首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Batch adsorption experiments were carried out with samples from an A-, Bh- and C-horizon of contaminated sandy soil of podzolic character from the Kempen region at the Dutch-Belgian border. Cadmium sorption was studied on 3 soil samples at 3 different pH-levels (3.6, 4.3 and soil buffered pH) and 3 different additions of zinc (0–40 mg l-1). Adsorption of cadmium by acid sandy soils can be fitted by a Freundlich adsorption isotherm. Although zinc competes with cadmium for the sorption sites, we observe a two to three times stronger competition effect of the proton cation, which is explained by the chemical properties of both ions. The cadmium adsorption coefficient KF decreases considerably by an increase of the proton activity used in the sorption experiments. Organic matter content explains for a large part the variation of KF of te three soil samples. Desorption data do not fit the proposed regression model for adssorption. Not all the cadmium, intitially present in the polluted soil, will fylly desorb reversibly. Thus, part of the cadmium may be irreversible bound.  相似文献   

2.
Current UK legislation permits the application of sewage sludge to agricultural land provided concentrations of heavy metals in soil do not increase above maximum permissible limits. However, even within the defined limits, we do not know how an increase in soil heavy metal concentrations is likely to affect biological diversity and activity. Here we report on the effects of sewage sludge addition, including sludge rich in the metals cadmium, copper and zinc, on soil fungal community composition using both an rDNA and rRNA DGGE approach. Sewage sludge addition altered fungal ITS-DGGE banding patterns, however, there were no additional effects of an increase in soil heavy metal concentrations. Similar results were obtained for the full range of copper rich sludge treatments even when copper concentrations were well above the maximum permissible limits. Our data therefore demonstrate that although an increase in soil organic matter content alters soil fungal community diversity and composition, increasing soil concentrations of cadmium, copper and zinc up to current legislative limits had little additional effect regardless of whether rRNA or rDNA was analysed. This suggests that current UK limits for these three heavy metals are within a concentration range that the dominant soil fungi at this field site can tolerate.  相似文献   

3.
Stability and resilience of a variety of soil properties and processes are emerging as key components of soil quality. We applied recently developed measures of biological and physical resilience to soils from an experimental site treated with metal‐contaminated sewage sludge. Soils treated with cadmium‐, copper‐ or zinc‐contaminated, digested or undigested sewage sludge were studied. Biological stability and resilience indices were: (i) the time‐dependent effects of either a transient stress (heating to 40°C for 18 hours) or a persistent stress (amendment with CuSO4) on decomposition, and (ii) the mineralization of dissolved organic carbon (DOC) released by drying–rewetting cycles. Physical stability and resilience measures were: (i) compression and expansion indices of the soils, and (ii) resistance to prolonged wetting and structural regeneration through drying–rewetting cycles. Soil total carbon and DOC levels were greater in the sludge‐amended soils, but there were no differential effects due to metal contamination of the sewage sludge. Effects of metals on physical resilience were greater than effects on soil C, there being marked reductions in the expansion indices with Cd‐ and Cu‐contaminated sludge, and pointed to changes in soil aggregation. The rate of mineralization of DOC released by drying and wetting was reduced by Zn contamination, while biological resilience was increased in the Zn‐contaminated soil and reduced by Cd contamination. We argue that physical and biological resilience are potentially coupled through the microbial community. This needs to be tested in a wider range of soils, but demonstrates the benefits from a combined approach to the biological and physical resilience of soils.  相似文献   

4.
Holm  P.E.  Christensen  T.H.  Lorenz  S.E.  Hamon  R.E.  Domingues  H.C.  Sequeira  E.M.  McGrath  S.P. 《Water, air, and soil pollution》1998,102(1-2):105-115
Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1 – 7.8) and concentrations of cadmium (0.2 – 17 mg Cd kg-1) and zinc (36 – 1300 mg Zn kg-1). The soil waters contained total concentrations of 0.5 to 17 µg Cd L-1 and 9 to 3600 µg Zn L-1, which were dominated by free metal ions as measured by an ion exchange-resin method. Annual leaching outflows were estimated from soil water concentrations to be 0.5 – 17 g Cd ha-1 y-1 and 9 – 3600 g Zn ha-1 y-1 per 100 mm of net percolation, corresponding to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO3)2 extracts of the soils and with soil water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils.  相似文献   

