首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Early follicular development is closely related to oocyte‐granulosa cells‐ovarian stromal cells/theca cells. The aim of the present study was to investigate the effects of ovarian cortical, medullary stromal and theca cells on oestradiol and progesterone biosynthesis, proliferation and apoptosis of goat ovary granulosa cells in vitro. Using Transwell coculture system, we evaluated steroidogenesis, cell proliferation and apoptosis, and some molecular expressions regarding steroidogenic enzyme, luteinizing hormone receptor and apoptosis‐related genes in granulosa cells. The results indicated that ovarian stromal/theca cells were able to stimulate oestradiol and progesterone production, promote cell proliferation and inhibit apoptosis of granulosa cells. Among all the three kinds of cells, theca cells affected strongly on granulosa cell function, and ovarian medullary stromal cells had the weakest effect on granulosa cells. These findings would provide an important knowledge of cell interaction among follicular cells during follicular development.  相似文献   

2.
The present investigation was undertaken to verify if the two nitric oxide synthase isoforms, eNOS and iNOS, are present in swine granulosa cells and whether the enzyme soluble guanylate cyclase is functionally active in the same cells and can account for NO effects. Using western blotting, the presence of endothelial NO synthase was demonstrated in freshly collected cells; on the contrary, iNOS expression was not observed in the same cells either before or after culture with the inflammatory cytokine hTNF-. The treatment with a strong NO donor (S-Nitroso-L-acetyl penicillamine, SNAP) determined an increase of cGMP levels in culture media, which was attenuated by the combined treatment with an inhibitor of NO-sensitive soluble guanylate cyclase, 1H-[1,2,3]oxadiaziolo [4,3a]quinoxaline −1-one (ODQ). The cGMP analog, 8 bromo-cGMP, mimicked the strong inhibitory effect exerted by SNAP on estradiol 17 β and progesterone production, while ODQ did not modify steroids concentrations in culture media. These observations demonstrate the presence of a follicular NO-generating system, which in swine granulosa cells seems to include only the endothelial NOS isoform. Furthermore, the nitric oxide/cyclic GMP system seems to be functionally active in these cells, since cGMP appears to mediate NO action, even if it cannot account completely for NO inhibitory effect on steroidogenesis.  相似文献   

3.
Bisphenol A (BPA) is a chemical of high production volume that is used widely in many industries and is known as a xenooestrogen and anti‐thyroid hormone endocrine disrupter. There is little information regarding the effects of BPA in the presence of thyroid hormone on porcine granulosa cell development. Thus, the primary granulosa cells were treated with thyroxine (T4, 10 nM), BPA (10 µM) or T4 plus BPA; we subsequently evaluated the effects of T4 or BPA on 17β‐estradiol synthesis, cellular proliferation and apoptosis. Our data showed that BPA significantly increased the accumulation of 17β‐estradiol and promoted granulosa cell proliferation, whereas T4 significantly decreased 17β‐estradiol and had no effect on cellular proliferation. In addition, it was noteworthy that T4 treatment induced apoptosis in porcine granulosa cells and BPA co‐incubation attenuated T4‐induced apoptosis as shown from flow cytometric assay analysis. We hypothesized that BPA attenuates T4‐induced apoptosis by regulating 17β‐estradiol accumulation and oestrogen receptor‐mediated signalling pathways. In conclusion, our results demonstrated that T4 affected 17β‐estradiol accumulation and induced cellular apoptosis, but did not affect granulosa cell proliferation. Exposure to BPA increased 17β‐estradiol accumulation, promoted granulosa cell proliferation and attenuated T4‐induced apoptosis in porcine granulosa cells in vitro.  相似文献   

