首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three experiments were conducted to determine the effects of whole cottonseed or cottonseed products on performance and carcass characteristics of beef cattle. In Exp. 1, 120 beef steers (initial BW = 381 +/- 31.7 kg) were fed steam-flaked corn-based finishing diets with 10% (DM basis) basal roughage, and whole cottonseed or individual cottonseed components (cottonseed hulls, meal, and oil). Over the entire feeding period, ADG did not differ (P = 0.95), but DMI increased (P = 0.07) and G:F decreased (P = 0.06) for steers fed the cottonseed diets compared with the control diet. Dressing percent (P = 0.02) and marbling scores (P = 0.02) of carcasses from steers fed the cottonseed diets were less than for steers fed the control diet. In Exp. 2, 150 beef steers (initial BW = 364 +/- 9.9 kg) were used to determine the effects of whole cottonseed or pelleted cottonseed (PCS) on performance and carcass characteristics. Cattle were fed steam-flaked corn-based finishing diets in which whole cottonseed or PCS replaced all of the dietary roughage, supplemental fat, and supplemental natural protein of the control diet. Over the entire feeding period, steers fed the cottonseed diets had lower (P = 0.04) DMI and greater (P < 0.01) G:F than steers fed the control diet. Carcass characteristics did not differ (P = 0.16 to 0.96) among dietary treatments. In Exp. 3, 150 beef heifers (initial BW = 331 +/- 17.1 kg) were used to determine the effects of PCS or delinted, whole cottonseed (DLCS) on performance and carcass characteristics. Heifers were fed rolled corn-based finishing diets in which cottonseed replaced the dietary roughage, supplemental fat, and all or part of the supplemental natural protein of the control diet. Over the entire feeding period, ADG, DMI, and G:F of heifers fed the control diet did not differ (P = 0.19 to 0.80) from those of the cottonseed diets; however, heifers fed the diets containing PCS had greater ADG (P = 0.03) and G:F (P = 0.09) than heifers fed diets containing DLCS. Carcass characteristics of heifers fed the control diet did not differ (P > or = 0.28) from those fed the cottonseed diets. Heifers fed the diets containing PCS had greater (P < or = 0.03) HCW, dressing percent, and LM area than those fed DLCS. Based on our results, whole cottonseed, or products derived from processing whole cottonseed, can replace feedstuffs commonly used in beef cattle finishing diets with no adverse effects on animal performance or carcass characteristics.  相似文献   

2.
Two experiments were conducted to evaluate receiving-period performance, morbidity, and humoral immune response, as well as finishing performance and carcass characteristics of heifers fed different sources of supplemental Zn. In Exp. 1, 97 crossbred beef heifers (initial BW = 223.4 kg) were fed a 65% concentrate diet with no supplemental Zn (control) or 75 mg of supplemental Zn/kg of DM from Zn sulfate, Zn methionine, or Zn propionate. During a 35-d receiving period, heifers were monitored daily for signs of bovine respiratory disease. Serum samples were collected for Zn analysis on d 0, 14, and 28. After the receiving period, heifers were adapted to and fed a high-concentrate diet with no supplemental Zn for 42 d. Heifers were then assigned to finishing diet treatments, with the same concentrations and sources of supplemental Zn as during the receiving period and fed for an average of 168 d. Serum samples also were obtained on d 0 and 56 of the finishing period and at the end of the study. During the receiving period, control heifers had a greater (P < or = 0.05) BW and G:F on d 35 than heifers in the other treatments, but no differences were observed among treatments for morbidity or serum Zn concentrations (P > or = 0.50). For the finishing period, DMI and ADG did not differ among treatments; however, overall G:F tended (P = 0.06) to be less for control heifers than for heifers in the 3 supplemental Zn treatments. On d 56 of the finishing period, control heifers tended (P = 0.06) to have a lower serum Zn concentration than heifers in the 3 supplemental Zn treatments. In Exp. 2, 24 crossbred beef heifers (initial BW = 291.1 kg) were fed the same 4 treatments as in Exp. 1 for a 21-d period. The humoral immune response to treatments was determined by measuring specific antibody titers after s.c. injection of ovalbumin on d 0 and 14. Body weights and blood samples for serum Zn concentration and ovalbumin IgG titers were collected on d 0, 7, 14, and 21. Serum Zn concentration and specific ovalbumin IgG titers did not differ (P > 0.10) among the 4 treatments on any sampling day. Results from these 2 studies showed no major differences among the sources of supplemental Zn for receiving period morbidity, ADG, DMI, and humoral immune response of beef heifers; however, a lack of supplemental Zn during an extended finishing period tended to negatively affect G:F.  相似文献   

