will be evident in the regenerating forest, thereby reducing the need for P fertilization early in the second rotation. The objective of this study was to evaluate the P status of the forest floor and inorganic P status of mineral surface soil of two long-term fertilizer trials in order to determine if there were increases in soil P amount and bioavailability that benefits the next rotation. Long-term fertilizer trials in Georgia, USA and New Zealand (29 and 22 years after fertilization) were the study sites. In Georgia, forest fertilization increased the mass of the F horizon by 239% and its P content by 318%. Anion exchange membranes measured up to a 47% increase in bioavailable P in the mineral soil in a fertilized treatment. While bioassays did not show significant residual P in the mineral soil under the fertilized plots, soil from an adjacent operationally fertilized stand, which had the forest floor bedded into its planting rows, showed a 100% increase in seedling P content. At the New Zealand site, the mineral soil contained 142% more P in the anion exchange membrane form than in the unfertilized soils. Bioassays indicated a 224% increase in seedling P content when grown in fertilized soil at the highest fertilization rate. Operational levels of fertilization did not yield a significant bioassay result. The data show that there can be a residual effect of fertilizer P in the rotation following fertilization. The bioassays, anion membrane exchangeable P and forest floor P from Georgia suggest that there is enough P in the soil system to support the needs of a regenerating stand of loblolly pine, while residual bioavailable P in the mineral soil from operational levels of fertilization at New Zealand site would require residual P in the forest floor or immediate fertilization to meet the demands of newly planted seedlings. Conservation of the forest floor is an important part of P management in these P deficient sites.  相似文献   

8.
We used concurrent measurements of soil water content and soil water potential (Psi(soil)) to assess the effects of Psi(soil) on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles at six sites characterized by differences in the types and amounts of woody vegetation and in climate. The six sites included a semi-arid old-growth ponderosa pine (Pinus ponderosa Dougl. ex P. Laws & C. Laws) forest, a moist old-growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forest, a 24-year-old Douglas-fir forest and three Brazilian savanna sites differing in tree density. At all of the sites, HR was confined largely to the upper 60 cm of soil. There was a common threshold relationship between the relative magnitude of HR and Psi(soil) among the six study sites. Below a threshold Psi(soil) of about -0.4 MPa, overnight recharge of soil water storage increased sharply, and reached a maximum value of 80-90% over a range of Psi(soil) from ~ -1.2 to -1.5 MPa. Although amounts of water hydraulically redistributed to the upper 60 cm of soil were relatively small (0 to 0.4 mm day(-1)), they greatly reduced the rates of seasonal decline in Psi(soil). The effectiveness of HR in delaying soil drying diminished with increasing sapwood area per ground area. The relationship between soil water utilization and Psi(soil) in the 20-60-cm layer was nearly identical for all six sites. Soil water utilization varied with a surrogate measure of rhizosphere conductance in a similar manner at all six sites. The similarities in relationships between Psi(soil) and HR, soil water utilization and relative rhizosphere conductance among the six sites, suggests that, despite probable differences in maximum rooting depth and density, there was a convergence in biophysical controls on soil water utilization and redistribution in the upper soil layers where the density of finer roots is greatest.  相似文献   

9.
配比施肥对南方红豆杉幼林生长的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
研究了配比施肥对2年生红豆杉幼林生长的影响.结果表明,在土壤肥力中下,N、P及有机质含量稍低的情况下,N、P、K适当配比施肥能显著促进南方红豆杉生长,但过量施肥,则会抑制其生长.N、P、K不同配比施肥对南方红豆杉幼林生长的影响差异显著,施肥在抽梢长度、地径年生长量、分枝数和干物质积累(株干质量)上分别比CK高33.14%~80.77%、100.00%~161.90%、11.81%~47.17%和207.42%~325.05%.试验设置的15个配比处理中,以7号处理最佳,12号处理最差,前者在上述4个生长性状上分别较后者高47.63%、61.90%、35.36%和117.63%.P素对南方红豆杉幼林生长影响最大,缺P时增施N和K效果较差.N×P互作效应显著,配比施用N、P能显著促进南方红豆杉幼林生长.  相似文献   

