首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Cuphea (Cuphea viscosissima Jacq. × C. lanceolata f. silenoides W.T. Aiton, line PSR23) is a new crop being developed in the North Central United States, as an industrial oilseed crop. Cuphea PSR23 seed oil is rich in medium-chain-length fatty acids such as capric acid used to manufacture soaps and detergents. The objective of this research was to determine the time when physiological maturity of cuphea seed is reached and how seed development affects seed moisture, weight, oil content, fatty acid content, germination, and seedling vigor. To evaluate seed development, 2000 cuphea flowers were tagged at anthesis in the field at Prosper, North Dakota in 2004 and 2005. Each flower was tagged when open and the position on the main stem or branch was recorded. Two hundred capsules from the tagged flowers were harvested at 3- to 4-d intervals from 5- to 48-d post anthesis (DPA). Seed weight increased as a function of growing degree days (GDD) and the days from anthesis. Physiological maturity occurred when maximum dry seed weight was attained. Seed weight increases followed the Gompertz function with a R2 = 0.90 (2004) and R2 = 0.95 (2005). All capsules, regardless of their position on the stem, followed the same growth function for seed weight. The maximum dry seed weight estimated by the Gompertz function was 3.61 for 2004 and 3.58 mg seed−1 for 2005. Physiological maturity estimated with a quadratic function occurred at 38 DPA or 270 GDD in 2004. In 2005, physiological maturity occurred at 26 DPA or 265 GDD. As a visual indicator when the capsules split-open seeds inside that capsule are physiologically mature. Seed moisture decreased from 900 g kg−1 at 37 GDD post anthesis to 450 g kg−1 at 319 GDD post anthesis in 2004; however, in 2005 seed moisture decreased from 850 to 81 g kg−1 at 293 GDD post anthesis. Seed germination increased as seed developed and it was 83% when harvested 234 GDD post anthesis. Oil content increased from 98 g kg−1 at 37 GDD post anthesis to 279 g kg−1 319 GDD post anthesis. Fatty acid composition varied throughout seed development. Seed development for 111 GDD and greater had more than 66% of capric acid (10:0). Cuphea should be harvested after 265 GDD post anthesis when most capsules on the main stem are split-open, have attained maximum seed weight, germination, seedling vigor, and oil content.  相似文献   

2.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

3.
Applications of ultrahigh CO2 treatments accelerated cuphea (Cuphea viscosissima × C. lanceolata ‘PSR23’) growth and development and aided in seedling establishment. The growth (fresh weight) and morphogenesis (number of leaves and roots and seedling length) were determined in cuphea seedlings exposed to 350, 1500, 3000, 10,000, or 30,000 μmol mol−1 CO2 for 30 days under greenhouse conditions. Greater CO2 levels, especially the ultrahigh levels (i.e. ≥3000 μmol mol−1 CO2) resulted in significantly higher (P  0.05) fresh weights, leaf numbers, root numbers, and seedling lengths compared to seedlings grown under ambient air (350 μmol mol−1 CO2). For example, cuphea ‘PSR23’ Morris heavy seedlings showed the greatest seedling fresh weight, leaf number, root number, and seedling length when supplemented with 10,000 μmol mol−1 CO2 increasing 607%, 184%, 784%, and 175%, respectively, when compared to seedlings grown without CO2 enrichment.  相似文献   

4.
Lesquerella (Lesquerella fendleri) is a potential alternative crop that is being studied for commercial oilseed production. Understanding the minimum temperatures for germination and seedling growth is important for determining potential areas for lesquerella production. The objectives of this study were to determine the cardinal temperatures for germination and seedling growth, and to screen ecotypes for germination and growth characteristics. A temperature gradient table arrangement was used to observe seed germination over a range of temperatures, and time to germination and shoot appearance. Times to 5 mm root length and 5 mm shoot length were also measured to assess cardinal temperatures for seedling survival and growth. Two different species were examined, L. fendleri and a species we refer to as ‘L. pallida aff.’ because it differed from typical L. pallida plants in chromosome number and in oil quality. We concluded that both germination and growth of L. pallida aff. occurred fastest at 22 °C, whereas L. fendleri germinated earlier at 18 °C, but grew faster at 22 °C. L. pallida aff. also had lower germination than L. fendleri over the range studied. Non-dormant seeds of improved lines of L. fendleri had better performance at temperatures above 22 °C than did unimproved accessions. Lines of L. fendleri selected for high oil content and salt tolerance had similar temperature requirements for germination except for improved line WCL-LO3, the current line being used in production. This line had optimal temperatures 6 °C higher for germination and growth than the other improved lines. Accessions of L. fendleri collected from elevations above 2000 m performed better at warmer temperatures, whereas those collected from elevations below 2000 m tended to perform better at cooler temperatures. Dormant seeds of L. fendleri germinated more quickly at low temperatures and had lower base (<3 °C) and optimal (22 °C) temperatures than non-dormant seeds (>7 °C and 28 °C, respectively). We speculate that this partial dormancy trait allows populations of L. fendleri to exploit a wider range of temperature conditions in the wild in order to thrive in extreme environments.  相似文献   