5.
Abstract

In a two‐year field experiment, dry sewage sludge was applied to fields plots at rates of 0,26,42,58, or 77 tons ha‐1 year‐1 on a clay loam soil (calcixerrolic xerochrept), well drained with a pH value of 8.15. Cotton was the cultivated plant (Gossypiumhirsutum variety korina). Sequential extraction was used to separate the different forms of the metals (exchangeable, organically bound, carbonates and residual) in the soil‐sludge mixtures. Cotton yield increased in the second year of experimentation compared with the control treatment (without fertilization and no application of sewage sludge). Most of the metals studied [cadmium (Cd), zinc (Zn), copper (Cu), and nickel (Ni)] were found in the organically bound, carbonate or residual forms. From the elements in the soil fractions, only Zn in the residual form was correlated with the Zn content of cotton leaves. The diethylenetriaminepentaacetic acid (DTPA) extraction of the plant‐available levels of the elements showed only for Cd a simple linear correlation, between concentration in soils and cotton leaves.  相似文献   

6.
Isotopically exchangeable cadmium and zinc (‘E values’) were measured on soils historically contaminated by sewage sludge and ones on zinc‐rich mine spoil. The E‐value assay involves determining the distribution of an added metal isotope, e.g. 109Cd, between the solid and solution phases of a soil suspension. The E values for both metals were found to be robust to changes in the position of the metal solid?solution equilibrium, even though the concentration of dissolved metal varied substantially with electrolyte composition and soil:solution ratio. Concentration of labile metal was also invariant over isotope equilibration times of 2–6 days. The use of a submicron filtration procedure, in addition to centrifuging at 2200 g , proved unnecessary if 0.1 m Ca electrolyte was used to suspend the soils. The proportion of ‘fixed’ metal, in non‐labile forms, apparently increased with increasing pH, although there was considerable variation in both sets of contaminated soil. Zinc and cadmium in the sludged soils were similarly labile. Several possible methods for the measurement of chemically reactive metal were explored for comparison with E values, including single extraction with 1 m CaCl2 and a ‘pool depletion’ (PD) method. The latter involves comparing solid?solution metal equilibria in two electrolytes with differing degrees of (solution) complex formation, 0.1 m Ca(NO3)2 and CaCl2. Both the single extraction and the PD method gave good estimates of E value for Cd, although the single extraction was more consistent. Neither technique was a useful substitute for determining labile Zn, because of weak chloro‐complexation of Zn2+. We therefore suggest that 1 m CaCl2 extraction of Cd alone be used as an alternative to E values to avoid the inconvenience of isotopic dilution procedures.  相似文献   

7.
Abstract

Incineration reduces sewage sludge volume, but management of the resulting ash is an important environmental concern. A laboratory incubation study and greenhouse pot experiments with lettuce (Lactuca sativa L.) and corn (Zea mays L.) were conducted to examine the potential for recycling elements in sewage sludge incinerator ash in agricultural systems. Ash rates in both the laboratory and greenhouse were 0, 0.95, 3.8, 15.2, and 61.0 g/kg soil (Typic Hapludoll). Ash was also compared to equivalent rates of citrate soluble P from superphosphate fertilizer in a soil‐less growth medium. During soil: ash incubation, Olsen P and DTPA extractable copper (Cu), zinc (Zn), cadmium (Cd), and lead (Pb) increased with incubation time at the higher ash rates. Release rates diminished rapidly, however, and the limited release of these elements after 280 days was associated with decreasing pH. In the greenhouse, ash amendment increased extractable soil P, plant tissue P, and the growth of lettuce and corn. Ash was a less effective P source than superphosphate fertilizer in the soil‐less growth medium and Olsen P levels were more consistent with these differences than Bray P. Ash increased extractable soil levels and plant tissue concentrations of calcium (Ca), magnesium (Mg), sodium (Na), Cu, and Zn, but extractable soil manganese (Mn) and plant tissue Mn decreased. Ash increased soil pH and extractable SO4‐S. DTPA extractable Cd and Pb increased, but chromium (Cr) and nickel (Ni) decreased. Lettuce accumulated higher amounts of these trace metals than corn, but tissue concentrations were at control levels or below detection limits in both crops.  相似文献   