4.
The key biological active molecule of soya is the isoflavone daidzein, which possesses phytoestrogenic activity. The direct effect of soya and daidzein on ovarian cell functions is not known. This study examined the effect of daidzein on basic porcine ovarian granulosa cell functions and the response to follicle‐stimulating hormone (FSH). We studied the effects of daidzein (0, 1, 10 and 100 μm ), FSH (0, 0.01, 0.1, 1 IU/ml) and combinations of FSH (0, 0.01, 0.1, 1 IU/ml) + daidzein (50 μm ) on proliferation, apoptosis and hormone release from cultured porcine ovarian granulosa cells and ovarian follicles. The expression of a proliferation‐related peptide (PCNA) and an apoptosis‐related peptide (Bax) was analysed using immunocytochemistry. The release of progesterone (P4) and testosterone (T) was detected using EIA. Leptin output was analysed using RIA. Daidzein administration increased granulosa cell proliferation, apoptosis and T and leptin release but inhibited P4 output. Daidzein also increased T release and decreased P4 release from cultured ovarian follicles. Follicle‐stimulating hormone stimulated granulosa cell proliferation, apoptosis and P4, T and leptin release. The addition of daidzein promoted FSH‐stimulated apoptosis (but not proliferation) but suppressed FSH‐stimulated P4, T and leptin release. Our observations of FSH action confirm previous data on the stimulatory effect of FSH on ovarian cell proliferation, apoptosis and steroidogenesis and demonstrate for the first time the involvement of FSH in the upregulation of ovarian leptin release. Our observations of daidzein effects demonstrated for the first time that this soya isoflavone affected basic ovarian cell functions (proliferation, apoptosis and hormones release) and modified the effects of FSH. Daidzein promoted FSH action on ovarian cell proliferation and apoptosis and suppressed, and even inverted, FSH action on hormone release. The direct action of daidzein on basic ovarian cell functions and the ability of these cells to respond to FSH indicate the potential influence of soya‐containing diets on female reproductive processes via direct action on the ovary.  相似文献   

5.
The aim of this study was to examine possible effects of bee pollen added to the feed mixture (FM) on rat ovarian functions (secretion activity and apoptosis). We evaluated the bee pollen effect on the release of insulin‐like growth factor I (IGF‐I) and steroid hormones (progesterone and estradiol), as well as on the expression of markers of apoptosis (Bcl‐2, Bax and caspase‐3) in rat ovarian fragments. Female rats (n = 15) were fed during 90 days by FM without or with rape seed bee pollen in dose either 3 kg/1000 kg FM or 5 kg/1000 kg FM. Fragments of ovaries isolated from rats of each group (totally 72 pieces) were incubated for 24 h. Hormonal secretion into the culture medium was detected by RIA. The markers of apoptosis were evaluated by Western blotting. It was observed that IGF‐I release by rat ovarian fragments was significantly (p < 0.05) decreased; on the other hand, progesterone and estradiol secretion was increased after bee pollen treatment at dose 5 kg/1000 kg FM but not at 3 kg/1000 FM. Accumulation of Bcl‐2 was increased by bee pollen added at 3 kg/1000 kg FM, but not at higher dose. Accumulation of Bax was increased in ovaries of rats fed by bee pollen at doses either 3 or 5 kg/1000 kg FM, whilst accumulation of caspase‐3 increased after feeding with bee pollen at dose 5 kg/1000 kg FM, but not at 3 kg/1000 kg FM. Our results contribute to new insights regarding the effect of bee pollen on both secretion activity (release of growth factor IGF‐I and steroid hormones progesterone and estradiol) and apoptosis (anti‐ and pro‐apoptotic markers Bcl‐2, Bax and caspase‐3). Bee pollen is shown to be a potent regulator of rat ovarian functions.  相似文献   