5.
《Field Crops Research》1998,58(1):55-67
The current nitrogen (N) use in silage maize production can lead to considerable N losses to the environment. Maize growers fear that a reduction of N inputs needed to minimize N losses might depress yields. The objective of this study was therefore to quantify: (1) the response of silage maize dry matter (DM) yields to N, (2) the economically optimal N reserve, and (3) the trade-off between silage maize DM yield and N losses. The indicators of N losses used in this study were the difference between N input and N uptake and the post-harvest residual soil mineral N. Regression models were used to fit DM yields and N uptakes of silage maize measured in 25 experiments on sandy soils in the Netherlands to the sum (SUMN) of the soil mineral N reserve (SMNearly) in March–April, plus mineral N in fertilizer, plus ammonium N in spring-applied slurry. The values obtained for the economically optimal SUMN in the upper 30 and 60 cm of soil were, respectively, 173 and 195 kg N ha−1, when we assumed that the value of 1 kg fertilizer N equals the value of 5 kg silage DM. The economically optimal SUMN was not significantly related to the attainable DM yield. The apparent N recovery (ANR) of maize averaged 53% at the economically optimal SUMN. The ANR rose considerably, however, when N was applied at lower rates, indicating that N losses may be considerably smaller in less intensive maize cropping. When maize was fertilized at 100 kg N ha−1 below the economic optimum, the ANR was 73%, the difference between the mineral N input and the N crop uptake decreased by 57 kg N ha−1 and the soil mineral N residue at the end of the growing season (0–60 cm) decreased by 24 kg N ha−1. The associated reduction in DM yield averaged 16%. Fertilizer prices would have to be as much as four times higher to make maize growers spontaneously reduce the application rates by a 100 kg N ha−1, however. It is concluded that adjusting the N input to a level below the economically optimal rate can reduce the risks for N losses to the environment associated with conventional maize production, with a limited effect on silage yields.  相似文献   

6.
《Field Crops Research》2006,99(1):24-34
Quantitative information regarding nitrogen (N) accumulation and its distribution to leaves, stems and grains under varying environmental and growth conditions are limited for chickpea (Cicer arietinum L.). The information is required for the development of crop growth models and also for assessment of the contribution of chickpea to N balances in cropping systems. Accordingly, these processes were quantified in chickpea under different environmental and growth conditions (still without water or N deficit) using four field experiments and 1325 N measurements. N concentration ([N]) in green leaves was 50 mg g−1 up to beginning of seed growth, and then it declined linearly to 30 mg g−1 at the end of seed growth phase. [N] in senesced leaves was 12 mg g−1. Stem [N] decreased from 30 mg g−1 early in the season to 8 mg g−1 in senesced stems at maturity. Pod [N] was constant (35 mg g−1), but grain [N] decreased from 60 mg g−1 early in seed growth to 43 mg g−1 at maturity. Total N accumulation ranged between 9 and 30 g m−2. N accumulation was closely linked to biomass accumulation until maturity. N accumulation efficiency (N accumulation relative to biomass accumulation) was 0.033 g g−1 where total biomass was <218 g m−2 and during early growth period, but it decreased to 0.0176 g g−1 during the later growth period when total biomass was >218 g m−2. During vegetative growth (up to first-pod), 58% of N was partitioned to leaves and 42% to stems. Depending on growth conditions, 37–72% of leaf N and 12–56% of stem N was remobilized to the grains. The parameter estimates and functions obtained in this study can be used in chickpea simulation models to simulate N accumulation and distribution.  相似文献   

