首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 466 毫秒
1.
This paper presents a study on the impact of baking conditions on crumb staling. Breads were baked at 220 °C, 200 °C and 180 °C corresponding to 6, 8 and 10 min to rise the temperature to 98 °C in the crumb (heating rates 13, 9.8 and 7.8 °C/min respectively with an initial temperature of 20 °C). A new protocol has been developed, consisting in baking a slab of degassed dough in a miniaturized oven to mimic the baking conditions of conventional bread making. Texture tests were done during staling on degassed crumb and on conventional crumb. Calorimetry tests showed that during storage, amylopectin recrystallisation occurred before crumb stiffening. A first order kinetics model was used to fit the evolution of the crumb texture (Young's modulus) and of the recrystallisation of amylopectin. The results showed that the hardening of the crumb during staling occurred after retrogradation of amylopectin. In addition, the staling rate was faster for faster baking kinetics. A mechanical model showed that the relative Young modulus is proportional to the square of the relative density of the crumb.  相似文献   

2.
The influence the quality and shelf life of baked product has previously been reported to be effected by the time and temperature of the baking process. In this study, dough was baked at 219 °C by using different ovens (conventional, impingement or hybrid) or with doughs of different sizes (large or small) for varying times. During baking the temperature profile at the dough center was recorded. Texture, thermal properties and pasting characteristics of baked product with reference to baking conditions were investigated. Small breads baked in the hybrid oven had the highest heating rate (25.1 °C/min) while large breads baked in conventional oven had the lowest heating rate (6.0 °C/min). When the data are viewed as a function of heating rate in this study, the enthalpy of amylopectin recrystallization, rate of bread firmness and the amount of soluble amylose were all-lower at the slower heating rate. The differences observed in product firmness following storage are potentially a consequence of the extent of starch granule hydration, swelling, dispersion and extent of reassociation; all of which are affected by the heating rate during baking.  相似文献   

3.
Fresh and stored maize (white and blue) tortillas were evaluated for physicochemical, rheological and structural characteristics assessed by calorimetry, x-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, dynamic viscoelastic tests, and high-performance size-exclusion chromatography. Two endotherms were found in studies of fresh and stored tortillas. The low temperature endotherm (50–56 °C) was due to reorganized (retrograded) amylopectin, while the high temperature endotherm (105–123 °C) was attributed to retrograded amylose. The enthalpy value for the lower temperature transition was minor than that of the high temperature transition. Fresh tortillas showed an amorphous starch arrangement by x-ray diffraction study. Stored samples showed the presence of peaks at 2θ = 17o and 23o, indicating re-crystallization of starch components. FTIR results confirmed the development of higher levels of starch crystals during storage. Differences in the viscoelastic parameters were also observed between fresh and stored samples. At the longest storage times, white tortillas were more rigid than blue tortillas. Molar mass values for starch increased for both white and blue tortillas as storage time progressed, though relatively higher values were obtained for white tortillas. More starch reorganization occurred in white tortillas, in accordance to calorimetric, x-ray diffraction, FTIR and rheological results. These results corroborate that changes occurring in tortillas during storage are related to reorganization of starch components, and the maize variety more than the color plays an important role.  相似文献   

4.
Maize pasta was produced using various heat treatment such as drum-drying, extrusion-cooking, pasting and steaming. Cooking quality of pasta products were compared and discussed on the basis of starch physico-chemical properties. The best products were obtained by using drum-drying or pasting, whereas the worst product was obtained using extrusion-cooked maize starch. This was interpreted in terms of starchy component degradation and amylose retrogradation ability. The treatment of fresh pasta at high temperature (95°C) with high relative humidity (95%) improved pasta quality: after 1 h under these conditions, cooking losses were decreased by 9%. Addition of monoglycerides also significantly improved pasta cooking quality by making complexes with amylose during pasta cooking. In contrast, cold storage promoted amylopectin retrogradation and scarcely improved maize pasta quality.  相似文献   