10.
We measured fine-root production at Acacia mangium (AM), Swietenia macrophylla (SM), and Araucaria cunninghamii (AC) sites in response to nitrogen (N) and phosphorus (P) application using the root-ingrowth core method for a period of 5 months in Sabah, Malaysia. Root growth increased significantly using a combined N and P application at the AM site, whereas it did not increase at the SM and AC sites. The number of nodules at the AM site increased significantly following N application and the combined application of N and P. Root production was not significantly enhanced by nutrient application at the SM and AC sites. At the AM site, both P and N were in high demand despite a larger N pool compared with at the SM and AC sites. These results can be explained by the larger nutrient demand by legumes. We conclude that both N and P is limiting for AM plantations under natural conditions and that N fertilization may be more effective than expected, depending on the site conditions.  相似文献   

11.
The low availability of nitrogen (N) is believed to be one of the major limiting factors of forest regeneration in Iceland and frequently under Boreal conditions. Lutz spruce (Picea x lutzii Littl.) seedlings were nutrient loaded using four fertilization regimes in the end of nursery rotation in autumn 2008 and planted in the following spring, with or without a single dose of fertilizer, on two treeless sites in N-Iceland with contrasting soil fertility. Measurements were made after one growing season. The highest loading level without additional field fertilization increased new needle mass by 122% and 152%, for the poor and more fertile site, respectively. The highest loading level with field fertilization increased new needle mass equally, by 188% and 189%, for the poor and more fertile site, respectively. Retranslocation of N, from old needles to current needles, increased with more loading. However, it was clear that nutrient loading could not replace field fertilization, as the seedlings generally showed an additive response to field fertilization and nutrient loading; doing both always gave the best results in seedling performance. As the study only covers field establishment during the first year, the long-term effect of nutrient loading of Lutz spruce cannot be predicted. However, it was concluded that loading might provide an additional input for faster plantation establishment during the first growing season after planting.  相似文献   

12.
Forest gaps are important in forest dynamics and management; however, the gap size that is most conducive to the decomposition of litter and promotion of nutrient cycling in forests remains poorly understood. The mass loss and nutrient release from Pinus massoniana and Toona ciliata litter in response to gap size classes were determined in south-western China during a 1.5-year litter decomposition experiment. One site with a closed canopy (CK) and seven sites with forest gaps of 100, 225, 400, 625, 900, 1 225 and 1 600 m2 were established in a P. massoniana plantation in the Sichuan Basin of China; the CK site (fully shaded) was treated as the control. After 540 d, the mass and carbon (C), nitrogen (N) and phosphorus (P) contents in the litter of the control treatments decreased by 58.23%, 60.81%, 65.62% and 57.82% for P. massoniana litter and by 91.17%, 80.76%, 73.66% and 64.55% for T. ciliata litter, respectively, compared with the initial amounts. Most of the C, N and P were released from both tree species during the first 90 d of decomposition, although the temperature and moisture conditions were very low. The mass loss and C and N release rates for the two tree species and the P release rate from T. ciliata litter were higher in the 400–900 m2 gap sites than in the other gap sites and the CK site, whereas the P release rate from P. massoniana litter was greater under large and medium-sized gaps (400–1 600 m2). The mass loss and C, N and P release rates were positively correlated with the soil moisture content in the seven different gap size treatments, with the soil moisture content representing the best predictor of litter decomposition. Therefore, our results indicate that medium-sized gaps (400–900 m2) can promote decomposition by changing the environmental conditions and may accelerate nutrient cycling in forest ecosystems.  相似文献   