6.
Because of its widespread use and potential adverse biological effects, bisphenol A (BPA) represents one of the most studied endocrine-disrupting compounds. Within the reproductive system, ovarian granulosa cells have been documented as a target of BPA action, but no consensus has been reached about functional modifications induced by BPA. On these bases, we studied the potential disrupting effects of BPA on the main granulosa cell functional activities, also taking into account a potential interference with the ovarian angiogenic process. Ovarian granulosa cells were isolated from porcine follicles and cultured in the presence or absence of BPA at different concentrations for 48 h. Cell proliferation was studied by measuring adenosine triphosphate content. Progesterone (P4) and estradiol 17β (E2) production was determined by radioimmunoassay. Vascular endothelial growth factor (VEGF) output was quantified by an enzyme-linked immunosorbent assay. Redox status was monitored by measuring superoxide anion and hydrogen peroxide, and by determining the activities of the scavenging enzymes superoxide dismutase, catalase, and peroxidase by colorimetric methods. Granulosa cell proliferation as well as redox status resulted unaffected by BPA. Concentrations of E2 were stimulated by the lower BPA concentration, whereas they were inhibited by the larger doses tested. P4 output was decreased by all BPA concentrations. To the contrary, VEGF production was stimulated. Data indicate that BPA can interfere with reproductive activity by affecting granulosa cell steroidogenesis in vitro; furthermore, BPA can exert a promoting effect on the ovarian angiogenic process by increasing VEGF output in pigs. A disruption of this finely tuned process seems particularly relevant because of the risk of uncontrolled neovascularization.  相似文献   

7.
8.
Cystic ovarian disease (COD) is one of the main causes of infertility in dairy cattle. It has been shown that intra‐ovarian factors may contribute to follicular persistence. Transforming growth factor‐beta (TGFB) isoforms are important paracrine and autocrine signalling molecules that regulate ovarian follicle growth and physiology. Considering the importance of these factors in the ovarian physiology, in this study, we examined the expression of TGFB isoforms (TGFB1, TGFB2 and TGFB3) in the ovary of healthy cows and animals with spontaneous and adrenocorticotrophic hormone (ACTH)‐induced COD. In the oestrous‐synchronized control group, the expression of TGFB1 in granulosa and theca cells was higher in spontaneous cysts than in atretic or tertiary follicles. When we compared TGFB2 expression in granulosa cells from atretic or tertiary follicles from the oestrous‐synchronized control group with that in ACTH‐induced or spontaneous follicular cysts, we found a higher expression in the latter. The expression of the TGFB isoforms studied was also altered during folliculogenesis in both the spontaneous and ACTH‐induced COD groups. As it has been previously shown that TGFB influences steroidogenesis, ovarian follicular proliferation and apoptosis, an alteration in its expression may contribute to the pathogenesis of this disease.  相似文献   

9.
Gonadotropins are required for follicular growth and differentiation, but increasing amounts of evidence indicate that intrafollicular factors modulate their effects at granulosa cell level. In order to study the effect of factors present in bovine follicular fluid, a partial purification of low molecular mass factors from fluids collected from small (< 5 mm), medium (5–8 mm) and large (> 8 mm) follicles was performed and the biological activity of these peptides on steroidogenesis of granulosa cells from small and large follicles was examined. The purification was carried out by filtration through membranes in 25 and 10 kDa molecular weight cutoffs. After filtration, samples were analysed by polyacrylamide gel electrophoresis and protein concentration was measured by spectrophotometric analysis. Granulosa cells from small and large follicles were cultured in serum‐free DMEM/Ham's F12 (1 : 1) plus transferrin (5 mg/l) and selenium (5 µg/l) for 2 days. At the end of the culture period, media were renewed and follicular extracts from two different preparations (< 25 and < 10 kDa) were added at the concentrations of 1–10–100–1000 ng/ml. After 24 h the media were collected and stored until estradiol 17β (E2) and progesterone (P4) determination by validated radio‐immuno‐assays. Basal P4 production was 18.3 ± 1.4 (mean ± SEM)and 9.8 ± 1.8 ng/24 h per 3 × 104 cells from small and large follicles, respectively. Both < 10 and < 25 kDa extracts reduced P4 production by cells from both the types of follicles (p < 0.05). Basal E2 release was 671.8 ± 21.4 and 5500 ± 800 pg/24 h per 3 × 104 cells from small and large follicles, respectively. Both extracts reduced E2 production by either cells from small and large follicles (p < 0.05). No differences were observed in the inhibition of steroidogenesis by purifications obtained from large, medium or small follicles. Results of this study indicate that factors present in bovine follicular fluid can reduce steroidogenesis in granulosa cells in vitro.  相似文献   