7.
《Field Crops Research》2006,98(1):12-19
It is reported that stimulating effect of elevated atmospheric [CO2] on photosynthesis of rice (Oryza sativa L.) is likely to be reduced during the plant growth period. However, there is little information on seasonal changes in dry matter (DM) production and distribution of rice under elevated atmospheric [CO2]. A free-air CO2 enrichment (FACE) experiment was conducted at Wuxi, Jiangsu, China, in 2001–2003, using Wuxiangging 14, a japonica cultivar. The rice was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] and supplied with 25 g N m2, which is the normal N application rate for local farmers. DM accumulation of rice in FACE plots was significantly increased by 40, 30, 22, 26 and 16% on average at tillering, panicle initiation (PI), heading, mid-ripening and grain maturity, respectively. Rice DM production under FACE was significantly enhanced by 41, 27, 15 and 38% on average during the growth periods from transplanting to tillering (Period 1), tillering to PI (Period 2), PI to heading (Period 3) and heading to mid-ripening (Period 4), respectively, but significantly decreased by 25% in the period from mid-ripening to grain maturity (Period 5). In general, seasonal changes in crop response to FACE in both green leaf area index (GLAI) and net assimilation rate (NAR) followed a similar pattern to that of the DM production. Under FACE the leaves decreased significantly in proportion to the total above-ground DM over the season, the stems showed an opposite trend, while the spikes depended on crop development stage: showing no change at heading, significant increase (+4%) at mid-ripening and significant decrease (−3%) at grain maturity. Grain yield was stimulated by an average of 13% by FACE, due to increased total DM production rather than any changes in partitioning to the grain. We conclude that the gradual acclimation of rice growth to elevated [CO2] do not occur inevitably, and it could also be altered by environmental conditions (e.g., cultivation technique).  相似文献   

8.
Studies were conducted on the properties of seeds and oil extracted from Maclura pomifera seeds. The following values (on a dry-weight basis) were obtained for M. pomifera seed, respectively: moisture 5.88%, ash 6.72%, oil 32.75% and the high protein content 33.89%. The carbohydrate content (20.76%) can be regarded as a source of energy for animals if included in their diets. The major nutrients (mg/100 g oil) were: potassium (421.65), calcium (218.56) and magnesium (185.00). The physicochemical properties of the oil include: the saponification number 174.57; the iodine value 141.43; the p-anisidine value 1.86; the peroxide value 2.33 meq O2/kg; the acid value 0.66; the carotenoid content 0.59 mg/100 g oil; the chlorophyll content 0.02 (mg/100 g oil) and the refractive index 1.45. Polymorphic changes were observed in thermal properties of M. pomifera seed oil. This showed absorbency in the UV-B and UV-C ranges with a potential for use as a broad spectrum UV protectant. The main fatty acids of the crude oil were linoleic (76.19%), oleic (13.87%), stearic (6.76%) and palmitic acid (2.40%). The polyunsaturated triacylglycerols (TAGs) LLL, PLL, POL + SLL, OLL, OOL (L: linoleic acid, O: oleic, P: palmitic acid and S: stearic acid) acids were the major TAGs found in M. pomifera seed oil. A relatively high level of sterols making up 852.93 mg/100 g seed oil was present. The sterol marker, β-sitosterol, accounted for 81% of the total sterol content in the seed oil and is followed by campesterol (7.4%), stigmasterol (4.2%), lupeol (4.1%) and Δ5-avenesterol (3.2%). The seed oil was rich in tocopherols with the following composition (mg/100 g): α-tocopherol 18.92; γ-tocopherol 10.80; β-tocopherol 6.02 and δ-tocopherol 6.29. The results showed that M. pomifera seed oil could be used in cosmetic, pharmaceutical and food products.  相似文献   