13.
This paper examines some of the relationships between site, fertilizer type and foliar nutrient levels with regard to growth responses of Eucalyptus grandis (Hill ex Maid.) in order to optimise fertilizer recommendations and characterize their effect on tree growth. Six comprehensive fertilizer trials, employing confounded factorial designs, were laid out over a number of years on six sites in Natal and Zululand, covering a wide range of environmental conditions. Experiments were assessed and compared at 4 years of age in order to control within-block variation of site factors. The major growth responses were to N and/or P, N only being suitable on sandy soils low in organic matter. Topsoils very high in mineralizable N responded to applications of P only. Sites with moderate amounts of organic matter required both N and P. Potassium generally had a depressive effect. Foliar values agreed well with responses to fertilizers, and were useful in characterizing sites and determining optimum application levels. The improvement in yield as a result of fertilization was relatively greatest on poor sites. However, there was a trend for the response in absolute terms to increase with site quality. For fertilizer recommendations to be optimized, there is a need for sites to be classified in terms of their soil water availability and the organic-matter content and texture of the topsoil. As improvements in growth increase with time, they are probably due to changes in root development and structure, rather than overall nutrient status. Thus, fertilizing must be viewed only as an integrated part of establishment practices, including the condition of nursery stock, site preparation and weeding.  相似文献   

14.
  • ? Water and carbon fluxes, as measured by eddy covariance, climate, soil water content, leaf area index, tree biomass, biomass increment (BI), litter fall and mortality were monitored for 10 successive years in a young beech stand in Hesse forest (north-eastern France) under contrasting climatic and management conditions.
  • ? Large year-to-year variability of net carbon fluxes (NEE) and to a lesser extent, of tree growth was observed. The variability in NEE (coefficient of variation, CV = 44%) was related to both gross primary production (GPP) and to variations in total ecosystem respiration (TER), each term showing similar and lower interannual variability (CV = 14%) than NEE. Variation in the annual GPP was related to: (i) the water deficit duration and intensity cumulated over the growing season, and (ii) the growing season length, i.e. the period of carbon uptake by the stand. Two thinnings occurring during the observation period did not provoke a reduction in either GPP, water fluxes, or in tree growth. Interannual variation of TER could not be explained by any annual climatic variables, or LAI, and only water deficit duration showed a poor correlation. Annual biomass increment was well correlated to water shortage duration and was significantly influenced by drought in the previous year.
  • ? The relationship between annual NEE and biomass increment (BI) was poor: in some years, the annual carbon uptake was much higher and in others much lower than tree growth. However this relationship was much stronger and linear (r 2 = 0.93) on a weekly to monthly time-scale from budburst to the date of radial growth cessation, indicating a strong link between net carbon uptake and tree growth, while carbon losses by respiration occurring after this date upset this relationship.
  • ? Despite the lack of correlation between annual data, the NEE and BI cumulated over the 10 years of observations were very close.
  • ? On the annual time-scale, net primary productivity calculated from eddy fluxes and from biological measurements showed a good correlation.
  •   相似文献   

    15.
    The particle size distribution, the nutrient content and the sorption behaviour of six solid wood and ash/charcoal residues collected in three wood-processing companies in Germany and Brazil were investigated in order to elucidate the potential of these residues for the development of new products for soil amelioration. The absorption of N, P, and K by the residues and the leaching of nutrients from impregnated samples were studied in the laboratory at substrate temperatures of 20 and 300°C. The release of elements by the impregnated samples and the sorption behaviour of ash/charcoal incorporated in the soil were also studied in the field on a temperate site (Hamburg, 53°32′N 09°59′E), on a subtropical site (Ivaí, 25°15′S 50°45′W), and on a tropical site (Aripuanã, 10°09′S 59°26′W). Under laboratory conditions the solid wood residues absorbed 2.0–9.1% of the N, 0.1–0.4% of the P, and 1.0–8.5% of the K available in the impregnation solution. At a temperature of 20°C, selected sieve fractions of the ash/charcoal residues absorbed up to twice as much as N and up to 100 times more K than the treated wood residues. The absorption of N, P, and K to the ash/charcoal residues increased significantly at a substrate temperature of 300°C compared to a substrate temperature of 20°C. In absolute numbers, the leaching of N, P, and K from the impregnated ash/charcoal residues was in the range of the release by the impregnated solid wood residues, whilst the relative rate of nutrient leaching was strongly reduced. The field experiments confirmed the results obtained in the laboratory and indicated that ash/charcoal residues are suitable raw materials for the development of new products for soil amelioration, in particular for application under humid climate conditions.  相似文献   