8.
植物吸取修复及钝化处理对后茬水稻镉吸收的影响   总被引:2,自引:0,他引:2  
采集湖南湘潭县某地镉(Cd)污染酸性农田土壤及其经伴矿景天分别吸取修复两季和三季后的土壤,采用盆栽试验研究了经伴矿景天修复及钝化改良与否对土壤pH、有效态Cd、Zn以及水稻生长和稻米Cd、Zn浓度的影响。结果表明:未改良的处理,随着修复次数的增加,土壤pH显著降低,降低幅度为0.26~0.38个单位;且修复两季、三季土壤CaCl_2提取态Cd浓度较未修复土壤分别降低19.4%、24.0%;修复后土壤种植水稻品种W184,其糙米中Cd浓度显著降低,但依然超标;修复三季土壤种植低积累水稻品种IRA7190,其糙米中Cd由0.47 mg/kg降为0.03 mg/kg。施加钝化剂海泡石和石灰(10 g/kg+1 g/kg)后,修复两季、三季土壤的pH显著升高,较未施钝化剂处理土壤pH分别提高0.95、0.72;土壤CaCl_2提取态Cd浓度分别降低79.8%、79.5%;修复两季、三季土壤上水稻W184糙米的Cd浓度与未施加钝化剂相比,分别降低27.3%、44.4%,均降至国家食品安全限值0.2 mg/kg以下;无论是否添加钝化剂,伴矿景天吸取修复三季的土壤上水稻IRA7190糙米中Cd浓度均仅0.03 mg/kg。  相似文献   

9.
Jing  Feng  Yang  Zhijiang  Chen  Xiaomin  Liu  Wei  Guo  Bilin  Lin  Gaozhe  Huang  Ronghui  Liu  Wenxin 《Journal of Soils and Sediments》2019,19(7):2957-2970
Purpose

Biochar has shown to be a great product to control the bioavailability of potentially hazardous elements (PHE) in contaminated soils. Despite the advantages associated with the application of biochar in agricultural soils, relatively few studies have focused on the effects of biochar amendments on soil chemical properties, accumulation of arsenic, cadmium, zinc, and lead in rice tissues, and their availability in soil systems.

Materials and methods

The field experiment was conducted at the paddy soils in Hunan Province, China. The soil texture was sandy clay loam. Wheat-derived biochar was applied once to the experimental plots at the rates of 0, 10, 20, 30 and 40 t ha?1, and referenced as A0, A10, A20, A30, and A40, respectively. For PHE determination, soil samples and plant samples were digested with a mixed solution of HCl:HNO3 (4:1, V:V) and HCl:HClO4 (4:1, V:V), respectively, and the arsenic, cadmium, zinc, and lead in the digest solution were measured by ICP-MS (Thermo Fisher Scientific, USA). The soil available fraction of PHE (arsenic, cadmium, zinc, and lead) was extracted by diethylenetriamine pentaacetic acid (DTPA) and measured by inductively ICP-MS.

Results and discussion

Biochar amendment increased chemical properties of soil organic matter, pH, electrical conductivity, cation exchange capacity, nitrate nitrogen, and available phosphorus. Soil DTPA extractable arsenic, cadmium, zinc, and lead concentrations were significantly reduced. Arsenic, cadmium, zinc, and lead in rice shoots, and arsenic, cadmium, and zinc in roots significantly decreased after amendment. Concentrations in rice tissues positively and negatively correlated with the soil available fraction of PHE and soil chemical properties, respectively. Soil electrical conductivity negatively correlated with the soil available fraction of PHE. Concentrations of arsenic, zinc, cadmium, and lead in rice roots declined relative to increases of cation exchange capacity (arsenic, zinc), available phosphorus (cadmium), and nitric nitrogen (lead) content. Similar relationships were observed between cation exchange capacity and PHE in shoots.