9.
《Field Crops Research》2006,97(1):53-65
In Northern China, high-yielding aerobic rice varieties are released to farmers to grow rice as a supplementary-irrigated upland crop to cope with water scarcity. If the key factors contributing to the high yield of these varieties are understood, rapid advancements can be made in developing aerobic rice varieties for water-scarce environments in other parts of Asia. In 2001–2002, we conducted experiments with aerobic varieties HD502 and HD297 and lowland variety JD305 under aerobic and flooded conditions. Five irrigation treatments were implemented in aerobic soil to create different soil moisture regimes. Under flooded conditions, all three varieties had comparable radiation use (RUE) efficiencies of 2.09–2.26 g dry matter (DM) MJ−1 in 2001 and 2.40–2.53 g DM MJ−1 in 2002, and harvest indices (HI) of 0.38–0.40 in both years. Differences in yield among the varieties are explained by differences in growth duration. Under aerobic conditions, mean RUE over water treatments dropped to 1.70–1.72 g DM MJ−1 for all three varieties in 2001, and to 1.62 for HD502, 1.71 for HD297 and 1.86 for JD305 in 2002. With increasing dryness of the soil, the amount of intercepted light decreased at about the same rate for all varieties, but RUE decreased faster in the lowland than in the two aerobic varieties. The HI of JD305 decreased dramatically with increasing soil dryness and reached values of 0.19–0.21 in 2002. In contrast, the HI of both aerobic varieties remained relatively high under aerobic conditions, with lowest values of 0.27–0.28 for HD297 and 0.34–0.35 for HD502 in 2002. The relatively high HI of the aerobic varieties compensated for their relatively short growth duration so that their yields were higher than that of JD305 in all treatments. A high percentage filled grains is a key factor contributing to the high HI of the aerobic varieties under aerobic conditions.  相似文献   

10.
Lesquerella fendleri (Gray) Wats. is a potential new oilseed crop for the arid southwestern United States. Lesquerella seed oil with similar properties as castor oil is being considered as a domestic replacement for the imported castor oil. Development of new crops with low irrigation needs is of high priority. Because the most critical stage of sensitivity to moisture deficits has not been determined in Lesquerella species, the objectives of this study were: (i) to identify the most critical stage or stages for moisture deficit and, (ii) to determine the effect of moisture deficit on yield, yield components, oil and fatty acid composition. Two-year field studies were conducted at the New Mexico State University, Leyendecker Plant Science Research Center. The experimental design was a randomized complete block. The treatments consisted of (a) T1: Continuous favorable soil moisture [irrigated at 50% soil water depletion (SWD)]. (b) T2: Moisture stress (75% SWD) from establishment to initial flowering with no stress from flowering to final harvest (50% SWD). (c) T3: No stress imposed from establishment to initial flowering (50% SWD) followed by stress to final harvest (75% SWD). (d) T4: Moisture stress (75% SWD) from establishment to final harvest. The amount of water applied ranged from 810 to 729 mm for the first year, and 810 to 625 mm for the second year. Seed weight per plant and number of pods per plant were generally higher when water availability was maintained at or above 50% SWD throughout the growing season. Neither seed number per pod nor seed size was influenced by irrigation treatments. Lesquerella was more sensitive to water availability during flowering and seed development as a greater loss in seed yield occurred when irrigation was delayed to 75% SWD during that stage of development. Seed yield and dry matter production from the 2 year field studies were closely related to the seasonal cumulative evapotranspiration. For each millimeter of evapotranspiration, seed yield increased from 1.8 kg ha−1 mm in 1994–1995 to 1.3 kg ha−1 mm for 1995–1996. The dry matter production increased 13.4 kg ha−1 for each mm increase in seasonal evapotranspiration during 1994–1995. This relationship was a second order polynomial with an R2 of 0.86 during 1995–1996. The WUEgr and WUEdm were highest under the most favorable water availability conditions for growth and seed development. Delaying irrigation to 75% SWD throughout the crop growth period resulted in the lowest oil content. Lesquerolic acid content was not affected by irrigation during both the growing seasons.  相似文献   

11.
Kenaf (Hibiscus cannabinus L.) is a potential alternative crop being developed for fiber production. Because planting area varies dramatically from year to year, seed supplies may greatly exceed use so that the excess seed must be stored for one to several years. The objectives of this study were to determine the effect of seed storage duration at 10 °C on germination, vigor, emergence, and yield. Replicated trials were established at Starkville, MS in 1999 and 2000 to evaluate field emergence and biomass yield of kenaf seed from five ‘Everglades 41’ (‘E41’) harvest year seed lots stored at 10 °C in ambient relative humidity for up to 4 years. Germination of these same seed lots under standard (20–30 °C) and cool (20 °C) temperatures, and seed vigor was evaluated over time. Field emergence was the same for the different seed storage durations up to 4 years, but was directly affected by drought conditions for each planted year. Biomass yields ranged from 12.39 to 14.57 Mg ha−1 in 1999 and 16.82 to 18.47 Mg ha−1 in 2000, but were not different between storage durations. Seed germination remained greater than 80% regardless of storage duration. Electrolyte leakage, based on conductivity, was 38–50% less with freshly harvested seed than seed stored for 4 years at 10 °C. However, neither the conductivity nor accelerated aging test were reliable predictors of field emergence. Kenaf seed stored up to 4 years at 10 °C retained germination rates acceptable for commercial use. Neither field emergence nor biomass yield was affected by seed storage duration.  相似文献   