5.
The effects of different process conditions on the pasting behavior of the 14%, w/w suspensions of high amylose, waxy and normal maize starches at mixing speeds of 50, 160 and 250 rpm with the heating rates of 2.5, 5 and 10 °C/min were investigated. In addition, the impact of the starch mixture with an amylose-amylopectin ratio of 0–70% at 160 rpm and a heating rate of 5 °C/min on the pasting parameters was studied. According to the results, when stirring speed decreased from 250 rpm to 50 rpm, the peak viscosity dramatically increased. Furthermore, both heating and stirring rates significantly affected the pasting properties (p < 0.05). The amylose content of maize starch had a negative correlation with peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity. Besides, syneresis values decreased as amylose content decreased from 70% to 0%. According to the kinetic modelling of pasting curves, starch coefficients were found to be higher than 1 for all starches, indicating that the penetration of water into starch granules increased granule swelling rate. The findings of the present study confirmed that both process conditions and amylose/amylopectin ratio can be optimized without necessity of starch modification to obtain the products with the desired quality.  相似文献   

6.
Normal maize, waxy maize, dull waxy maize and amylomaize V starches were heat treated at 100 °C for 16 h at a moisture content of 30%. The results showed that the X-ray intensities of the major d-spacings of all starches increased on heat–moisture treatment (waxy maize > normal maize > dull waxy maize > amylomaize V). This treatment decreased the apparent amylose content (amylomaize V > normal maize), swelling factor (amylomaize V > waxy maize > dull waxy maize > normal maize), amylose leaching (amylomaize V > normal maize), pasting viscosities (amylomaize V > normal maize), acid hydrolysis (amylomaize V > normal maize > waxy maize > dull waxy maize), enzyme hydrolysis (amylomaize V > normal maize > dull waxy maize > waxy maize) and syneresis (amylomaize V > normal maize > waxy maize ≈ dull waxy maize). The gelatinization transition temperatures of all starches increased on heat–moisture treatment (amylomaize V > normal maize > waxy maize > dull waxy maize). However, the gelatinization temperature range increased only in normal maize and amylomaize V starches (amylomaize V > normal maize), while it remained unchanged in both the waxy starches. The enthalpy of gelatinization remained unchanged on heat–moisture treatment in all starches and the pasting viscosities of the two waxy starches were also unaffected. The foregoing data showed that starch chains within the amorphous and crystalline regions of the granule associate during heat–moisture treatment. However, the extent of this association was of a greater order of magnitude within the amorphous regions. DSC studies have indicated associations involving amylose chains (amylose–amylose and amylose–native starch lipids) resulted in the formation of new crystallites of different stabilities. In contrast, associations involving amylopectin chains (amylopectin–amylopectin) did not lead to crystallite formation.  相似文献   

7.
Bread staling involves a combination of physico-chemical phenomena that leads to a reduction of quality. This study aims at evaluating the impact of baking conditions (280 °C, 8 min; 310 °C, 5.5 min; 340 °C, 4 min), baking type (of fully baked (FB) and part-baked (PB)) and storage temperature (−18, 4 and 20 °C) on the staling of Sangak bread. Results showed that lower baking temperature with longer baking time produced drier bread with higher firmness. In FB Sangak breads, amylopectin retrogradation, amount of unfreezable water and firmness (measured by compression test) increased during storage at positive temperatures but hardness (determined by Kramer shear test) decreased significantly during first day of storage. The recrystallized amylopectin traps the free water resulting in crumb hardening. Water is also absorbed by the dry crust resulting in changes of rheological properties in the crust and crumb, and finally in staling. Storage at 4 °C resulted in increasing melting enthalpy of amylopectin crystallite in comparison with storage at 20 °C. Also it was found that firmness of PB breads due to rebaking was significantly lower than FB breads. There were no significant changes in staling parameters of FB and PB stored at −18 °C.  相似文献   

8.
The constituent starches from eleven cultivars of non-waxy rice with different degrees of cooking hardness were subjected to detailed analysis. No significant differences were observed in the granule morphology, crystallinity and size distribution of the starch granules that could be correlated with the textures of the cooked, parboiled rices. Differences in the contents of amylose and the fine structures of amylopectin were detected, however, which did correlate with texture. It appeared that the texture of the rices was critically controlled by the proportion of the longest (DP 92–98) and shortest (DP&lE25) amylopectin chains but not the intermediate (DP 43–68) chains. Hard cooking rice tended to have a higher amylose content (or amylose:amylopectin ratio) and more longer chain amylopectin than soft cooking rice, which feature is thought to encourage more extensive intra and/or inter molecular interactions with other components in rice grain, such as protein, lipid and non-starch polysaccharides and results in a firmer texture. The different amylopectin structures may explain why rices that possess similar amylose contents can have different textural properties. Such a correlation suggests that the structure of the starches determined from the SE–HPLC profile of the debranched amylopectin could be useful as a sensitive screening method in the classification of cooked rice texture.  相似文献   