3.
Two experiments were conducted to evaluate the effects of alfalfa hay (AH) and wet corn gluten feed (WCGF) combinations on ADG and gain efficiency of cattle limit-fed growing diets. In Exp. 1, crossbred beef steers (n = 220; initial BW = 262 kg) were limit-fed diets consisting of steam-flaked corn and 40% WCGF (DM basis) with 0, 10, or 20% ground AH (0AH, 10AH, and 20AH, respectively). A fourth diet containing 20% ground AH and steam-flaked corn served as a control. All diets were fed once daily at 1.8% of BW (DM basis). Growing period ADG, gain efficiency, and dietary NE calculated from performance data decreased linearly (P < 0.01) with addition of AH to diets containing WCGF. Rate of DMI increased linearly (P < 0.05) with AH addition to diets containing WCGF. Following the growing period, steers were finished on a common diet offered ad libitum. Gain efficiencies during the finishing period were higher (P < 0.05) for steers fed the 20AH diet than for steers fed the control diet. In Exp. 2, crossbred beef heifers (n = 339; initial BW = 277 kg) were limit-fed diets containing steam-flaked corn with 10, 20, or 30% ground AH and 0, 40, or 68% WCGF in a 3 x 3 factorial arrangement, fed once daily at 1.6% of BW (DM basis). An AH x WCGF interaction occurred (P < 0.05) for growing period ADG and gain efficiency. Increasing AH or WCGF decreased cattle ADG, gain efficiency, and dietary NE with the exception of heifers fed 30AH/40WCGF, which had ADG that did not differ (P > 0.10) from that of heifers fed 20AH/0WCGF or 30AH/0WCGF, and which had greater gain efficiencies (P < 0.05) than heifers fed 30AH/0WCGF. Rate of DMI increased linearly (P < 0.01) with increasing AH and decreased linearly (P < 0.01) with increasing WCGF. Heifers were finished on diets containing 33% WCGF with 0 or 0.5% added urea (DM basis) offered ad libitum. Increasing WCGF in growing diets tended (linear, P < 0.10) to increase finishing ADG and gain efficiency, whereas increasing AH decreased (linear, P < 0.05) kidney, pelvic, and heart fat, and the percentage of carcasses grading USDA Prime. Urea tended to increase ADG (P < 0.10), but decreased (P < 0.04) the percentage of carcasses grading USDA Choice. Results suggest that the value of WCGF relative to steam-flaked corn in limit-fed growing diets might be improved in diets containing 30% AH relative to diets containing 10 or 20% AH.  相似文献   

4.
Three experiments were conducted to examine the effect of dietary vitamin E on receiving performance and health and on finishing performance of beef cattle. One hundred twenty beef steers (Exp. 1; initial BW = 173 kg) and 200 beef heifers (Exp. 2; initial BW = 204 kg) were assigned randomly to one of three treatment diets formulated to supply 285, 570, or 1,140 IU/animal daily of supplemental vitamin E during the receiving period. Average daily gain, gain:feed, and DMI were calculated every 14 d, with pen as the experimental unit. Morbidity and retreatment data were analyzed using a nonparametric procedure. After the receiving period, cattle were assigned to a grazing period followed by a finishing program and fed until slaughter. In Exp. 3, 17 beef steers were used to evaluate effects of the same three vitamin E levels on humoral immune response to an ovalbumin vaccine given on d 0 and 14. Jugular blood samples were collected on d 0, 7, 14, and 21. In Exp. 1, vitamin E did not affect (P > 0.10) ADG, DMI, or gain:feed for d 0 to 14, 14 to 28, or 0 to 28. No effects were noted for percentage of morbidity; however, cattle receiving 1,140 IU/d had a numerically (P = 0.15) lower incidence of retreatment. During the 91-d finishing phase, a quadratic effect (P < 0.08) was noted for DMI, ADG, backfat thickness, longissimus muscle area, and yield grade. In Exp. 2, a tendency for a linear (P = 0.10) increase in ADG was observed for the first 14 d of receiving; however, ADG decreased linearly (P = 0.06) with vitamin E concentration thereafter. For the 28-d period, ADG and DMI did not differ among treatments, but gain:feed decreased linearly (P < 0.05) for d 14 to 28 and for d 0 to 28. No effects on percentage morbidity were noted in Exp. 2, and no differences were detected for ADG, gain:feed, or DMI for the 98-d finishing period. There was a linear increase in yield grade (P < 0.05) and a linear (P < 0.08) decrease in longissimus muscle area with increasing vitamin E. Heifers receiving 570 IU of vitamin E during the receiving period tended to have a higher (P < 0.09) dressing percentage at slaughter. In Exp. 3, no significant differences were detected in serum IgG titers to ovalbumin on d 0, 7 or 14; however, on d 21, a linear increase (P = 0.07) in serum IgG titers was noted with supplemental vitamin E. Supplemental vitamin E had limited effects on performance; however, effects on humoral immune response and recovery from respiratory disease warrant further research.  相似文献   

5.
Two experiments were conducted at the Kansas State University Beef Cattle Research Center to determine the effects of ractopamine-HCl (Optaflexx) on growth performance, carcass characteristics, and meat quality of finishing feedlot heifers. In Exp. 1, heifers implanted with Revalor-H (n = 302, initial BW = 479 kg) were fed steam-flaked corn diets with 0 (control) or 200 mg of ractopamine-HCl (OPT) per heifer daily for 28 d before slaughter. Average daily gain and DMI were not different between treatments (P > 0.17); however, OPT cattle tended to have a greater G:F (P = 0.06). Treatments did not differ with respect to final BW, HCW, dressing percentage, USDA yield grade, USDA quality grade, marbling score, LM area, KPH, Warner-Bratzler shear force, weight loss during cooking, or L*, a*, or b* colorimetric values during a 7-d retail display or purge loss from loin steaks during retail display (P > 0.19). In Exp. 2, nonimplanted crossbred heifers (n = 281, BW = 451 +/- 2 kg) were fed finishing diets based on steam-flaked corn. A control diet (no ractopamine) was compared with diets providing 200 mg of OPT per heifer daily for periods of 28 or 42 d (200 x 28 and 200 x 42, respectively), 300 mg/d for 28 d (300 x 28), and a step-up regimen consisting of 14 d at 100 mg, followed by 14 d at 200 mg, and the final 14 d at 300 mg of OPT (step-up). Feeding OPT had no effect on carcass weight gain among treatments (P = 0.18). The efficiency of carcass gain was 34 and 35% greater (P = 0.06) for the 200 x 42 and step-up groups compared with control, respectively. Feeding OPT at 300 mg for 28 d reduced DMI compared with the control, 200 x 28, and 200 x 42 (P < 0.05) groups. Administration of OPT had no effect on marbling score, yield grade, LM area, KPH, or percentages of carcasses grading USDA Choice (P > 0.10). Feeding ractopamine-HCl (Optaflexx) to finishing heifers generally improved the efficiency of carcass gain with minimal effect on carcass characteristics. These effects were most pronounced in heifers fed ractopamine for 42 d.  相似文献   