Conclusions

Biochar creates avoidance of PHE through regulating chemical properties through biochar sorption capacity. Cation exchange capacity, available phosphorus, and nitric nitrogen were the principle factors affecting roots uptake of arsenic, zinc, cadmium, and lead. Biochar soluble salts could decline availability of metals/metalloids in soils through precipitation. Wheat-derived biochar application is an alternative safe product to immobilize PHE in rice paddy soils by restricting the risk of PHE.

  相似文献   

10.
Certain wild plants as well as crop plants, so-called hyperaccumulators, are able to accumulate large amounts of heavy metals in aerial parts. This property may be exploited for the clean-up of soil contaminated by metals (phytoremediation), if the yield and metal accumulation are big enough to finish remediation within a reasonable period (e.g. five years). Therefore, the ability of various plants to accumulate zinc and cadmium were compared in field trials. The wild species Thlaspi caerulescens and Alyssum murale as well as the tree Salix viminalis showed a strong ability to accumulate zinc and cadmium. However, phytoremediation of investigated soils contaminated with cadmium (6.6 ppm) or zinc (810 ppm) lasts too long based on present technology. Literature data and preliminary experiments indicate that major obstacles could be overcome: Yield and metal-uptake rates have to be increased dramatically in order to allow remediation within reasonable periods.  相似文献   

11.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

12.
Denitrification assays in soils spiked with zinc salt have shown inhibition of the N2O reduction resulting in increased soil N2O fluxes with increasing soil Zn concentration. It is unclear if the same is true for environmentally contaminated soils. Net production of N2O and N2 was monitored during anaerobic incubations (25 °C, He atmosphere) of soils freshly spiked with ZnCl2 and of corresponding soils that were gradually enriched with metals (mainly Zn) in the field by previous sludge amendments or by corrosion of galvanized structures. Total denitrification activity (i.e. the sum of N2O+N2 production rate) was not inhibited by freshly added Zn salts up to 1600 mg Zn kg−1, whereas N2O reduction decreased by 50% (EC50) at total Zn concentrations of 231 mg Zn kg−1 (ZEV soil) and 368 mg Zn kg−1 (TM soil). In contrast, N2O reduction was not reduced by soil Zn in any of the field contaminated soils, even at total soil Zn or soil solution Zn concentrations exceeding more than 5 times corresponding EC50's of the freshly spiked soil. The absence of adverse effects in the field contaminated soils was unrelated to soil NO3 or organic matter concentration. Ageing (2-8 weeks) and soil leaching after spiking reduced the toxicity of Zn on N2O reduction, either expressed as total Zn or soil solution Zn, suggesting adaptation reactions. However, no full recovery after spiking was identified at the largest incubation period in one soil. In addition, the denitrification assay performed with sewage sludge showed elevated N2O release in Zn contaminated sludges (>6000 mg Zn kg−1 dry matter) whereas this was not observed in low Zn sludge (<1000 mg Zn kg−1 dry matter) suggesting limits to adaptation reactions in the sludge particles. It is concluded that the use of soils spiked with Zn salts overestimates effects on N2O reduction. Field data on N2O fluxes in sludge amended soils are required to identify if metals indeed promote N2O emissions in sludge amended soils.  相似文献   

13.
Abstract

The co‐disposal of papermill sludge with biosolids is seen as an alternative soil amendment to papermill sludge and inorganic fertilizer. The objectives of this study were to assess the suitability of co‐disposal of papermill sludge and biosolids by measuring changes in the soil physicochemical properties and the phytoavailability of cadmium (Cd) and zinc (Zn). Biosolids were applied with papermill sludge as an alternative source of N to inorganic fertilizers at rates calculated on the basis of C:N ratios of the amendments and common papermill sludge disposal practices. Perennial ryegrass (Lolium perenne L.) was grown on amended soils for 6 months under glasshouse conditions. The papermill sludge amendment alone increased soil pH and the rate of carbon degradation compared to the control (no amendment) and biosolid co‐disposal amendment. There was no difference in dry matter yield per pot of ryegrass between the treatments. Cadmium concentrations in plant tissue increased through the trial with the application of biosolids and papermill sludge. These findings were correlated well with the sorption properties of the soils for Cd as derived from isotherms. However, Zn uptake was unaffected by the application of the papermill sludge and biosolids.  相似文献   