12.
《Field Crops Research》2006,95(2-3):171-181
The importance of root systems in acquiring water has long been recognized as crucial to cope with drought conditions. This investigation was conducted to: (i) evaluate the variability on root length density (RLD) of chickpea in the vegetative growth stage; (ii) estimate the effect of RLD on seed yield under terminal drought conditions; and (iii) set up a procedure to facilitate the screening of chickpea genotypes with large RLD. Twelve diverse chickpea genotypes were grown in tall PVC cylinders with two different soil water treatments in 2000 and 2001, and in field under water deficit conditions during 2000/2001 and 2001/2002. In field trials, the mean RLD at 35 days after sowing showed a significant positive correlation with seed yield in both years. Similarly, the RLD in the 15–30 cm soil depth had significant positive effects to the seed yield in both years. The importance of the root trait was particularly relevant in 2001/2002, a more severe drought year, when the RLD in deeper soil layer, 30–60 cm depth, showed a significant positive relationship with seed yield. Also, the RLD at deeper soil layer, 30–60 cm depth, was higher in 2001/2002 than in 2000/2001, in particular in tolerant genotypes. The PVC cylinder trials were set up to facilitate the screening of chickpea genotypes with large RLD. RLD of plants grown in cylinders with 70% field capacity was correlated with RLD in the field trials (r = 0.731; p = 0.01). This work highlights the importance of roots in coping with terminal drought in chickpea. The cylinder system offers a much easier procedure to screen chickpea genotypes with large RLD.  相似文献   

13.
To improve efficiency of soil N and water use in the savanna, maize (Zea mays L.) cultivars with improved root systems are required. Two rainfed field experiments were conducted in Samaru, Nigeria in the 1993 and 1994 growing seasons with five maize cultivars under various rates of nitrogen fertilizer. The capacity of maize for rapid early root growth and to later develop a deep, dense root system was assessed. In addition, the effect of N fertilization on root growth of maize was studied in 1994. The widely cultivated cultivar TZB-SR had a poor root system in the surface soil layer and was more susceptible to early-season drought, as indicated by low plant vigor and aboveground dry matter yield during that time. It had a lower grain yield and a relatively small harvest index, but ranked among the highest in total aboveground dry matter production compared to other cultivars. The size of root system alone did not always relate well with grain yield among cultivars. Partitioning of dry matter within the plant was important in determining differences in grain yield and N stress tolerance between cultivars. A semiprolific cultivar (SPL) had high seedling vigour and a dense root system in the surface soil layer that conferred a greater tolerance to early-season drought stress and improved uptake of the early-season N flush, as indicated by a greater dry matter yield at 35 days after sowing (DAS). It also had a fine, deep, dense root system at flowering that could have improved water- and N-use efficiency in the subsoil (> 45 cm), thereby avoiding midseason drought stress in 1994. SPL had a large harvest index and the greatest yield among cultivars in 1994. Averaged across cultivars, greater root growth and distribution was observed at a moderate N rate of 0.56 g plant−1 than at zero-N or high N (2.26 g plant−1). Differences in root morphology could be valuable as selection criteria for N-efficient and drought-tolerant maize.  相似文献   

14.
The study was conducted to investigate some moisture-dependent physical properties of jatropha seed namely, seed dimension, 1000 seed mass, surface area, sphericity, bulk density, true density, angle of repose and static coefficient of friction against different materials. The physical properties of jatropha seed were evaluated as a function of moisture content in the range of 4.75–19.57% d.w. The average length, width, thickness and 1000 seed mass were 18.65 mm, 11.34 mm, 8.91 mm and 741.1 g, respectively at moisture content of 4.75% d.w. The geometric mean diameter and sphericity increased from 12.32 to 12.89 mm and 0.66 to 0.67 as moisture content increased from 4.75 to 19.57% d.w., respectively. In the same moisture range, densities of the rewetted jatropha seed decreased from 492 to 419 kg m−3, true density increased from 679 to 767 kg m−3, and the corresponding porosity increased from 27.54 to 45.37%. As the moisture content increased from 4.75 to 19.57% d.w., the angle of repose and surface area were found to increase from 28.15° to 39.95° and 476.78 to 521.99 mm2, respectively. The static coefficient of friction of jatropha seed increased linearly against the surfaces of three structural materials, namely plywood (44.12%), mild steel sheet (64.15%) and aluminum (68.63%) as the moisture content increased from 4.75 to 19.57% d.w.  相似文献   