6.
Angus x crossbred heifers (270 per trial) were used in an experiment conducted over one 105-d summer and one 104-d winter feeding period. Treatments were identical for each trial and included: 1) control, 2) estrogenic implant (E), 3) trenbolone acetate implant (TBA), 4) E + TBA (ET), 5) melengestrol acetate (MGA) in the feed, and 6) ET + MGA (ETM). Each treatment was replicated in five pens, with nine heifers per pen in each season. Initial weights (mean = 384 kg, SE = 57) were the same for each season. There were no treatment x season interactions for final BW, ADG, G:F, water intake, or carcass characteristics. Heifers receiving a growth-promoting agent were 11.6 kg (SE = 4.08) heavier and gained 0.108 kg/d (SE = 0.04) more (P < 0.05) than control heifers. Heifers receiving ET gained 0.09 kg/d (SE = 0.032) more (P = 0.05) than heifers not receiving ET. Heifers receiving ET (with and without MGA) had greater G:F (P < 0.05) than control, E, and TBA heifers. Carcass weights of ET-treated heifers were greater (P < 0.05) than carcass weights for unimplanted heifers, those fed MGA only, and heifers receiving either E or TBA implants. Marbling scores were increased (P < 0.05) by feeding MGA to ET-treated heifers. Water intake was greater (P < 0.01) in the summer (31 L/d) than in the winter (18 L/ d), with no difference among implant treatments. Heifers fed in the winter had heavier carcasses, less 12th-rib fat, greater marbling scores, larger LM area, and a greater incidence of liver abscesses than heifers finished in the summer (P < 0.01). A treatment x season interaction (P = 0.07) was evident for DMI during the 35-d coldest and hottest portions of the year. Heifers fed MGA and implanted with ET tended (P = 0.07) to have greater DMI in the summer but lesser DMI in the winter. In general, differences among growth-promotant programs were relatively similar over the entire summer and in winter.  相似文献   

7.
In a 172-d finishing trial (Exp. 1), 210 recently weaned crossbred heifers were allotted to six growth promotant treatment groups, involving implanting initially with Synovex-C (C) or H (H) followed by reimplanting with Finaplix-H (F) or H and F. Melengestrol acetate (MGA) was provided in the diet to four of the treatment groups. Heifers fed MGA and administered only F as the terminal implant had the greatest (P = .01) number of mature ovaries with follicles but also had lower (P = .01) gain/DMI. In a 182-d finishing study (Exp. 2), 270 recently weaned crossbred heifers were allotted to the following six implant (d 0)/ reimplant (d 70) groups using no implant (N), Ralgro (R) or H: N/R, R/H, R/R, N/R, H/H and R/R for Treatments 1 through 6, respectively. On d 70, all heifers were implanted with F. Heifers were fed MGA from d 70 to 182 (Treatments 1, 2, and 3) or for the entire trial (Treatments 4, 5, and 6). Implanting on d 0 increased (P < .05) overall ADG. Differences (P > .05) in performance were not found between MGA treatment groups. Using an H implant/reimplant regimen decreased (P = .01) ovarian and(or) follicular development when compared with an R implant/reimplant regimen. In a 126-d finishing trial (Exp. 3), 360 crossbred yearling heifers were used to evaluate F and estrogen (Implus-H) implants when used in combination with an MGA feeding program. Heifers receiving only F in combination with MGA had greater (P < .05) ADG, whereas all heifers fed MGA had greater (P < .05) gain/DMI than heifers not fed MGA. These data suggest that feeding MGA was not beneficial for young heifers, particularly if they are provided an initial estrogenic implant followed by a second implant. In older (yearling) heifers, increased gains and gain/DMI were obtained by feeding MGA and implanting initially or 56 d later with F.  相似文献   

8.
Two experiments were conducted to evaluate dried full-fat corn germ (GERM) as a supplemental fat source in cattle finishing diets. In Exp. 1, 24 pens totaling 358 crossbred beef steers with an initial BW of 319 kg were allowed ad libitum access to diets containing dry-rolled corn, 35% wet corn gluten feed, and 0, 5, 10, or 15% GERM on a DM basis. Increasing GERM decreased (linear; P < 0.02) DMI and increased (quadratic; P < 0.02) ADG. Steers fed 10% GERM had the greatest ADG (quadratic; P < 0.02) and G:F (quadratic; P < 0.05). The addition of GERM increased (linear; P < 0.05) fat thickness, KPH, and the percentage of USDA Yield Grade 4 carcasses (quadratic; P < 0.03), with steers fed 15% GERM having the greatest percentage of USDA Yield Grade 4 carcasses. In Exp. 2, 48 pens totaling 888 crossbred beef heifers with an initial BW of 380 kg were allowed ad libitum access to diets containing steam-flaked corn, 35% wet corn gluten feed, and either no added fat (control), 4% tallow (TALLOW), or 10 or 15% GERM on a DM basis, with or without 224 IU of added vitamin E/kg of diet DM. No fat x vitamin E (P > or = 0.08) interactions were detected. Fat addition, regardless of source, decreased (P < 0.01) DMI, marbling score, and the number of carcasses grading USDA Choice. Among heifers fed finishing diets containing TALLOW or 10% GERM, supplemental fat source did not affect DMI (P = 0.76), ADG (P = 0.54), G:F (P = 0.62), or carcass characteristics (P > or = 0.06). Increasing GERM decreased DMI (linear; P < 0.01) and ADG (quadratic; P < 0.02), with ADG by heifers fed 10% GERM slightly greater than those fed control but least for heifers fed 15% GERM. Increasing GERM improved (quadratic; P < 0.03) G:F of heifers, with heifers fed 10% GERM having the greatest G:F. Increasing GERM decreased HCW (linear; P < 0.02), marbling score (linear; P < 0.01), and the percentage of carcasses grading USDA Choice (linear; P < 0.01). The addition of vitamin E increased (P < 0.04) the percentage of carcasses grading USDA Select and decreased (P < 0.01) the percentage of carcasses grading USDA Standard. These data suggest that GERM can serve as a supplemental fat source in cattle finishing diets, and that the effect of vitamin E did not depend on source or concentration of supplemental fat.  相似文献   