9.
Breads were chilled at room temperature or using a vacuum chilling process. The staling rate was studied after partial baking and after the final baking. Vacuum chilled breads (VCBs) exhibited a higher moisture loss than conventionally chilled bread (CCB). A higher enthalpy of melting of amylopectin crystals was observed for VCB in comparison to CCB.VCB had a negative effect on the texture of the bread. The hardness of the crumb of VCB was increased by 20% at the end of staling and the kinetics of staling was 10% faster for VCB in comparison to CCB. After 12 days of storage at 4 °C, a second and final baking was applied to the bread. The staling rate of VCB was almost two times that of CCB. The staling rate of CCB was unchanged in comparison to the staling rate after partial baking. Data on the enthalpy of melting of amylopectin showed that the same amount of amylopectin was formed at the end of staling for CCB after part baked process and after full baking process. Beside, the VCB showed a higher amount of recrystallized amylopectin (10%) at the end of the staling which followed the partial baking.  相似文献   

10.
Retrogradation of gelatinised starch is the main phenomenon that influences the texture of cooked rice. The rate of retrogradation is affected by several factors including amylose and amylopectin ratio, protein and fibre. The objective of this study was to analyse the pasting properties and the retrogradation behaviour of six traditional and five aromatic Italian rice varieties. The pasted gels, after cooling, were evaluated by dynamic rheological measurements for up to 7 days of storage at 4 °C. The samples were also analysed by a NIR spectrometer. The pasting properties and the retrogradation behaviour of milled rice flours strongly depended on the rice varieties. During gel ageing, a noticeable increase of G′ and G″ was observed only for the milled rice varieties Asia, Gange, Fragrance and Vialone Nano, characterised by a high amylose content. No further hardening was found either for the other milled varieties or for all the brown samples. The methods used in this work (dynamic oscillatory rheometry and FT-NIR spectroscopy) turned out to be very useful in the definition of rice starch gels ageing.  相似文献   

11.
小麦籽粒淀粉合成动态及糊化特性的基因型差异   总被引:5,自引:1,他引:5       下载免费PDF全文
为了明确不同基因型小麦品种籽粒灌浆过程中的淀粉合成动态,为小麦的高产优质栽培提供参考信息,对6个不同基因型小麦籽粒形成过程中淀粉组分的变化及淀粉糊化特性进行了分析。结果表明,非糯性小麦的直链淀粉含量随着花后天数的增加呈上升的趋势,糯性小麦则呈先上升后下降的趋势,所有品种的支链淀粉含量均呈上升的趋势;不同基因型小麦直链、支链淀粉积累速率均呈单峰曲线图,不同品种直链淀粉最大积累速率出现的时间不同,而支链淀粉最大积累速率出现的时间均在花后21d;不同小麦品种的峰值粘度、低谷粘度、最终粘度均随着花后天数的增加而上升;不同品种淀粉糊化特性不同:糯性小麦之间在糊化时间、反弹值上无差异,而在峰值粘度、低谷粘度、最终粘度、稀懈值上的差异达显著水平;对于非糯性小麦,豫麦50和其他品种的多数糊化参数差异达显著水平;糯小麦和非糯小麦在糊化参数上的差异达1%显著水平。  相似文献   

12.
小麦淀粉与面条质量关系的研究进展   总被引:5,自引:0,他引:5  
小麦淀粉品质对白盐面条的质量(尤其是煮后的感官特性)有重要影响。直链与支链淀粉的含量及比例是影响面条质量的重要因素,是造成不同小麦品种淀粉糊化和膨胀特性及面条质量差异的物质基础。较低直链淀粉含量的小麦粉具有较好的糊化和膨胀特性,制作的面条煮制时吸水率高,烹调损失低,具有较高的感官评分。优质白盐面条的直链淀粉含量应在22%左右。峰值黏度、稀懈值、峰值时间是影响面条质量的重要糊化参数,这3项参数高的小麦粉适合制作优质面条。高膨胀势或膨胀体积的小麦粉制作的面条中等偏软,光滑且富有弹性,可以作为面条用小麦的重要选择标准。一般认为,直链淀粉含量较低、峰值黏度和稀懈值高、峰值时间长、膨胀势或膨胀体积高的小麦粉适合制作优质白盐面条。其中,直链淀粉含量、峰值黏度和膨胀势是优质面条小麦评价的关键品质性状。  相似文献   