10.
The current investigations were undertaken to study the mechanism of the adverse effect of phytoestrogens on the function of bovine granulosa (follicles >1< cm in diameter) and luteal cells from day 1–5, 6–10, 11–15, 16–19 of the oestrous cycle. The cells were incubated with genistein, daidzein or coumestrol (each at the dose of 1 × 10?6 m ). The viability and secretion of estradiol (E2), progesterone (P4) and oxytocin (OT) were measured after 72 h of incubation. Moreover, the expression of mRNA for neurophysin‐I/OT (NP‐I/OT; precursor of OT) and peptidyl‐glycine‐α‐amidating monooxygenase (PGA, an enzyme responsible for post‐translational OT synthesis) was determined after 8 h of treatment. None of the phytoestrogens used affected the viability of cells except for coumestrol. The increased secretion of E2 and P4 was only obtained by coumestrol (p < 0.05) from granulosa cells from follicles <1 cm in diameter and decreased from luteal cells on days 11–15 of the oestrous cycle, respectively. All three phytoestrogens stimulated (p < 0.05) OT secretion from granulosa and luteal cells in all stages of the oestrous cycle and the expression of NP‐I/OT mRNA in the both types of cells. The expression of mRNA for PGA was stimulated (p < 0.05) by daidzein and coumestrol in granulosa cells, and by genistein and coumestrol in luteal cells. In conclusion, our results demonstrate that these phytoestrogens can impair the ovary function in cattle by adversely affecting the synthesis of OT in follicles and in corpus luteum. However, their influence on the ovarian steroids secretion was less evident.  相似文献   

11.
Adiponectin is an adipocyte‐derived hormone regulating energy metabolism, insulin sensitivity and recently found to regulate reproduction. The current study was carried out to investigate gene and protein expression, immunolocalization of adiponectin and its receptors AdipoR1 and AdipoR2 in ovarian follicles of different developmental stages in water buffalo (Bubalus bubalis) and to investigate the effect of adiponectin on steroid production in cultured bubaline granulosa cells. qPCR, western blotting and immunohistochemistry were applied to demonstrate mRNA expression, protein expression and immunolocalization, respectively. The results indicate that adiponectin, AdipoR1 and AdipoR2 were present in granulosa cells (GC) and theca interna (TI) of ovarian follicles and the expression of adiponectin, AdipoR1, AdipoR2 in GC and AdipoR1 and AdipoR2 in TI increased with increase in follicle size (p < .05). Expression of adiponectin was high in small and medium size follicles in TI. The adiponectin and its receptors were immunolocalized in the cytoplasm of GC and TI cells. Further, in the in‐vitro study, GCs were cultured and treated with recombinant adiponectin each at 0, 1 and 10 µg/ml alone or with follicle stimulating hormone (FSH) at 30 ng/ml) or Insulin‐like growth factor I (IGF‐I) at 10 ng/ml for 48 hr after obtaining 75%–80%s confluency. Adiponectin at 10 µg/ml increased IGF‐I‐induced estradiol (E2) and progesterone (P4) secretion and FSH‐induced E2 secretion from GC and also increased the abundance of factors involved in E2 and P4 production (cytochrome P45019A1 [CYP19A1] and 3‐beta‐hydroxysteroid dehydrogenase [3β‐HSD]). In conclusion, this study provides novel evidence for the presence of adiponectin and its receptors in ovarian follicles and modulatory role of adiponectin on steroid production in buffalo.  相似文献   