9.
Three hundred seventy-one crossbred-yearling heifers (299 +/- 9 kg initial BW) were obtained from a common source and used in a randomized complete-block designed finishing study. A 2 x 3 factorial arrangement of treatments was used with one factor being diet: based on steam-flaked corn finishing diet (SFC) or SFC plus 25% (dry basis) corn wet distillers grains with solubles (WDGS). The second factor was feed additives: no added antibiotics (NONE), 300 mg of monensin daily (MONENSIN), or 300 mg of monensin + 90 mg of tylosin daily (MON+TYL). Main effect of diet resulted in no difference in DMI (P = 0.34). Heifers fed SFC gained 9% faster (P = 0.01) and were 7% more efficient (P = 0.01) than heifers fed WDGS. In addition, heifers fed SFC had 3% heavier (P = 0.01) HCW; 1% greater (P = 0.01) dress yield; and had 3% larger (P = 0.05) LM area. Marbling score and carcasses that graded USDA Choice or better were both greater (P /= 0.12) among feed additive treatments. Kidney, pelvic, and heart fat and s.c. fat thickness at the 12th rib were also not different (P >/= 0.55) for main effects of diet and feed additive. There was a tendency (P = 0.09) for a diet x feed additive interaction for the most severe (A+) liver abscesses. Heifers fed NONE yielded the greatest percentage (16%) of A+ livers in the SFC treatment, whereas heifers fed MON+TYL yielded the greatest percentage (10%) in the WDGS treatment. Including wet distillers grains with solubles in diets based on steam-flaked corn decreased finishing heifer performance, HCW, and marbling. Tylosin addition tended to decrease severity of liver abscesses in diets containing SFC, but not in diets containing WDGS. These data indicate that monensin and tylosin may not be as effective when used in steam-flaked corn diets with 25% WDGS.  相似文献   

10.
Three experiments were conducted to determine effects of restricting intake of the final finishing diet as a means of dietary adaptation compared with diets increasing in grain over a period of 20 to 22 d on overall cattle performance, carcass characteristics, digestibility, digesta kinetics, and ruminal metabolism. In Exp. 1, 84 Angus x Hereford yearling steers (initial BW = 418 +/- 29.0 kg) were fed for 70 d. Restricting intake during adaptation had no effect (P > 0.10) on overall ADG:DMI, but decreased (P < 0.05) DMI compared with ad libitum access to adaptation diets, which resulted from differences during the initial 28 d of the experiment. In Exp. 2, 150 mixed crossbred steer calves (initial BW = 289 +/- 22.9 kg) were fed for an average of 173 d. Restricting intake decreased (P < 0.01) overall daily gain (1.51 vs 1.65 kg/d) and DMI (8.68 vs 9.15 kg/d) compared with ad libitum fed steers; however, ADG:DMI was not influenced (P > 0.10) by adaptation method. Experiment three used eight ruminally and duodenally fistulated steers (initial BW = 336 +/- 20 kg) in a completely random design. Total tract digestibility, digesta kinetics and ruminal metabolism were determined. Restricting intake reduced (P < 0.10) daily DMI variation from d 1 through 7, 8 through 14, and 22 through 28 compared with ad libitum feeding of three adaptation diets. Restricted steers had reduced (adaptation method x period interaction, P < 0.05) intakes and fecal excretions of ADF and greater OM digestibilities on d 4 through 7, 11 through 14, and 18 through 21. Digesta kinetics and ruminal metabolism were generally not affected (P > 0.10) by adaptation method. Our results suggest that restricted-feeding of the final diet as a means of dietary adaptation can be used in finishing cattle with few problems from acidosis or related intake variation. In light-weight steers (Exp. 2), disruptions in intake during the adaptation period might have resulted in restriction for an extended period, which decreased (P < 0.01) hot carcass weight compared with calves fed ad libitum. Effects of limit feeding during the initial 28 d of the feeding period on site and extent of digestion, digesta kinetics, and ruminal metabolism were minimal, supporting few differences in performance across the finishing period for yearling cattle.  相似文献   