14.
油枯对镉污染土壤的钝化研究   总被引:1,自引:0,他引:1  
为了研究油枯对镉(Cd)污染土壤的钝化效果,以油枯为外源添加物(质量比:1%、2%、3%、4%、5%),模拟田间条件在塑料桶中进行为期45 d的培养,对镉污染土壤中Cd形态分布特征、DTPA提取态Cd(DTPA-Cd)含量、pH、有机质含量进行分析。结果表明,添加油枯可显著降低镉污染土壤中可交换态镉(Ex-Cd)的比例,提高碳酸盐结合态镉(Cb-Cd)、铁锰氧化物结合态镉(Fe-Mnb-Cd)以及有机质及硫化物晶格态镉(OMb-Cd)的比例,而残渣晶格结合态镉(RLb-Cd)变化不明显。添加油枯显著降低镉污染土壤中DTPA-Cd含量,降幅最高可达49%。镉污染土壤p H值维持在6.0左右,1%~4%添加处理中土壤pH波动幅度较大;而5%添加处理的土壤pH波动幅度小。添加油枯均能显著提高镉污染土壤中有机质含量。由此可见,油枯对镉污染土壤有较好的钝化效果,这为重金属污染土壤的修复和农业废弃物的循环利用提供了参考。  相似文献   

15.
The influence of soil clay type on the ‘availability’ of zinc was studied in six rendzina soils from Israel. The quantities of zinc extracted by EDTA—(NH4)2CO3, were higher in the soils with a lower total of zinc content. Values of extracted zinc calculated on the basis of soil minus CaCO3 were higher in soils with attapulgite than in soils with montmorillonite as the predominant mineral. Thus, it appears that zinc is more strongly bound to montmorillonite. This was confirmed by a greenhouse experiment in which total zinc uptake after zinc fertilization was higher from rendzinas containing attapulgite than from montmorillonitic rendzinas.  相似文献   

16.
Abstract

Heavy metal pollution is a widespread global problem causing serious environmental concern. Cadmium, one of the heavy metals, is water soluble and can be transferred from soil to plants and enter into the food chain. It is detrimental to human health because it accumulates in the body and can cause renal tubular dysfunction, pulmonary emphysema and osteoporosis. This heavy metal needs to be cleaned up for a clean and safe environment. An experiment was conducted to evaluate the potential of Dyera costulata as a phytoremediator to absorb cadmium from contaminated soils. Dyera costulata seedlings were planted on six different growth media (soil + different levels of cadmium): Control, 25 ppm Cd, 50 ppm Cd, 75 ppm Cd, 100 ppm Cd and 150 ppm Cd. The highest growth performance mainly height, basal diameter and number of leaves were in the control, 50 ppm Cd and 25 ppm Cd treatments, respectively. The highest accumulation of cadmium (52.9 ppm) was in the 75 ppm Cd treatment. Among the plant parts, leaves showed the highest concentration of cadmium. Dyera costulata showed high translocation factor and low bioconcentration factor values in soil at high cadmium concentrations and was also able to tolerate and accumulate high concentrations of cadmium. The roots of Dyera costulata were found to be suitable for the absorption of cadmium in contaminated soils. This species can be an efficient phytoremediator for soils contaminated with cadmium.  相似文献   

17.
Heavy metals (HMs) in domestic sewage sludge, applied to land, contaminate soils. Phytoremediation is the use of plants to clean‐up toxic HMs from soil. Chelating agents are added to soil to solubilize the metals for enhanced uptake. Yet no studies report the displacement of HMs in soil with sludge following solubilization with chelates. The objective of this work was to determine the uptake or leaching of HMs due to a chelate added to a soil from a sludge farm that had received sludge for 25 y. The soil was placed in long columns (105 cm long; ?? 39 cm) in a greenhouse. Columns either had a plant (hybrid poplar; Populus deltoides Marsh. × P. nigra L.) or no plant. After the poplar seedlings had grown for 144 d, the tetrasodium salt of the chelating agent EDTA was irrigated onto the surface of the soil at a rate of 1 g per kg of soil. Drainage water, soil, and plants were analyzed for three toxic HMs (Cd, Ni, Pb) and four essential HMs (Cu, Fe, Mn, Zn). At harvest, extractable and total concentrations of each HM in the soil with EDTA were similar to those in soil without EDTA. The chelate did not affect the concentrations of HMs in the roots or leaves. With or without plants, EDTA mobilized all seven HMs and increased their concentrations in drainage water. Lower concentrations of Cd, Cu, Fe, Ni, and Zn in leachate from columns with EDTA and plants compared to columns with EDTA and no plants showed that poplars can reduce groundwater contamination by intercepting these HMs in the soil. But the poplar plants did not reduce Pb and Mn in the leachate from columns with EDTA. Concentrations of Cd and Pb in the leachate mobilized by EDTA remained above drinking‐water standards with or without plants. The results showed that a chelate (EDTA) should not be added to a soil at a sludge farm to enhance phytoremediation. The chelate mobilized HMs that leached to drainage water and contaminated it.  相似文献   