12.
N(omega)‐nitro‐L‐arginine methyl ester (L‐NAME) decreases the vasodilator effect of nitric oxide (NO) and induces pre‐eclampsia in mouse. Sildenafil inhibits the degradation of nitric oxide and increases vasodilation. This study aimed to determine the effects of sildenafil citrate on angiogenesis and oxidative stress at the maternal foetal interface on pre‐eclampsia‐like mouse model induced by L‐NAME. Twenty pregnant mice were divided into four groups: (i) vehicle control; (ii) L‐NAME; (iii) sildenafil; (4) L‐NAME+sildenafil. L‐NAME was administered from day 7 of pregnancy and sildenafil from day 8 until day 16; animals were euthanized on day 17. Placental and foetal sizes and weights were measured; lipid peroxide levels and catalase activity in placental homogenates were determined, and placental vascular endothelia were identified by lectin‐histochemistry using BSA‐I lectin. Western blot analysis was used to determine VEGF expression in placental homogenates. No changes were seen in placental and foetal development in mice with normal pregnancies treated with sildenafil. Treatments with L‐NAME reduced significantly the placental weight and average height and decreased the percentage of the endothelial surface. These alterations may be mediated by the reduction of NO levels in trophoblastic cells, due to the inhibitory effect of L‐NAME on nitric oxide synthase (NOS) synthesis. This effect was offset by the treatment with sildenafil, with an increase in the percentage of the endothelial surface. In conclusion, our results indicate that treatment with sildenafil on pre‐eclampsia mouse model can be used without adverse effects on the concept and its use in the treatment of pre‐eclampsia is promising.  相似文献   

13.
Contents In this experiment, the possibility that the follicular-wall cells' death during ovarian follicular atresia occurs as a result of apoptosis was examined. Programmed cell death or apoptosis is a process whereby cells die in a controlled fashion, triggered by changes in levels of specific physiological stimuli. Morphological transformations of the cells are preceded by endo- nuclease-mediated genomic-DNA cleavage. The analysis of DNA from the theca and granulosa layers of follicles indicated that internucleosomal fragmentation of DNA occurred in atretic granulosa cells but not in atretic theca cells. The healthy granulosa and theca cells in all classes of follicles showed no apoptosis. This paper demonstrates that the death of porcine ovarian-follicle walls can be caused by different processes and, contrary to granulosa cells' apoptosis, either does not or only partly concerns the internal theca layer.  相似文献   

14.
Cattle genetically selected for twin ovulations and births (Twinner) exhibit increased ovarian follicular development, increased ovulation rate, and greater blood and follicular fluid IGF-1 concentrations compared with contemporary cattle not selected for twins (Control). Experimental objectives were to 1) assess relationships among aromatase (CYP19A1), IGF-1 (IGF1), IGF-2 receptor (IGF2R), and FSH receptor (FSHR) mRNA expression in small (≤5 mm) antral follicles and 2) determine their association with increased numbers of developing follicles in ovaries of Twinner females. Ovaries were collected from mature, cyclic (d 3 to 6) Twinner (n = 11), and Control (n = 12) cows at slaughter and pieces of cortical tissue were fixed and embedded in paraffin. Expression of mRNA was evaluated by in situ hybridization using (35)S-UTP-labeled antisense and sense probes for CYP19A1, FSHR, IGF1, and IGF2R mRNA. Silver grain density was quantified within the granulosa and theca cells of individual follicles (2 to 7 follicles/cow) by Bioquant image analysis. Follicles of Twinners tended to be smaller in diameter than Controls (1.9 ± 0.1 vs. 2.3 ± 0.1 mm; P = 0.08), but thickness of granulosa layer did not differ (P > 0.1) by genotype. Relative abundance of CYP19A1 (P < 0.01) and FSHR (P < 0.05) mRNA was greater in granulosa cells of Twinners vs. Controls, respectively, whereas IGF2R mRNA expression was less in both granulosa (P < 0.01) and theca (P < 0.05) cells in follicles of Twinners vs. Controls, respectively. Abundance of CYP19A1 mRNA in granulosa cells was correlated negatively with IGF2R mRNA expression in both granulosa (r = -0.33; P < 0.01) and theca (r = -0.21; P = 0.05) cells. Expression of IGF1 mRNA was primarily in granulosa cells, including cumulus cells, and its expression did not differ between Twinners vs. Controls (P > 0.10). Detected increases in CYP19A1 and FSHR, but not IGF1, mRNA expression along with decreases in IGF2R mRNA expression in individual follicles of Twinners support the hypothesis that increased follicular development and steroidogenesis in Twinner females result from increased extra-ovarian IGF-1 production. Furthermore, a reduction in follicular IGF2R mRNA expression accompanied by a reduction in receptor numbers would increase availability of free IGF-2 and its stimulation of follicular development in Twinners.  相似文献   