11.
Traits used for identification of replacement beef heifers and feeding levels provided during postweaning development may have major financial implications due to effects on maintenance requirements and level of lifetime production. The current study evaluated the effects of 2 levels of feeding during the postweaning period on growth, G:F, and ultrasound carcass measurements of heifers, and the associations among these traits. Heifers (1/2 Red Angus, 1/4 Charolais, and 1/4 Tarentaise) born in 3 yr were randomly assigned to a control (fed to appetite; n = 205) or restricted (fed at 80% of that consumed by controls adjusted to a common BW basis; n = 192) feeding during a 140-d postweaning period. Heifers were individually fed a diet of 68% corn silage, 18% alfalfa, and protein-mineral supplement (DM basis) in pens equipped with Calan gates. Ultrasound measurements of LM area, intramuscular fat, and subcutaneous fat thickness over the LM were made on d 140 (382 +/- 0.8 d of age). Average daily DMI was 4.1 and 5.6 kg/d for restricted and control heifers, respectively (P < 0.001). Feed restriction decreased (P < 0.001) BW (292 vs. 314 kg), ADG (0.52 vs. 0.65 kg/d), LM area (55 vs. 59 cm2), intramuscular fat (3.2 vs. 3.5%), and subcutaneous fat thickness over the LM (3.2 vs. 3.9 mm), but increased G:F (0.12 vs. 0.11) when compared with control at the end of the 140-d study. The magnitude of the associations of DMI with ADG (r = 0.32 vs. 0.21), 140-d BW (r = 0.78 vs. 0.36), hip height (r = 0.57 vs. 0.17), LMA (r = 0.30 vs. 0.18), and BCS (r = 0.17 vs. 0.11) was greater in restricted- than control-fed heifers. Variance of residual feed intake, calculated within each treatment, was greater (P < 0.01) in control (0.088) than restricted (0.004) heifers, and magnitude of association between residual feed intake and average DMI was greater in control (r = 0.88) than restricted (r = 0.41) heifers. Pregnancy rate tended (P = 0.11) to be reduced in heifers that had been developed on restricted feeding (86.3 +/- 2.3 vs. 91.5 +/- 2.3%). However, ADG was greater (P < 0.001) in restricted than control heifers (0.51 vs. 0.46 kg/d) while grazing native range in the 7 mo after restriction. In summary, restricted heifers consumed 22% less feed on a per-pregnant-heifer basis during the development period and had a greater magnitude of association between DMI and several growth-related traits at the end of the 140-d postweaning feeding period, which is indicative of improved efficiency.  相似文献   

12.
Three experiments were conducted to identify factors influencing steam-flaked corn (SFC) characteristics and feeding value. In Exp. 1, corn samples (n = 108) were tempered for 2 h using 6, 10, or 14% moisture containing 0 or 0.67 mL of surfactant/L. Samples were steamed for 20 or 40 min and flaked to 360, 335, or 310 g/L. Treatments were arranged in a 3 x 2 x 2 x 3 factorial. No interactions existed in Exp. 1. Increasing tempering moisture linearly (P < 0.001) increased corn moisture after tempering, steaming, and flaking; however, SFC moisture was not increased (quadratic; P < 0.001) greatly by applying more than 10% water during tempering. The surfactant, steam time, and flake density had no effect (P = 0.16 to 0.93) on corn moisture after tempering, steaming, or flaking, but adding a surfactant during tempering decreased (P = 0.05) moisture loss after flaking. Starch availability was unaffected (P = 0.31 to 0.84) by tempering moisture concentration, tempering with a surfactant, or steam time but was increased (linear; P < 0.01) by decreasing flake density. Flake durability was increased by increasing tempering moisture (linear; P < 0.001), tempering with a surfactant (P = 0.04), increasing steam time (P < 0.001), and decreasing flake density (linear; P = 0.02). In Exp. 2, 89 heifers (initial BW = 350 kg) were fed 75% SFC-based diets for 108 d to determine the effects of SFC particle size on performance and carcass traits. Treatments were SFC that was mixed for 0 (4,667 microm) or 15 min (3,330 microm) before addition of other ingredients. Heifers fed 3,330-microm SFC tended (P = 0.13) to eat less DM, but ADG and G:F did not differ (P = 0.58 to 0.65) between treatments. Carcass traits did not differ, except that heifers fed 3,330-microm SFC had less (P = 0.008) KPH. In Exp. 3, 96 heifers (initial BW = 389 kg) were fed for 82 d diets containing 73% SFC that was either 18 or 36% moisture. Heifers fed 36% moisture SFC ate less DM (P = 0.02) and gained slower (P = 0.05) than heifers fed 18% moisture SFC, but G:F did not differ (P = 0.93) with SFC moisture. Heifers fed 36% moisture SFC were fatter at the 12th rib (P = 0.009), but all other carcass traits did not differ. Methods that increase moisture of SFC improved durability, but extreme moisture levels negatively affected cattle performance. Flake particle size did not affect cattle performance. Flake density is the major factor affecting starch availability in SFC.  相似文献   

13.
These studies evaluated the effects of betaine, provided either as feed-grade betaine or as concentrated separator by-product (CSB; desugared beet molasses), on performance and carcass characteristics of finishing cattle. In Exp. 1, 175 steers (410 kg initial BW) were fed a finishing diet based on steam-flaked and dry-rolled corn, and treatments included 10.5 and 21 g/d feed-grade betaine and 250 and 500 g/d CSB (supplying 15.5 and 31 g/d of betaine, respectively). Steers fed feed-grade betaine had greater (linear and quadratic effects, P < 0.1) DMI than control steers, but ADG and gain efficiencies were not affected by treatment. Dressing percent and backfat thickness was greater (P < 0.1) for steers that received feed-grade betaine than for controls. Longissimus muscle area was lower (P < 0.1) for steers supplemented with either feed-grade betaine or CSB than for control steers. Yield grades were higher for cattle receiving feed-grade betaine (quadratic effect, P < 0.1) than for control steers. Marbling scores were not affected by supplemental betaine, but the percentage of carcasses grading USDA Select was lower (linear and quadratic effects, P < 0.1) for steers fed feed-grade betaine than for control steers, predominantly due to a greater percentage grading USDA Choice. In Exp. 2, 312 heifers (343 kg initial BW) were used in a finishing study to evaluate the effects of graded levels of feed-grade betaine and peroxide-treated feather meal on performance and carcass characteristics. Treatments included two finishing diets (containing peroxide-treated or untreated feather meal) and four levels (0, 4, 8, and 12 g/d) of feed-grade betaine arranged in a 2 x 4 factorial. No significant interactions occurred between treatment of feather meal and betaine. Treatment of feather meal with hydrogen peroxide (5% wt/wt) increased in situ protein degradability but did not alter DMI, ADG, gain efficiencies, or carcass characteristics of heifers when it replaced untreated feather meal in the diet. Top-dressing feed-grade betaine to the diets had no effect on DMI, ADG, and gain efficiencies. Marbling scores were greater (cubic effect, P < 0.05) for heifers fed diets top-dressed with 4 and 12 g/d of feed-grade betaine, but other carcass characteristics were not altered significantly. Overall, feed-grade betaine and CSB did not alter growth performance, but did have minor effects on carcass characteristics.  相似文献   

