首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The onset of protection after the administration of a modified-live bovine viral diarrhea virus (BVDV) vaccine was determined. Protection was determined following experimental infection with a virulent type-2 BVDV (strain 1373) in cattle vaccinated 3, 5, or 7 days before BVDV infection. Protection, as measured by reduced virus shedding, lack of leukopenia, reduction in viremia, and reduced mortality, was present as early as 3 days after vaccination with a single dose of modified-live BVDV vaccine. Complete protection was obtained in cattle vaccinated 5 or 7 days before BVDV experimental infection.  相似文献   

2.
A bovine herpesvirus-1 (BHV-1) vaccine expressing glycoprotein D, the form with the transmembrane anchor removed, was evaluated for inducing immunity in calves. The plasmid encoding gD of BHV-1 was injected three times to nine calves, using three animals for each of the following routes: intramuscularly (i.m.), intradermally (i.d.), or intranasally (i.n.). Three additional calves were given the plasmid vector only and served as unvaccinated controls. When calves were subjected to challenge infection with BHV-1, all vaccinated calves as well as the controls developed a typical severe form of infectious bovine rhinotracheitis. However, compared to the controls, the vaccinated calves showed earlier clearance of challenge virus. Moreover, the calves given the vaccine i.m. developed neutralizing antibody to BHV-1 between 21 and 42 days following the first injection of vaccine, whereas in calves vaccinated either i.d. or i.n., as well as the controls, antibody first appeared in their sera 14 days post-challenge infection.  相似文献   

3.
A commercial vaccine containing modified-live bovine viral diarrhea virus (BVDV; types 1 and 2) was administered to one group of 22 peripubertal bulls 28 days before intranasal inoculation with a type 1 strain of BVDV. A second group of 23 peripubertal bulls did not receive the modified-live BVDV vaccine before intranasal inoculation. Ten of 23 unvaccinated bulls--but none of the vaccinated bulls--developed a persistent testicular infection as determined by immunohistochemistry and polymerase chain reaction. Results of this study indicate that administration of a modified-live vaccine containing BVDV can prevent persistent testicular infection if peripubertal bulls are vaccinated before viral exposure.  相似文献   

4.
OBJECTIVE: To evaluate protection resulting from use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine against systemic infection and clinical disease in calves challenged with type 2 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV 1 (WRL strain). Calves in both groups were challenged intranasally with BVDV type 2 isolate 890 on day 21. Rectal temperatures and clinical signs of disease were recorded daily, and total and differential WBC and platelet counts were performed. Histologic examinations and immunohistochemical analyses to detect lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to BVDV type 2, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV type 1 vaccine protected against systemic infection and disease after experimental challenge exposure with BVDV type 2. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

5.
Generalized bovine herpesvirus 1 (BHV-1) infection was diagnosed in six Salers calves from the same herd. The calves had received an intramuscular injection of modified-live infectious bovine rhinotracheitis parainfluenza-3 vaccine between birth and three days of age. The purpose of this study was to determine if the outbreak was associated with the vaccine strain of BHV-1. Analysis of epidemiological data and BHV-1 DNA for restriction fragment length polymorphism was undertaken. Multifocal necrosis in multiple organs was observed on pathological examination, and the presence of BHV-1 in tissues was confirmed by immunohistochemistry. Forty-three calves (aged birth to thirty days) were vaccinated over an 11-day interval. The 10 deaths recorded for vaccinated calves were clustered over a subsequent 14-day interval. Mortality in calves vaccinated between birth and three days of age was significantly higher than in nonvaccinated calves (chi-square test; p < or = 0.025), and this mortality was characterized by a greater age at death and duration of illness for vaccinated calves (t test; p < or = 0.001). The patterns of the restriction fragments, generated by six restriction endonucleases, of BHV-1 isolated from a necropsied calf and from the vaccine were identical, and different from that of a laboratory strain of BHV-1 (P8-2). These findings support the conclusion that newborn calves were susceptible to an intramuscularly injected vaccine strain of BHV-1, and that administration of an intramuscular modified-live infectious bovine rhinotracheitis parainfluenza-3 vaccine to neonatal calves may not be an innocuous procedure.  相似文献   