18.
为探究喀斯特地区碎石夹层对碳酸盐岩红土水力特性的影响因素,通过室内模拟土柱入渗试验,采用垂直入渗水头法研究3种碎石体积含量(0,40%,80%)和3种碎石埋藏深度(0,5,15 cm)分别与累积入渗量、湿润锋、入渗特性和土壤水分特征曲线之间的关系,并采用3种模型分析了含碎石土壤对传统土壤入渗模型的适用性,将实测入渗数据结合改进的Green-Ampt模型反演Brooks-Corey模型参数。结果表明:在相同碎石埋藏深度下,累积入渗量、湿润锋、初始入渗率、平均入渗率和稳定入渗率均随碎石含量增加而减小;当碎石含量为40%时,埋藏深度是15 cm的土壤稳定入渗率最大(12.71 mm/h),是埋藏深度为0 cm的1.33倍。Horton模型对含碎石夹层土壤入渗规律的适用性要优于Kostiakov模型和Philip模型。反演参数a、n和hd在同一碎石埋藏深度(0,5 cm)下,随碎石含量增加而增大,而Ks随碎石含量增加而减小。通过土壤水分特征曲线可知,对照组土壤持水性最低;含碎石夹层土壤持水性随碎石含量增加而减弱,但碎石埋藏深度为15 cm时,含碎石夹...  相似文献   

19.
Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effect on the plant growth or inhibited it. All inoculated willows showed increased concentrations of nutritional elements (N, P, K and Zn) and decreased concentrations of Cd in the shoots. The lowest biomass production and concentration of Cd in the willows (+ B. cereus) were combined with the strongest expression of metallothioneins. It seems that biotic stress from bacterial invasion increased the synthesis of these stress proteins, which responded in decreased Cd concentrations. Contents of Cd and Zn in the stems of willows were combination-specific, but were always increased in dual inoculated plants. In conclusion, single inoculations with former mycorrhiza-associated B. cereus strains decreased the phytoextraction efficiency of willows by causing biotic stress. However, their joint inoculation with an ectomycorrhizal fungus is a very promising method for promoting the phytoextraction of Cd and Zn through combined physiological effects on the plant.  相似文献   

20.
采用室内培养的方法,研究了石灰性褐土中磷、锌、镉相互作用对土壤中磷、锌、镉有效性的影响。结果表明:(1)磷锌共同培养时,施锌提高了土壤速效磷含量,且随培养时间的延长而降低。在相同锌浓度处理下,土壤中的有效锌含量随施磷量的增加而增加,不同锌浓度处理下,有效锌含量随土壤培养时间的延长而显著降低。(2)磷镉共同培养时,施镉对土壤速效磷含量影响不明显;施磷降低了有效镉含量,但效果不显著;且都随时间的延长而降低。(3)锌镉共同培养时,在培养的前30d,土壤中有效锌含量随施镉浓度增加而降低,但在30d后,有效锌含量有增加的趋势。土壤中有效镉含量在不同锌-镉处理下随培养时间变化有较大差异:在Cd3处理下,加入高浓度锌后显著降低土壤有效镉含量;Cd30处理下,在培养前30d,锌的施入对土壤中有效镉含量影响不明显,但30d以后,土壤有效镉含量随施入锌浓度的增加而显著降低。说明两者的竞争机制随时间的延长发生变化,且施锌能明显降低镉的毒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号