14.
Two hundred sixty-four crossbred heifers (initial BW = 354 kg ± 0.5) were used to determine effects of corn processing method and wet distillers grains plus solubles (WDGS) inclusion in finishing diets on animal performance, carcass characteristics, and manure characteristics. The study was conducted as a randomized complete block with a 2 × 2 factorial arrangement of treatments. Dietary treatments included steam-flaked corn (SFC)- and dry-rolled corn (DRC)-based finishing diets containing 0 or 20% WDGS (0SFC, 20SFC, 0DRC, and 20DRC, respectively). Heifers averaged 154 d on feed and were marketed in 3 groups. There were no interactions between corn processing method and WDGS detected (P ≥ 0.29) for any performance or carcass response variables. Heifers fed diets containing WDGS tended to have greater final BW (P = 0.10) and increased G:F (P = 0.08) compared with heifers fed diets without WDGS. Heifers fed SFC-based diets consumed 7% less feed (P < 0.01) and were 9% more efficient (P < 0.01) than heifers fed DRC-based diets. Carcass characteristics were not affected by corn processing method or WDGS inclusion (P ≥ 0.16). Intakes of OM, N, P, and K were greater (P ≤ 0.05) for heifers fed DRC-based diets than those fed SFC-based diets, which resulted in greater net accumulation of the nutrients in the manure (P ≤ 0.04). Heifers fed diets containing WDGS had greater (P < 0.01) intakes of N, P, and K than heifers fed diets without WDGS. As a result, a greater net accumulation of P and K (P ≤ 0.03) and N (P = 0.10) were present in the manure from cattle fed diets containing WDGS compared with those fed diets without WDGS. There was no interaction (P ≥ 0.16) between corn processing and WDGS on N volatilization losses. Nitrogen volatilization losses from manure (expressed as a percentage of intake and g·heifer(-1)·d(-1)) were greater (P < 0.01) for heifers fed SFC-based diets than heifers fed DRC-based diets. Feeding DRC-based finishing diets to heifers resulted in increased manure production and nutrient excretion and decreased N volatilization. Both corn processing method and WDGS inclusion affected animal performance and manure characteristics.  相似文献   

15.
Tarentaise heifers fitted with a rumen cannula (539 +/- 7.5 and 487 +/- 15.7 kg avg initial BW in Exp. 1 and 2, respectively) were used in two Latin square metabolism experiments having 2 x 2 factorial treatment arrangements to determine the effects of supplementation with Aspergillus oryzae fermentation extract (AO) or laidlomycin propionate (LP) on intake, digestion, and digestive characteristics of Neotyphodium coenophialum-infected (IF) or uninfected (FF) tall fescue (Festuca arundinacea) hay diets consumed ad libitum. Heifers were housed in individual stanchions in a metabolism facility with ambient temperatures controlled to range between 26.7 and 32.2 degrees C daily. Total feces and urine were collected for 5 d following a 21-d dietary adaptation period. In situ DM and NDF disappearance and ruminal fermentation characteristics were also determined. In Exp. 1, DMI was 24% greater (P < 0.01) by heifers offered FF than by those offered IF (6.7 vs 5.4 kg/d). Heifers fed 2 g/d AO tended (P = 0.09) to consume 4% more DM than those fed a diet without AO. Degradable DM and NDF fractions of IF were greater (P < 0.01) than those of FF, but AO supplementation did not affect situ disappearance (P > or = 0.42). In Exp. 2, DMI was 18.9% greater (P < 0.01) by heifers offered FF than by those offered IF (6.6 vs 5.5 kg/d). Heifers fed LP (50 mg/d) consumed 10.6% less (P < 0.05) DM than those not fed LP (5.7 vs 6/5 kg/d). Digestibility of NDF tended to be greater (P = 0.08) and digestibility of ADF was greater (P < 0.05) from FF than from IF. Conversely, apparent N absorption (%) was greater (P < 0.05) from IF than from FF. Heifers fed LP had lower (P < 0.05) ADF digestibility than those not fed LP. In situ degradable DM and NDF fractions were greater (P < 0.01) from IF than from FF. Diets supplemented with LP had higher (P < 0.01) indigestible DM and NDF fractions than those without LP. Propionic acid and total VFA concentrations were greater (P < 0.05) from heifers offered FF than from those offered IF and from heifers fed LP than from those not fed LP. Therefore, it appears the major effect of N. coenophialum was a reduction in forage intake and total-tract fiber digestibility in certain situations. Response to the feed additives was similar whether heifers were offered IF or FF and no evidence was apparent that either additive would improve performance substantially by animals consuming low-quality fescue hay diets.  相似文献   