6.
7.
Objective-To determine whether administration of 2 doses of a multivalent, modified-live virus vaccine prior to breeding of heifers would provide protection against abortion and fetal infection following exposure of pregnant heifers to cattle persistently infected (PI) with bovine viral diarrhea virus (BVDV) and cattle with acute bovine herpesvirus 1 (BHV1) infection. Design-Randomized controlled clinical trial. Animals-33 crossbred beef heifers, 3 steers, 6 bulls, and 25 calves. Procedures-20 of 22 vaccinated and 10 of 11 unvaccinated heifers became pregnant and were commingled with 3 steers PI with BVDV type 1a, 1b, or 2 for 56 days beginning 102 days after the second vaccination (administered 30 days after the first vaccination). Eighty days following removal of BVDV-PI steers, heifers were commingled with 3 bulls with acute BHV1 infection for 14 days. Results-After BVDV exposure, 1 fetus (not evaluated) was aborted by a vaccinated heifer; BVDV was detected in 0 of 19 calves from vaccinated heifers and in all 4 fetuses (aborted after BHV1 exposure) and 6 calves from unvaccinated heifers. Bovine herpesvirus 1 was not detected in any fetus or calf and associated fetal membranes in either treatment group. Vaccinated heifers had longer gestation periods and calves with greater birth weights, weaning weights, average daily gains, and market value at weaning, compared with those for calves born to unvaccinated heifers. Conclusions and Clinical Relevance-Prebreeding administration of a modified-live virus vaccine to heifers resulted in fewer abortions and BVDV-PI offspring and improved growth and increased market value of weaned calves.  相似文献   

8.
9.
10.
Susceptible calves were administered modified live virus (MLV) vaccines containing bovine herpesvirus-1 (BHV1) and bovine viral diarrhoea type 1 (BVDV1a) strains intramuscularly, with one vaccine containing both MLV and inactivated BHV-1 and inactivated BVDV1a. There was no evidence of transmission of vaccine (BHV-1 and BVDV1a) strains to susceptible non-vaccinated controls commingled with vaccinates. No vaccinates had detectable BHV-1 in peripheral blood leucocytes (PBL) after vaccination. Each of three vaccines containing an MLV BVDV1a strain caused a transient BVDV vaccine induced viremia in PBL after vaccination, which was cleared as the calves developed serum BVDV1 antibodies. The vaccine containing both MLV and inactivated BHV-1 induced serum BHV-1 antibodies more rapid than MLV BHV-1 vaccine. Two doses of MLV BHV-1 (days 0 and 28) in some cases induced serum BHV-1 antibodies to higher levels and greater duration than one dose.  相似文献   

11.
OBJECTIVE: To evaluate protection against systemic infection and clinical disease provided by use of a modified-live noncytopathic bovine viral diarrhea virus (BVDV) type 1 vaccine in calves challenged with NY-1 BVDV. ANIMALS: 10 calves, 5 to 7 months of age. PROCEDURES: Calves were allocated (n = 5/group) to be nonvaccinated or vaccinated SC on day 0 with BVDV type 1 (WRL strain). Calves in both groups were challenged intranasally with NY-1 BVDV on day 21. Calves' rectal temperatures and clinical signs of disease were recorded daily, total and differential WBC and platelet counts were performed, and serum neutralizing antibody titers against NY-1 BVDV were determined. Histologic examinations and immunohistochemical analyses to detect gross lesions and distribution of viral antigens, respectively, were performed. RESULTS: After challenge exposure to NY-1 BVDV, nonvaccinated calves developed high rectal temperatures, increased respiratory rates, viremia, leukopenia, lymphopenia, and infection of the thymus. Vaccinated calves did not develop high rectal temperatures or clinical signs of respiratory tract disease. Vaccinated calves appeared to be protected against systemic replication of virus in that they did not develop leukopenia, lymphopenia, viremia, or infection of target organs, and infectious virus was not detected in peripheral blood mononuclear cells or the thymus. CONCLUSIONS AND CLINICAL RELEVANCE: The modified-live BVDV vaccine protected calves against systemic infection and disease after experimental challenge exposure with NY-1 BVDV. The vaccine protected calves against infection and viremia and prevented infection of target lymphoid cells.  相似文献   