    16.
    New Zealand is committed to developing sustainable forest management practices as evidenced through Government involvement in international forestry agreements such as the Montreal Process, and the forestry sector's adoption of forest certification mechanisms. Despite this, there is little quantitative evidence of how plantation forestry affects site quality and long-term site productivity. To address this issue, a nationwide study of site quality was established at 31 key sites covering the range of edaphic and environmental conditions for New Zealand plantation forests. At each location, eight short-term site quality plots were planted at a very high stand density (40,000 stems ha−1) to rapidly identify key soil indicators of growth which may be useful for determining site sustainability. The plots at each site were arranged in a factorial design with the following three factors: species (Pinus radiata D. Don and Cupressus lusitanica Mill.), fertiliser (no fertiliser and nutrients supplied in excess of crop demands) and disturbance (low and high disturbance). These plots were harvested after 4 years and data was used to (i) examine treatment and site effects on volume mean annual increment (MAI) and (ii) identify key soil properties that influence volume MAI for the two species.Volume MAI significantly ranged 7-fold across sites. For the treatments, species accounted for most of the variance in volume MAI, with values for P. radiata significantly exceeding those of C. lusitanica by 95%. Volume MAI was significantly affected by fertilisation which induced gains of 33%. Disturbance did not significantly affect volume MAI. After correction had been made for climatic variables, soil properties that were most strongly related to volume MAI for both species included C:N ratio, total phosphorus (P), and organic P. When soil properties were included in combination, the best predictive models of volume MAI formulated for P. radiata included total P and C:N ratio while the best predictive model for C. lusitanica included C:N ratio and Olsen P. Variation in species sensitivity to total P and C:N ratio is likely to be attributable to their different mycorrhizal associations. For both species, the most important soil physical property influenced by management operations was total porosity. This research suggests that total P, C:N ratio, Olsen P and total porosity should be used as indicator properties for determining sustainability of plantation grown P. radiata and C. lusitanica.  相似文献   

    17.
    The effects of nitrogen fertilization (100, 200 kg N ha−1 per year) and soil properties on mycorrhizal formation on Salix viminalis were investigated at three short rotation plantations on Gleysols and Cambisols (Abbachhof (ABB) and Wildeshausen (WIL) in Germany, Ultuna (ULT) in Sweden). During 3 years the ectomycorrhizal colonization, the composition of ectomycorrhizal morphotypes and the VAM spore density in the soil were analyzed. The ectomycorrhizal colonization was significantly altered due to N-fertilization at all sites. The quality and magnitude of the fertilization effects on mycorrhizal formation on Salix viminalis varied due to the soil properties, i.e. soil texture, soil N content and pH. The WIL site was characterized by sandy soil (low pH, high soil N content), whereas the ABB site was characterized by clayey soil (high pH, low N content). The ULT site was characterized by clayey soil (high pH, high N content). In the unfertilized control plots (C), ectomycorrhizal colonization was higher at WIL than at ABB. Fertilization reduced the ectomycorrhizal colonization at WIL but increased it at ABB. The distribution of the ectomycorrhizal morphotypes was very heterogeneous within the treatments, therefore significant differences were rare. Sporocarps were collected at ABB during one growing period. The sporocarps were mostly from saprophytic species, with exception of the ectomycorrhizal species Inocybe glabripes. Significant effects of N-fertilization on VAM spore density were observed at two of the three plantations. The pattern in VAM spore density was similar to the pattern seen for ectomycorrhizal colonization. Thus, VAM spore density was increased by fertilization at ABB (low soil N) and decreased at ULT (high soil N). The soil properties have been shown to modify the effects of fertilization on ectomycorrhizal colonization and VAM spore density. Therefore, in management practice of short rotation plantations, the benefit of N-fertilization should be evaluated keeping secondary effects caused by changed mycorrhizal formations in mind.  相似文献   