16.
Crossbred heifers (n = 373; 421.6 kg +/- 28.9) were fed finishing diets containing 0, 2, 4, 8, 12, or 16% crude glycerin (DM basis). Diets consisted of steam-flaked corn with 6% alfalfa hay and 1.2% urea and provided 300 mg of monensin, 90 mg of tylosin, and 0.5 mg of melengestrol acetate per animal daily. Cattle were stratified by BW and allocated randomly, within strata, to concrete-surfaced feedlot pens each containing 6 to 7 heifers, with 9 pens per dietary treatment. Cattle were transitioned from the control diet to diets containing increasing proportions of glycerin over a period of 10 d. Cattle had ad libitum access to feed, and diets were delivered once daily throughout the 85-d trial period. As the concentration of glycerin increased, DMI decreased linearly (P < 0.001). Heifers fed 0, 2, 4, 8, 12, and 16% glycerin had ADG of 1.19, 1.34, 1.29, 1.25, 1.17, and 1.03 kg, respectively (linear, P = 0.013; quadratic, P = 0.010). Feeding glycerin had a quadratic effect on G:F, and G:F was optimal when glycerin was fed at 2% of the diet (quadratic, P = 0.046). Glycerin increased the final BW by 12.7, 8.1, and 5.3 kg when fed at 2, 4, and 8% of the diet, respectively, but reduced the final BW by 1.9 and 14.3 kg when included at 12 and 16% of the diet (linear, P = 0.009; quadratic, P = 0.006). Similarly, HCW increased by 8.1, 5.1, and 3.3 kg when glycerin was fed at 2, 4, and 8% of the diet, respectively, but were 1.2 and 9.1 kg less than controls when glycerin was fed at 12 and 16%, respectively (linear, P = 0.009; quadratic, P = 0.006). Longissimus muscle area decreased linearly as glycerin concentrations increased (P < 0.013). Feeding glycerin resulted in linear decreases in subcutaneous fat over the 12th rib and marbling scores (P = 0.045). Glycerin tended to decrease the percentage of cattle grading USDA Choice (P = 0.084) and increase the percentage of cattle grading USDA Select. Adding glycerin to cattle-finishing diets improved BW gain and feed efficiency, particularly when added at concentrations of 8% or less on a DM basis.  相似文献   

17.
The effects of a live yeast supplement [Saccharomyces cerevisiae subspecies boulardii CNCM I-1079; ProTernative Stress Formula (PTSF) yeast, Ivy Natural Solutions, Overland Park, KS] on DMI, performance, and health of beef cattle were evaluated in 3 experiments. In Exp. 1, a pilot study was conducted with 10 healthy beef steers fed a 65% concentrate diet to evaluate the effects of florfenicol (s.c. in the neck vs. sterile water injection) on DMI. Steers injected with florfenicol had 15.6 (P = 0.092) and 22.2% (P = 0.015) decreases in DMI compared with controls on the day of and day after injection, respectively, with no differences for the remainder of the 7-d period. In the main study of Exp. 1, healthy beef steers (6 pens of 5 steers each/treatment) were fed the control or PTSF yeast diets (0.5 g of yeast x steer(-1) x d(-1)) for 5 d before being injected s.c. with florfenicol. Compared with the 5 d before injection, DMI decreased after injection, but it did not differ (P > 0.66) between treatments on the day of and day after injection. By the second day after injection, DMI tended (P = 0.107) to increase for steers fed PTSF yeast vs. control steers, with a trend for a similar pattern on the third day after injection (P = 0.197). No differences were noted between treatments for the remainder of the 7-d period or for the subsequent 2 wk. In Exp. 2, 3 loads of beef heifers (277 heifers; average initial BW = 230.3 kg) were shipped from auction barns and assigned randomly to 1 of 2 treatments (5 pens/treatment in each load) during 35-d receiving periods: 1) control = 65% concentrate receiving diet; or 2) PTSF yeast = 65% concentrate receiving diet with PTSF yeast added to supply 0.5 g of yeast x heifer(-1) x d(-1). All heifers were treated with florfenicol on arrival, and PTSF yeast heifers received approximately 1 g of yeast via an oral paste at the time of processing. Averaged over the 3 loads, treatments did not affect (P > or = 0.12) DMI, ADG, or G:F during the 35-d period, but the percentage of cattle treated once or more for bovine respiratory disease (BRD) was greater for control (P = 0.04) than for PTSF yeast heifers (24.0 vs. 13.78% respectively). In Exp. 3, 2 loads of beef heifers (180 heifers; average initial BW = 209.0 kg) that were not treated with antibiotic at the time of arrival processing were fed a 70% concentrate receiving diet and assigned the same 2 treatments as in Exp. 2. No differences (P > 0.72) were noted between treatments in ADG, DMI, and G:F for the 35-d receiving period, and BRD morbidity pooled across loads did not differ between treatments (40.2 vs. 33.1% for control vs. PTSF yeast). Providing PTSF yeast in an oral paste at the time of processing combined with the addition of 0.5 g of yeast x animal(-1) x d(-1) in the diet had little effect on receiving period performance; however, it decreased BRD morbidity in heifers given florfenicol on arrival but was without effect on BRD morbidity in heifers that did not receive a prophylactic antibiotic.  相似文献   

