首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lesquerella fendleri (Gray) Wats. is a potential new oilseed crop for the arid southwestern United States. Lesquerella seed oil with similar properties as castor oil is being considered as a domestic replacement for the imported castor oil. Development of new crops with low irrigation needs is of high priority. Because the most critical stage of sensitivity to moisture deficits has not been determined in Lesquerella species, the objectives of this study were: (i) to identify the most critical stage or stages for moisture deficit and, (ii) to determine the effect of moisture deficit on yield, yield components, oil and fatty acid composition. Two-year field studies were conducted at the New Mexico State University, Leyendecker Plant Science Research Center. The experimental design was a randomized complete block. The treatments consisted of (a) T1: Continuous favorable soil moisture [irrigated at 50% soil water depletion (SWD)]. (b) T2: Moisture stress (75% SWD) from establishment to initial flowering with no stress from flowering to final harvest (50% SWD). (c) T3: No stress imposed from establishment to initial flowering (50% SWD) followed by stress to final harvest (75% SWD). (d) T4: Moisture stress (75% SWD) from establishment to final harvest. The amount of water applied ranged from 810 to 729 mm for the first year, and 810 to 625 mm for the second year. Seed weight per plant and number of pods per plant were generally higher when water availability was maintained at or above 50% SWD throughout the growing season. Neither seed number per pod nor seed size was influenced by irrigation treatments. Lesquerella was more sensitive to water availability during flowering and seed development as a greater loss in seed yield occurred when irrigation was delayed to 75% SWD during that stage of development. Seed yield and dry matter production from the 2 year field studies were closely related to the seasonal cumulative evapotranspiration. For each millimeter of evapotranspiration, seed yield increased from 1.8 kg ha−1 mm in 1994–1995 to 1.3 kg ha−1 mm for 1995–1996. The dry matter production increased 13.4 kg ha−1 for each mm increase in seasonal evapotranspiration during 1994–1995. This relationship was a second order polynomial with an R2 of 0.86 during 1995–1996. The WUEgr and WUEdm were highest under the most favorable water availability conditions for growth and seed development. Delaying irrigation to 75% SWD throughout the crop growth period resulted in the lowest oil content. Lesquerolic acid content was not affected by irrigation during both the growing seasons.  相似文献   

2.
《Field Crops Research》2001,70(1):43-53
In a series of legume-based cropping systems experiments, the economic optimum N fertiliser rate for cotton ranged from 0 to 186 kg N ha−1 depending on the cropping system and soil N fertility. The economic optimum N fertiliser rate was closely correlated with pre-sowing soil nitrate-N (0–30 cm) and petiole nitrate-N (at early flowering). Pre-sowing soil nitrate-N and petiole nitrate-N were also strongly correlated with cotton N uptake at late boll-filling and lint yield of unfertilised cotton.These analyses allow for the estimation of the N fertiliser requirement, providing revised calibrations that more precisely estimate the N-fertiliser requirement of irrigated cotton crops where legume cropping has substantially improved soil N fertility. Such management tools are essential to avoid the problems associated with over- or under-fertilizing cotton crops.The importance of optimising N fertiliser application was demonstrated by examining the effects of crop N nutrition on cotton maturity and fibre quality. Crop maturity (rate of boll opening) was delayed by 1 day for each 83, 16 or 24 kg fertiliser N applied per hectare in the three experiments. Increasing N fertiliser rates generally increased fibre length, and tended to increase fibre strength, whereas micronaire tended to decline.  相似文献   

3.
《Field Crops Research》2001,69(3):259-266
Water-use efficiency (WUEDM) is directly related to radiation-use efficiency (RUE) and inversely related to crop conductance (gc). We propose that reduced WUEDM caused by shortage of nitrogen results from a reduction in RUE proportionally greater than the fall in conductance. This hypothesis was tested in irrigated wheat crops grown with contrasting nitrogen supply; treatments were 0, 80 and 120 kg N ha−1 in 1998 and 0, 80, 120 and 160 kg N ha−1 in 1999. We measured shoot dry matter, yield, intercepted solar radiation and soil water balance components. From these measurements, we derived actual evapotranspiration (ET), soil evaporation and transpiration, WUEDM (slope of the regression between dry matter and ET), WUEY (ratio between grain yield and ET), RUE (slope of the regression between dry matter and intercepted radiation), and gc (slope of the regression between transpiration and intercepted radiation). Yield increased from 2.3 in unfertilised to an average 4.7 t ha−1 in fertilised crops, seasonal ET from 311 to 387 mm, WUEDM from 23 to 37 kg ha−1 mm−1, WUEY from 7.6 to 12.4 kg ha−1 mm−1, RUE from 0.85 to 1.07 g MJ−1, while the fraction of ET accounted for soil evaporation decreased from 0.20 to 0.11. In agreement with our hypothesis, RUE accounted for 60% of the variation in WUEDM, whereas crop conductance was largely unaffected by nitrogen supply. A greater fraction of evapotranspiration lost as soil evaporation also contributed to the lower WUEDM of unfertilised crops.  相似文献   