    18.
    施肥对杨树人工林土壤养分及环境影响的研究   总被引:3,自引:0,他引:3  
    本文报道了施肥4年对杨树人工林土壤养分的消长、水分物理特性及土壤微生物的影响。结果表明,施肥可提高土壤有机质,全N、速效N含量,其最适处理(100kgN/hm2+100kgP2O5/hm2)分别比施肥前提高21%、60%和14%;而施肥对全P、速效P以及土壤水分物理特性影响不大;对各处理土壤微生物的分析表明,施肥使土壤微生物总数比造林前提高了377%,从而提高土壤活性,促进林木生长。适当地施肥并不会对土壤理化性质和生态环境造成剧烈的影响。  相似文献   

    19.
    We investigated inter-annual variation of canopy CO2 exchange (NEE) and evapotranspiration during a 7-year period over a lowland Dipterocarp forest in Pasoh, Peninsular Malaysia, using the eddy covariance method. Annual rainfall fluctuated between 1,451 and 2,235?mm during this period. Annual evapotranspiration estimated by energy budget correction and gap filling using the relationship between latent heat and available energy was 1,287?±?52?mm. Despite inter-annual variation in rainfall, annual evapotranspiration was stable, except for a slight decrease in the driest year (2009). Evapotranspiration was roughly related to the amount of available energy, but was regulated by stomatal closure to prevent excessive water loss at high vapour pressure deficit. Even during dry periods, no significant decrease in evapotranspiration occurred, as water was supplied from soil layers deeper than 0.5?m. Ecosystem respiration (RE) increased with soil water content. Daytime NEE was also stable during the 7?years, despite climate variability. Afternoon inhibition of canopy photosynthesis was seen every month. Daytime NEE did not become more negative with increasing solar radiation, or with increasing soil water content. During dry periods, gross primary production (GPP) and thus canopy gross photosynthesis decreased slightly, coupled with decreased daytime RE. In this forest, variability in rainfall pattern resulted in seasonal and inter-annual variability in micrometeorology; evapotranspiration, photosynthesis, and RE responded to these changes, and compensated for each other and/or other components of micrometeorology, resulting in rather stable annual evapotranspiration and NEE, even during a very dry year associated with an El Nino Southern Oscillation (ENSO) event.  相似文献   

    20.
    We examined the impacts of a defoliating pest, Mycosphaerella leaf disease (MLD), on rotation-length Eucalyptus globulus plantation productivity under current and future climates by using the ecoclimatic species niche model CLIMEX to generate severity, frequency and seasonality scenarios for MLD for specific E. globulus sites. These scenarios were used as inputs to the process-based forest productivity model CABALA. Climate projections from two global climate models were used to drive CABALA with either no or full acclimation of photosynthesis to elevated atmospheric CO2 assumed. In addition we varied water and nitrogen availability to examine the impacts of different severities of MLD on plantation productivity across environmental gradients. We predicted that, under current climatic conditions, rotation-length reductions in V associated with MLD damage would be no greater than 12%, with an across-site average of 6%. There was considerable between-site variation in predictions that reflected variation in site productivity. Under future climates, we predicted that MLD may reduce rotation length V by as much as 42%, although the reduction averaged across all sites was 11%. The predicted impact of MLD on V was greatest at lower productivity sites. The importance of N and water availability in recovery following MLD attack was highlighted. Uncertainty in model predictions revolved around the climate models used and assumptions of degree of photosynthetic acclimation to elevated CO2. Large differences in predicted impact of MLD were associated with this uncertainty. Our results suggest that the effects of defoliation due to pests on plantation productivity should not be ignored when considering future management of forest plantations. The approach developed here provides managers with a tool to appraise risk and examine possible impacts of management interventions designed to reduce or manage risk.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号