15.
Oil from the seed of the castor plant (Ricinus communis L.) is an important commodity for a number of industries, ranging from pharmaceuticals to renewable energy resources. However, the seed and subsequent seed meal contain ricin (RCA60), a potent cytotoxin, making it an unusable product. In order to investigate the efficiency of previously researched methods of reducing the toxicity of the meal, cold-pressed oil extracted seed meal known to contain ricin was boiled in the presence of 50 mM calcium hydroxide (pH 12.5). However, boiling of this seed meal in the presence of calcium hydroxide produced no significant difference from boiling alone. Therefore, heat and chemical treatments were performed to determine their effects on the denaturation of the ricin within whole seed, milled un-extracted seed, and cold-pressed extracted seed. Boiling and autoclaving showed varying degrees of effectiveness depending on the sample type. Ricin within the cold-pressed extracted meal was rendered unresponsive to antibody probing after 10 min of boiling or autoclaving. In contrast, treatment of cold-pressed extracted meal with 8 M urea and 6 M guanidine–HCl for 60 min produced no observable reduction in the response of the ricin to the antibody. Critically, hot pressing of the castor seed produced meal that exhibited no reactivity with the antibody, indicating that the ricin had been denatured during the oil extraction. By removing the toxic component of the castor meal, this by-product could create a new commodity from the production of castor oil, thereby making castor oil production more profitable.  相似文献   

16.
《Field Crops Research》2001,70(2):127-137
Shallow saline water tables, naturally saline soils and variations in climatic conditions over the two growing seasons, create a harsh environment for irrigated rice production in the Senegal River Delta. At the onset of the growing season, salts accumulated by capillary rise in the topsoil are released into the soil solution and floodwater. Rice fields often lack drainage facilities, or drain from one field to the other, thus building up salt levels during the season. Salt stress may, therefore, occur throughout the growing season and may coincide with susceptible growth stages of the rice crop. The objectives of the present study were to (i) determine varietal responses to seasonal salinity in both the hot dry season (HDS) and the wet season (WS) and (ii) derive guidelines for surface water drainage at critical growth stages. We evaluated responses of three rice cultivars grown in the region to floodwater salinity (0–2, 4, 6, 8 mS cm−1), applied either at germination, during 2 weeks at crop establishment, during 2 weeks around panicle initiation (PI), or during 2 weeks around flowering. Floodwater electrical conductivity (EC) reduced germination rate for the most susceptible cultivar by as much as 50% and yield by 80% for the highest salinity level imposed. Salinity strongly reduced spikelet number per panicle, 1000 grain weight and increased sterility, regardless of season and development stage. The strongest salinity effects on yield were observed around PI, whereas plants recovered best from stress at seedling stage. Floodwater EC <2 mS cm−1 hardly affected rice yield. For floodwater EC levels >2 mS cm−1, a yield loss of up to 1 t ha−1 per unit EC (mS cm−1) was observed for salinity stress around PI (at fresh water yields of about 8 t ha−1). Use of a salinity tolerant cultivar reduced maximum yield losses to about 0.6 t ha−1 per unit EC. It is concluded that use of salinity tolerant cultivars, drainage if floodwater EC >2 mS cm−1 at critical growth stages, and early sowing in the WS to avoid periods of low air humidity during the crop cycle, are ways to increase rice productivity in the Senegal River Delta.  相似文献   