18.
An experiment was conducted to determine the relationship between feeding ractopamine and different amounts of MP on growth and carcass characteristics of feedlot heifers. Seventy-two crossbred heifers (475 kg of initial BW) were fed individually a diet based on steam-flaked corn for ad libitum intake for 29 d. Heifers were implanted with 140 mg of trenbolone acetate and 14 mg of estradiol-17beta 60 d before the experiment. Treatments were arranged as a 2 x 3 factorial and included 0 or 200 mg of ractopamine-HCl (23 ppm)/ d, and urea, solvent soybean meal, or expeller soybean meal (ESBM) as the predominant protein supplement. The amounts of MP supplied by the urea, solvent soybean meal, and ESBM diets were 688, 761, and 808 g/ d, respectively, calculated according to level 1 of the NRC model. Body weights were obtained 1 d before ractopamine feeding and at slaughter. Blood samples were obtained 1 d before starting the experiment and 13 d later. Ractopamine improved ADG, efficiency of gain, carcass-adjusted ADG, and carcass-adjusted efficiency of gain (P < 0.01). For ADG, heifers demonstrated a ractopamine x protein source interaction (P < 0.05); heifers not fed ractopamine had greater ADG when fed ESBM than when fed urea, whereas for heifers fed ractopamine there were no differences (P > or = 0.10) among protein supplements. This interaction was not observed for carcass-adjusted ADG (P = 0.60). Final live weights (P = 0.02) and carcass weights (P = 0.01) were greater with ractopamine feeding. Carcass marbling scores and yield grades were not affected by ractopamine or protein source (P > or = 0.39). Plasma total alpha-amino N and glucose concentrations decreased more from pretreatment concentrations when heifers were fed ractopamine (P < 0.05). Feeding ractopamine to heifers for 28 d before slaughter improved ADG and efficiency of gain without any large effects on carcass characteristics. The MP supply does not need to be increased from that provided by finishing diets based on steam-flaked corn with urea as the primary N supplement to allow the maximal response to ractopamine by finishing heifers.  相似文献   

19.
Two experiments were conducted to evaluate the effects of Cu and Zn source on performance, morbidity, and humoral immune response in lightweight, newly received beef heifers. A 2 x 2 factorial arrangement of treatments was used in both experiments, with either a sulfate or a polysaccharide mineral complex (SQM) source of both Cu and Zn as the factors. Supplemental Cu and Zn were included in the receiving diet at concentrations designed to provide 10 mg of Cu/kg and 75 mg of Zn/kg (DM basis). In Exp. 1, 219 newly received beef heifers (British x Continental, average initial BW = 208 kg) were given ad libitum access to a 65% concentrate diet for 35 d to determine treatment effects on DMI, ADG, G:F, and bovine respiratory disease (BRD) morbidity. In Exp. 2, 24 heifers (average initial BW = 272 kg) were fed a diet with no supplemental Cu or Zn for 35 d, followed by fasting-refeeding-fasting stress, after which the same treatment diets used in Exp. 1 were fed for 21 d to examine the effects on humoral immune response (plasma IgG titer determined by ELISA on d 7, 14, and 21) to an ovalbumin (OVA) vaccine given on d 0 and 14. Copper source x Zn source interactions were not detected in either experiment. In Exp. 1, neither Cu nor Zn source affected (P > 0.10) DMI, ADG, G:F, or BRD morbidity. In Exp. 2, d 14 (P = 0.02) and 21 (P = 0.06) OVA titers were greater for heifers that received SQM Zn compared with heifers receiving ZnSO4, but heifers receiving CuSO4 had greater OVA titers than did heifers on the SQM Cu treatment on d 14 (P = 0.01) and 21 (P = 0.001). In summary, neither supplemental Cu nor Zn source affected performance or morbidity of lightweight, newly received heifers; however, source of both Cu or Zn affected the humoral immune response to OVA, although source effects were not consistent for the two minerals.  相似文献   

20.
Three experiments were conducted to evaluate the response of supplementing primiparous heifers based on the metabolizable protein (MP) system during pregnancy and lactation. In Exp. 1, 12 pregnant, March-calving heifers (432 +/- 10 kg) grazing Sandhills range were randomly allotted to one of two treatments: supplementation based on either the MP system (MPR) or the CP system (CPR). Supplements were fed to individual heifers from October to February and no hay was offered. Grazed forage organic matter intake (FOMI) was measured in November, January, and February. In Exp. 2, 18 heifers (424 +/- 8 kg) were randomly allotted to one of three treatments: 1) supplementation based on the MP system with hay fed in January and February (average 2.0 kg/d; MPR/hay), 2) supplementation based on the CP system, with hay fed in January and February (CPR/hay), or 3) supplementation based on the MP system, with no hay fed (MPR/no hay). Supplements were fed from October to February, and FOMI was measured in December and February. In Exp. 3, lactating 2-yr-old cows (394 +/- 7 kg) maintained on meadow hay were supplemented to meet either 1) MP requirements (LMPR) or 2) degradable intake protein requirements (LDIPR). Body weight (BW) and body condition score change, hay intake, and milk production were measured. In Exp. 1, grazed FOMI decreased (P = 0.0001) from 1.9% of BW in November to 1.2% in February, but no differences among treatments were detected for FOMI or BW change. In Exp. 2, grazed FOMI declined (P = 0.0001) from 1.7% of BW in December to 1.1% in February, with no differences among treatments. Heifers on the MPR/hay and CPR/hay treatments had higher (P = 0.0018) total intake (grazed forage + hay intake) in February (1.7% BW) than the MPR/no hay heifers (1.1% BW). Heifers on the MPR/no hay treatment had a lower weight (P = 0.02) and tended (P = 0.11) to have a lower BCS than heifers on other treatments. In Exp. 3, the LMPR cows had higher (P = 0.02) ADG than LDIPR cows (0.41 and 0.14, respectively), but treatment did not affect milk production. Organic matter hay intake averaged 2.4% of BW. We conclude that supplementation to meet MP requirements had little benefit to heifer performance during gestation, but increased weight change during lactation. Because grazed forage intake decreased from 1.9 to 1.1% of BW with advancing gestation, supplemental energy is necessary to reduce weight and condition loss of gestating hefiers grazing dormant Sandhills range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号