15.
The final stages of ovarian follicle growth in cattle are typically characterized by the ultrasound-detectable emergence of a cohort of small (3-5mm in diameter) antral follicles, followed by a selection process during which the number of follicles continuing to grow decreases. Finally, only one follicle (the dominant follicle; DF) shows an enhanced growth rate and estradiol synthesis when it attains 8.5mm compared to its closest competitor (the largest subordinate follicle; SF). Cohort emergence is caused by a transient FSH rise, while DF selection occurs during declining FSH indicating differential FSH dependence of DF and SF. In order to elucidate the mechanisms underlying DF survival or SF atresia, this review aims to (i) describe follicular changes in the local production and regulation of members of the inhibin family of proteins and the insulin-like growth factor (IGF) system in relation to FSH deprivation leading to DF selection, and (ii) develop a model for DF selection outlining the putative involvement of inhibins, activin and follistatin on the one hand, and bioavailable IGFs regulated by IGF binding proteins (IGFBPs) and IGFBP proteases on the other hand. It is concluded, that the first indications of differential FSH dependence are seen within 33h of the FSH peak, and high amounts of precursor forms of inhibin and free activin, and low amounts of the lower molecular weight (MW) IGFBPs are related to follicle survival in terms of enhanced growth and estradiol synthesis, and suppression of granulosa cell apoptosis. In addition, maintenance of low amounts of intrafollicular IGFBP4 may constitute an important mechanism in the future DF to attain FSH independence.  相似文献   

16.
To determine the effect of gonadotropins on insulin- and insulin-like growth factor (IGF-I)-induced bovine granulosa cell functions, granulosa cells from bovine ovarian follicles were cultured for 2 days in the presence of 10% fetal calf serum (FCS), and then cultured for an additional 2 days in serum-free medium with added hormones. In the presence of 0 or 1 ng/mL of insulin or IGF-I, FSH had little or no effect (P>0.05) on estradiol production by granulosa cells from both small (1–5 mm) and large (≥8 mm) follicles. However, in the presence of ≥3 ng/mL of insulin, FSH increased (P<0.05) estradiol production by granulosa cells from small and large follicles such that the estimated dose (ED50) of insulin necessary to stimulate 50% of the maximum estradiol production was decreased by 2- to 3-fold from 22 to 28 ng/mL in the absence of FSH to 7–14 ng/mL in the presence of FSH. Similarly, in the presence of ≥3 ng/mL of IGF-I, FSH increased (P<0.05) estradiol production by granulosa cells from small and large follicles such that the ED50 of IGF-I for estradiol production was decreased by 4- to 5-fold from 25 to 36 ng/mL in the absence of FSH to 5–6 ng/mL in the presence of FSH. In the presence of FSH, the maximal effect of insulin on estradiol production was much greater than that of IGF-I (137- versus 12-fold increase) and were not additive; when combined, 100 ng/mL of IGF-I completely blocked the stimulatory effect of 100 ng/mL of insulin. In the absence of FSH, the maximal effect of insulin and IGF-I on estradiol production was similar. Concomitant treatment with 30 ng/mL of LH reduced (P<0.05) insulin-stimulated estradiol production by 52% on day 1 and 19% on day 2 of treatment. Insulin, IGF-I and FSH also increased (P<0.05) granulosa cell numbers and progesterone production but their maximal effects were less (i.e., <4-fold increase) than their effects on estradiol production. In conclusion, insulin and IGF-I synergize with FSH to directly regulate ovarian follicular function in cattle, particularly granulosa cell aromatase activity.  相似文献   