17.
Combining ability and heterosis were studied in a 6 × 6 diallel cross to see the nature of gene action in Upland cotton (Gossypium hirsutum L.) during 2002 to 2004. Analysis of variance revealed highly significant differences among all the F1 and F2 hybrid means and their respective six parental values for all the traits examined. In both generations, the mean squares due to general combining ability (GCA) and specific combining ability (SCA) were also highly significant. SCA genetic variances were greater than GCA and more important for the traits, i.e. boll weight, boll number and seed cotton yield per plant, showing the predominance of non-additive gene action. Lint % in both generations and boll weight in F2s only were controlled by additive type of gene action due to maximum GCA variances. Cultivar CIM-1100 was found to be the best general combiner and its utilization produced valuable hybrids with desirable SCA in both generations. F1 and F2 hybrids, viz., CIM-1100 × CRIS-9, CIM-1100 × FH-682, CIM-1100 × BH-36 and CIM-109 × CIM-1100 as high × low and low × high parents performed well in SCA determination, outstanding mean performance and heterosis. Better SCA effects associated with useful heterosis were more pronounced for yield traits. In F1 hybrids, maximum heterosis was observed for seed cotton yield followed by boll number, boll weight and lint %. The heterosis over better parent was +3.13 to +65.63% for bolls per plant, +0.75 to +24.40% for boll weight, +0.82 to +115.22% for seed cotton yield and +0.27 to +3.88% for lint %. Involvement of CIM-1100 in most of the F1 and F2 hybrids resulted in the synthesis of superior genotypes for most of the traits studied. Inbreeding depression was elevated in good performing hybrids and was the highest for seed cotton yield. Highest yielding F1 hybrids yielded lesser in the subsequent generation due to over-dominance and inbreeding depression, whereas moderate yielding F1 hybrids were found more stable even passing through process of segregation due to additive gene action. The combined performance of F1 and F2 hybrids could be a good indicator to identify the most promising populations to be utilized either as F2 hybrids or as a resource population for further selection.  相似文献   

18.
The magnitude of relationships among different traits is important in plant breeding programs to identify the best selection criteria and improve the efficiency of selection. This study was conducted to determine relationships between seed yield and seed oil content with other important agronomic traits among 36 diverse accessions of Vernonia (Vernonia galamensis variety ethiopica), a potentially novel industrial oilseed crop. Field evaluations were conducted during 2005, 2006 and 2007 at the Limpopo Province in South Africa using a partially balanced lattice design. Simple correlation and path analysis were performed to identify the best selection criteria for increased seed yield and seed oil content. Simple correlation and path analyses revealed that the formation of productive primary heads strongly associated with increased seed yield (rg = 0.81, p < 0.001). Furthermore, path analysis indicated selection for increased number of primary heads would bring about simultaneous and favorable change towards reduced days to maturity and shorter plant height. Further associational study of traits with seed oil content showed a significant (p < 0.05) correlation between oil content with 1000 seed weight (rg = 0.4). The path analysis, however, exposed seed yield followed by 1000 seed weight with significant direct effect on seed oil content. The study demonstrated that selection for increased number of productive primary heads is the principal selection criterion to improve seed yield. Whereas selection for 1000 seed weight and increased seed yield serve as major selection criteria to achieve increased oil content in V. galemanesis.  相似文献   

19.
This study determined the effects of oil processing conditions on functional properties of milkweed seed proteins to evaluate their potential for value-added uses. Flaked milkweed seeds were cooked at 82 °C (180 °F) for 30, 60 or 90 min in the seed conditioner, and then screw-pressed to extract the oil. Proximate composition and protein functional properties of cooked flakes and press cakes were determined and compared with those of unprocessed ground, defatted milkweed seeds. Milkweed seed protein was most soluble at the pH range of 7–10, had excellent emulsifying properties, and produced substantial but highly unstable foams. Heat applied during seed cooking and screw-pressing did not reduce protein solubility and improved emulsifying, foaming, and water-holding capacities. Emulsifying capacity was much higher at pH 10 than at pH 7. These results showed that the protein in both the milkweed seed and its press cake from oil processing has useful functional properties that could be utilized in applications such as paint emulsifier and adhesive extender.  相似文献   

20.
The effect of foliar application of cytokinin (benzyl-adenine, 150 mg L−1) and gibberellin (GA4 + GA7, 150 mg L−1) on growth and flower development of 5-year-old plants of two jojoba clones was studied. The plant growth regulators were applied on October 5, 1999 (spring) and the plants were evaluated 120, 240 and 360 days after application. Shoot length, total number of nodes and number of nodes with branching were statistically different between clones but not between the growth regulator treatments.The total number of flowers on both clones was significantly increased by treatment with benzyl-adenine (BA) and significantly reduced by treatment with gibberellin. The seed yields, evaluated 180 days after application, were not statistically different from the control due to an increase in flower abortion. One clone treated with gibberellin showed a significant decrease in number and weight of seeds, the other did not.Histology of axillary buds revealed that BA application on one clone (4.11.32) enlarged the flower meristem, differentiating multiple flower production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号