12.
Similar clinical signs have been reported in calves infected either by Dictyocaulus viviparus or bovine respiratory syncytial virus. Three experiments were carried out to establish the clinical picture and the course of the disease in animals with these infections. The clinical signs of calves infected with lungworm included coughing, nasal discharge, tachypnoea, abdominal breathing and pyrexia, and auscultation of their lungs revealed increased bronchial sounds. Similar signs were also observed after infection with bovine respiratory syncytial virus, but the signs were more acute and resolved more rapidly than in animals infected with lungworm larvae. Calves infected with lungworm had more serious clinical signs after infection with bovine respiratory syncytial virus than calves, which were not infected with lungworm.  相似文献   

13.
OBJECTIVE: To determine the ability of a modified-live virus (MLV) bovine viral diarrhea virus (BVDV) type 1 (BVDV1) vaccine administered to heifers prior to breeding to stimulate protective immunity that would block transmission of virulent heterologous BVDV during gestation, thus preventing persistent infection of a fetus. ANIMAL: 40 crossbred Angus heifers that were 15 to 18 months old and seronegative for BVDV and 36 calves born to those heifers. PROCEDURE: Heifers were randomly assigned to control (n = 13) or vaccinated (27) groups. The control group was administered a multivalent vaccine where-in the BVDV component had been omitted. The vaccinated heifers were administered a single dose of vaccine (IM or SC) containing MLV BVDV1 (WRL strain). All vaccinated and control heifers were maintained in pastures and exposed to BVDV-negative bulls 21 days later. Thirty-five heifers were confirmed pregnant and were challenge exposed at 55 to 100 days of gestation by IV administration of virulent BVDV1 (7443 strain). RESULTS: All control heifers were viremic following challenge exposure, and calves born to control heifers were persistently infected with BVDV. Viremia was not detected in the vaccinated heifers, and 92% of calves born to vaccinated heifers were not persistently infected with BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: These results document that vaccination with BVDV1 strain WRL protects fetuses from infection with heterologous virulent BVDV1.  相似文献   

14.
Two bovine viral diarrhea virus (BVDV) fetal protection studies were done using a monovalent noncytopathic (NCP) BVDV vaccine containing type 1 BVDV. In study 1, thirty-two fetuses (23 vaccinates and nine controls) were recovered following fetal challenge with the type 1a BJ strain. Twenty of twenty-three fetuses from the vaccinates were negative for BVDV type 1 while all of the controls (nine of nine) were infected. In study 2, twenty-two animals (14 vaccinates and eight controls) were challenged with the type 2 PA131 strain. Thirteen of the fourteen fetuses from the vaccinates were negative for BVDV type 2 while all of the nonvaccinated controls (eight of eight) were infected. These results indicate the efficacy of a monovalent NCP BVDV vaccine in providing excellent protection against either BVDV type 1 or 2 fetal infection.  相似文献   

15.
OBJECTIVE: To evaluate the efficacy of a modified-live virus (MLV) combination vaccine containing type 1 and type 2 bovine viral diarrhea virus (BVDV) in providing fetal protection against challenge with heterologous type 1 and type 2 BVDV. DESIGN: Prospective study. ANIMALS: 55 heifers. PROCEDURE: Heifers were vaccinated with a commercial MLV combination vaccine or given a sham vaccine (sterile water) and bred 47 to 53 days later. Heifers were challenged with type 1 or type 2 BVDV on days 75 to 79 of gestation. Clinical signs of BVDV infection, presence of viremia, and WBC count were assessed for 14 days after challenge. Fetuses were collected on days 152 to 156 of gestation, and virus isolation was attempted from fetal tissues. RESULTS: Type 1 BVDV was not isolated in any fetuses from vaccinated heifers and was isolated in all fetuses from nonvaccinated heifers challenged with type 1 BVDV. Type 2 BVDV was isolated in 1 fetus from a vaccinated heifer and all fetuses from nonvaccinated heifers challenged with type 2 BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: A commercial MLV combination vaccine containing type 1 and type 2 BVDV given to the dam prior to breeding protected 100% of fetuses against type 1 BVDV infection and 95% of fetuses against type 2 BVDV infection. Use of a bivalent MLV vaccine in combination with a comprehensive BVDV control program should result in decreased incidence of persistent infection in calves and therefore minimize the risk of BVDV infection in the herd.  相似文献   