13.
Corn tortillas have a short shelf life due to increased firmness and microbial spoilage. Commercial corn tortillas use carboxymethyl cellulose (CMC) to delay staling; however this gum is expensive when compared to the rest of the tortilla ingredients. Glycerol has been added to bread and wheat tortillas to increase pliability and salt has been shown to mask the flavor of glycerol in corn tortillas. The possibility to reduce staling in corn tortillas by adding glycerol/salt as an alternative to CMC was investigated by monitoring changes in physico-chemical properties during 2 weeks of storage at 25 °C. Molecular and macroscopic changes were followed using thermal and mechanical analysis. During storage an increase in amylopectin recrystallization was observed in all samples. The “freezable” water content of all tortillas decreased over the first 3–5 days of storage with an increase after 7 days, while moisture content and water activity remained constant. Glycerol/salt tortillas exhibited a sharper transition region in the DMA temperature scan suggesting a more homogenous sample. CMC tortillas were significantly stiffer than glycerol tortillas after 14 days of storage. Glycerol/salt combinations may offer at least a partial replacement for CMC since it helped control the stiffness, water homogeneity and distribution during storage.  相似文献   

14.
The effect of blending different types of rice bran in wheat flour on the rheological, pasting and baking properties is reported. Dough development time and strength as measured through farinograph decreased with the blending of unstabilized full fat and defatted bran; whereas, blending of stabilized fullfat and defatted bran improved the dough strength. Pasting properties revealed an increase in gelatinization temperature and decrease in paste viscosities and set-back values with the blending of various types of rice bran. Bread volume and cookie spread decreased with blending of different types of rice bran; however, the decrease was more pronounced with the defatted bran. Muffin volume improved with the blending of rice bran. Stabilized fullfat rice bran up to 20% level and unstabilized fullfat or stabilized defatted rice bran up to 10% was found suitable in various food products.  相似文献   

15.
茶多糖对直链淀粉和支链淀粉凝胶质构特性的影响   总被引:1,自引:0,他引:1  
梁钦  郭丽  杜先锋 《茶叶科学》2011,31(6):473-478
直链淀粉和支链淀粉这两种高分子之间的相容性直接关系淀粉类食品的质构,而质构则直接关系到淀粉类食品的加工、储存、食用性能和形态结构等。利用物性测试仪研究不同混合比例的茶多糖/直链淀粉/支链淀粉共混聚合物的凝胶质构特性,结果表明:茶多糖的添加对直链淀粉、支链淀粉及其混合物的坚实度、稠度、粘聚性和粘度系数都有较显著的影响。  相似文献   

16.
Despite much research, bread crumb firming during storage and amylase anti-staling properties are still ill understood. We present a coherent view on the topic based on literature, experimental data, and food polymer science-related concepts. During bread storage, the gelatinised starch (amylopectin) network, present in soft, fresh bread, is gradually transformed into an extensive, partially crystalline, permanent amylopectin network, with amylopectin crystallites acting as junction zones. This network increasingly accounts for the bulk rheological behaviour of aging bread crumb. Furthermore, as amylopectin retrogradation proceeds, moisture migration within the crumb structure occurs, and more and more water is immobilised within amylopectin crystallites. The crystalline hydrate water can no longer plasticise the different networks, which goes hand in hand with increased crumb firmness and decreased crumb resilience, due to a less flexible gluten network. The efficiency of anti-staling amylases can be related to the extent they limit the formation and the strength of the permanent amylopectin network, and the water immobilisation. Conventional alpha-amylases weaken the amylopectin network by cutting the long polymer chains connecting the crystalline regions, but have little effect on amylopectin recrystallisation. In contrast, maltogenic alpha-amylase primarily shortens the amylopectin side chains, thus hindering amylopectin recrystallisation, and the concomitant network formation and water immobilisation.  相似文献   