17.
Soya and soybean products used in swine feeding contain genistein, a non‐steroidal phyto‐oestrogen which has been demonstrated to influence endocrine functions. This observation leads us to design this study to evaluate the effect of genistein on swine granulosa cell steroidogenesis and proliferation. In the attempt to unravel the genistein signal transduction mechanisms, we verified the effect of lavendustin, a Tyrosine Kinase (TK) inhibitor, and the potential involvement of NO/cGMP pathway. Finally, as angiogenesis is essential for follicle development, we tested the effect of the phyto‐oestrogen on vascular endothelial growth factor production and on granulosa cell redox status, because free‐radical species modulate neovascularization. Our data provide evidence that genistein interferes with granulosa cell steroidogenesis while it does not modulate cell growth: this effect could be at least partially produced by inhibiting TK‐dependent signalling systems. On the contrary, NO/cGMP pathway or vascular endothelial growth factor production can be excluded as signalling mechanism involved in phyto‐oestrogen effects. Remarkably, genistein stimulates hydrogen peroxide production thus potentially inhibiting follicular angiogenesis. Collectively, these results suggest that genistein consumption could potentially negatively impact swine reproductive function.  相似文献   

18.
10周龄SD大鼠单剂量腹腔注射5mg/kg玉米赤霉烯酮玉米油溶液,分别于3、6、12、24、48h时剖杀取卵巢组织,检测不同时间卵巢组织Bax和Bcl-2的表达。结果显示,病理组织学观察发现卵巢组织出现不同程度损伤,卵泡颗粒细胞发生凋亡。免疫组化SP法试验组与对照组卵巢组织中均有Bax和Bcl-2的表达,并且随着时间的推进呈现动态变化。Bax在3、6、12h时表达量上调,表达量与对照组比较差异显著(P〈0.05),24、48h时表达量下降,与对照组比较差异不显著(P〉O.05)。3~48h卵巢组织中Bcl-2表达量与对照组比较差异不显著(P〉0.05)。结果表明,大鼠玉米赤霉烯酮中毒可引起卵巢组织的病变及颗粒细胞凋亡,且Bax在玉米赤霉烯酮中毒大鼠卵巢颗粒细胞凋亡中起着重要作用,Bcl-2的作用不明显。  相似文献   

19.
Recent studies suggest that ovarian follicular atresia is associated with DNA fragmentation and degeneration of granulosa cells, the hallmark of programmed cell death or apoptosis. Apoptosis of granulosa cells play a major role in follicular atresia. These studies have also demonstrated the involvement of tumour suppressors, apoptotic proteins and survival factors. These factors contribute to the developmental decision as to whether the ovarian follicles mature or undergo atresia. However, the precise temporal and molecular events involved in the apoptotic pathways in this process need to be elucidated. The present report summarizes the role of Jun N‐terminal kinase (JNK), p38 mitogen activated protein kinase (p38 MAPK), and extracellular‐signal regulated kinase (ERK)‐signalling module in the regulation of pro‐ and anti‐apoptotic factors of the granulosa cells in regulating follicular atresia. The findings presented here suggest that the loss of tropic hormone support is translated into the attenuation of Raf‐1‐MAPK/ERK kinase (MEK)‐ERK‐signalling pathway of the granulosa cells and this results in the decreased phosphorylation of the pro‐apoptotic BAD.  相似文献   

20.
Several hundred thousand primordial follicles are present in the mammalian ovary, however, only 1% develop to the preovulatory stage and finally ovulate. The remainder will be eliminated via a degenerative process called ‘atresia’. The endocrinological regulatory mechanisms involved in follicular development and atresia have largely been characterized but the precise temporal and molecular mechanisms involved in the regulation of these events remain unknown. Many recent studies suggest that apoptosis in ovarian granulosa cells plays a crucial role in follicular atresia. Notably, death ligand‐receptor interaction and subsequent intracellular signaling have been demonstrated to be the key mechanisms regulating granulosa cell apoptosis. In this review we provide an overview of granulosa cell apoptosis regulated by death ligand‐receptor signaling. The roles of death ligands and receptors [Fas ligand (FasL)]‐Fas, tumor necrosis factor α (TNFα)‐TNF receptor and TNFα‐related apoptosis‐inducing ligand (TRAIL)‐TRAIL receptor (TRAILR)] and intracellular death‐signal mediating molecules (Fas‐associated death domain protein), TNF receptor 1‐associated death domain protein, caspases, apoptotic protease‐activating factor 1, TNFR‐associated factor 2 and cellular FLICE‐like inhibitory protein in granulosa cells are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号