16.
17.
OBJECTIVE: To determine whether a single intranasal dose of modified-live bovine respiratory syncytial virus (BRSV) vaccine protects calves from BRSV challenge and characterize cell-mediated immune response in calves following BRSV challenge. ANIMALS: 13 conventionally reared 4- to 6-week-old Holstein calves. PROCEDURES: Calves received intranasal vaccination with modified live BRSV vaccine (VC-group calves; n = 4) or mock vaccine (MC-group calves; 6) 1 month before BRSV challenge; unvaccinated control-group calves (n = 3) underwent mock challenge. Serum virus neutralizing (VN) antibodies were measured on days -30, -14, 0, and 7 relative to BRSV challenge nasal swab specimens were collected for virus isolation on days 0 to 7. At necropsy examination on day 7, tissue specimens were collected for measurement of BRSV-specific interferon gamma (IFN-gamma) production. Tissue distribution of CD3+ T and BLA.36+ B cells was evaluated by use of immunohistochemistry. RESULTS: The MC-group calves had significantly higher rectal temperatures, respiratory rates, and clinical scores on days 5 to 7 after BRSV challenge than VC-group calves. No difference was seen between distributions of BRSV in lung tissue of VC- and MC-group calves. Production of BRSV-specific IFN-gamma was increased in tissue specimens from VC-group calves, compared with MC- and control-group calves. Virus-specific IFN-gamma production was highest in the mediastinal lymph node of VC-group calves. Increased numbers of T cells were found in expanded bronchial-associated lymphoid tissue and airway epithelium of VC-group calves. CONCLUSIONS AND CLINICAL RELEVANCE: An intranasal dose of modified-live BRSV vaccine can protect calves against virulent BRSV challenge 1 month later.  相似文献   

18.
Our objective was to determine the prevalence of serum antibodies to bovine herpesvirus-1 (BHV-1) and bovine viral diarrhea (BVD) virus in beef cattle in Uruguay. A random sample of 230 herds selected with probability proportional to population size based on the number of cattle was chosen from a list frame of all registered livestock farms as of June 1999. Sera from up to 10 heifers, cows and bulls (up to 30 sera total per herd) were collected on selected farms between March 2000 and March 2001 and evaluated by means of enzyme-linked immunosorbent assays (ELISAs). Overall, 6358 serum samples were evaluated. We also collected data on previous diagnosis of BHV-1 or BVD infections and on the use of vaccines against these agents.

The estimated prevalence of exposure to BHV-1 and BVD at the herd level for the Uruguayan beef population was 99% and 100%, respectively. Approximately 37% of beef cattle in Uruguay have been exposed to BHV-1 and 69% to BVD virus. Only 3% of beef herds in Uruguay regularly (typically, annually) use vaccines against either of these agents.  相似文献   


19.
20.
The protective effect of an inactivated whole-virion bovine herpesvirus-1 (BHV-1) immunising inoculum, without adjuvant, against viral-bacterial respiratory disease was studied in three experimental treatment groups of five calves each. One group was boosted 14 days after the first vaccination and at this time the second group received their initial inoculation. Seven days later, calves were challenged with BHV-1 in aerosol and four days after this challenge all calves were exposed to Pasteurella haemolytica A1 in aerosol. Among the three groups, differences in rectal temperature responses four days after viral challenge (P less than 0.01) did not relate to protection. However the main response variable, viral-bacterial pneumonia, was reduced in boosted calves (P less than 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号