17.
The present work was designed to obtain information on the effect of germination time on the selected physicochemical properties of brown rice flour and starch prepared from three different rice cultivars. Changes in total starch, amylose and amylopectin contents of flour, amylopectin/amylose ratio and molecular weight of starch, gelatinization, pasting, rheological, and morphological properties of flour and starch during 5 days of germination were investigated. Significant changes of pasting and rheological properties of brown rice flour were found during germination, but only small changes of these properties could be found in isolated starch. Scanning electron micrographs of flour showed that the continuous matrix structure of flour was highly destroyed after germination and scanning electron micrographs of isolated starch showed that after three days of germination, pits and holes were discovered on the surface of some starch granules. Germination had little effect on the average molecular weight of starch, but the polydispersity value in germinated brown rice (2–5 days germination) was higher than that in non-germinated brown rice. The changes observed in physicochemical properties of brown rice flour and starch after germination provided a crucial basis for understanding flour and starch modification mechanisms with potential applications for an industrial scale.  相似文献   

18.
Despite much research, bread crumb firming during storage and amylase anti-staling properties are still ill understood. We present a coherent view on the topic based on literature, experimental data, and food polymer science-related concepts. During bread storage, the gelatinised starch (amylopectin) network, present in soft, fresh bread, is gradually transformed into an extensive, partially crystalline, permanent amylopectin network, with amylopectin crystallites acting as junction zones. This network increasingly accounts for the bulk rheological behaviour of aging bread crumb. Furthermore, as amylopectin retrogradation proceeds, moisture migration within the crumb structure occurs, and more and more water is immobilised within amylopectin crystallites. The crystalline hydrate water can no longer plasticise the different networks, which goes hand in hand with increased crumb firmness and decreased crumb resilience, due to a less flexible gluten network. The efficiency of anti-staling amylases can be related to the extent they limit the formation and the strength of the permanent amylopectin network, and the water immobilisation. Conventional alpha-amylases weaken the amylopectin network by cutting the long polymer chains connecting the crystalline regions, but have little effect on amylopectin recrystallisation. In contrast, maltogenic alpha-amylase primarily shortens the amylopectin side chains, thus hindering amylopectin recrystallisation, and the concomitant network formation and water immobilisation.  相似文献   

19.
Potatoes of two cultivars representing extremes in potato texture, Russet Burbank (mealy) and IdaRose (waxy), were lyophilized, ground into flour, and analyzed with a Rapid Visco Analyzer (RVA) to identify flour pasting characteristics unique to each cultivar. A factorial experiment, which included multiple levels of heating rate, peak temperature, and flour concentration, was employed to assess RVA run parameter association with flour pasting behaviors and the potential to differentiate cultivars according to the responses. Pasting profiles of the potato flour provided a unique functional finger-print for each cultivar flour, which embodies structural and molecular components of the native potato tissue. Pasting profile viscosity attributes were influenced by variable levels of heating rate, peak temperature, and flour concentration. At increasing flour concentrations, RVA viscosity attributes increased in magnitude, but possessed similar pasting curves. A variable heating rate primarily affected events occurring early within the pasting profile (time to gelatinization, time to peak viscosity, peak viscosity), while changes in peak temperature influenced viscosity attributes (trough viscosity, breakdown, final viscosity, total setback) associated with the latter portion of the viscosity curve. A high peak temperature generally resulted in increased breakdown and total setback and decreased trough and final viscosities. RVA viscosity attributes, time to gelatinization, peak viscosity, breakdown, and final viscosity were identified as potential characteristics for cultivar differentiation. Discrimination of the cultivar extremes was affected by RVA run parameters, and was maximized at moderate heating rates (4 to 6 C min-1), moderate to high levels of peak temperature (85 to 90 C), and intermediate flour concentrations.  相似文献   

20.
Solids content and amylose/amylopectin ratios were determined in different parts of tubers of White Rose, Red La Soda, Kennebec, Russet Burbank, Norchip and Lenape at harvest, after storage at 7 C for 2 and 4 mo, and after reconditioning at 20 C for 3 wk following each storage period. In all cultivars, solids content was greatest in stem-end, lower in bud-end and lowest in core tissue. The relationships for distribution of solids among the different parts of the tubers was not changed by storage treatments in any of the cultivars. Amylose/amylopectin ratios were similar in all parts of the tuber. Both the solids content and amylose/amylopectin ratio were changed by storage, but not uniformly in all cultivars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号