4.
《Field Crops Research》1999,63(3):225-236
In rainfed agriculture, climatic variability has profound effects on the performance of management systems in improvements of productivity and use of natural resources. A field study was conducted on a Vertic Inceptisol during 1995–1997 seasons at the ICRISAT Center, Patancheru, India, to study the effect of two landforms, i.e., broadbed-and-furrow (BBF) and flat, and two soil depths (shallow and medium-deep) on crop yield and water balance of a soybean–chickpea rotation. Using two seasons experimental data, a soybean–chickpea sequencing model was evaluated and used to extrapolate the results over 22 years of historical weather records. The simulation results showed that in 70% of years total runoff for BBF was greater than 35 mm (range 35–190 mm) compared to greater than 60 mm (range 60–260 mm) for flat on the shallow soil. In contrast on the medium-deep soil it was greater than 70 mm (range 70–280 mm) for BBF compared to greater than 80 mm (range 80–320 mm) for the flat landform. The decrease in runoff on BBF resulted in a concomitant increase in deep drainage for both soils. In 70% of years, deep drainage was greater than 60 mm (range 60–390 mm) for the shallow soil and ranged from 10 to 280 mm for the medium-deep soil. In 70% of years, the simulated soybean yields were greater than 2200 kg ha−1 (range 2200–3000 kg ha−1) and were not influenced by landform or soil depth. In the low rainfall years, yields were marginally higher for the BBF than for the flat landform, especially on the shallow soil. Simulated chickpea yields were higher for the medium-deep soil than for the shallow soil. In most years, marginally higher chickpea yields were simulated for the BBF than for the flat landform on both soil types. In 70% of years, the chickpea yields were greater than 500 kg ha−1 (range 500–1500 kg ha−1) for the shallow soil, and greater than 800 kg ha−1 (range 800–1960 kg ha−1) for the medium-deep soil. Total productivity of soybean–chickpea rotation was greater than 3000 kg ha−1 (range 3000–4150 kg ha−1) for the shallow soil and greater than 3450 kg ha−1 (range 3450–4700 kg ha−1) for the medium-deep soil in 70% of years. These results showed that in most years BBF, landform increased rainfall infiltration into the soil and had marginal effect on yields of soybean and chickpea. Crop yields on Vertic Inceptisols can be further increased and sustained by adopting appropriate rain water management practices for exploiting surface runoff and deep drainage water as supplemental irrigation to crops in a watershed setting.  相似文献   

5.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

6.
《Field Crops Research》2002,74(1):81-91
Despite the economic importance of tobacco, there is limited field study on the quantitative response of growth and yield to increasing soil salinity. The effects of irrigation with saline water on yield components of field-grown tobacco (Nicotiana tabacum L.) “Burley” type plants were studied over two growing seasons. Growth, dry matter partitioning and gas exchange were measured either in rainfed or fully irrigated plants growing in a clayey–sandy–loam soil. The four fully irrigated treatments received amounts of saline waters at 0.54, 2.5, 5.0 or 10 dS m−1 electrical conductivity (ECw) equal to crop evapotranspiration. In both years, the electrical conductivity of the saturation phase (ECe) across the 0.6 m topsoil profile increased with increasing salinity of the irrigation water. Soil moisture was markedly lower in the rainfed treatment than in fully irrigated treatments. Different saline concentrations of irrigation water had virtually no effect on soil moisture. Carbon assimilation rate, stomatal conductance and water use efficiency of the saline treatments were lower than the fully irrigated plants at 0.54 dS m−1 (NW treatment) in 1996, but not in 1997. Transpiration rates were unaffected by salinity in both years. The highest yield was produced by plants irrigated with good quality water. The number of leaves per unit land area was greater for the NW plants, whereas there were no differences between the other four treatments. Salinity decreased plant dry matter and height at harvest, increased dry matter partitioning into leaves and decreased that into stems in both years. Dry matter partitioning to leaves was also greater for the rainfed plants than for the NW plants. Tobacco plants grown under field conditions showed a maximum reduction of relative yield at the highest salinity level of only 31%. The threshold values (0.56 and 0.96 dS m−1) and the ECe at which a 10% yield reduction was obtained (3.12 and 2.55 dS m−1) calculated from the linear model of response of relative yield to increasing ECe were typical of moderately sensitive crops. The ECe values at which 50% yield was reduced (13.34 and 8.91 dS m−1) were indicative of moderate tolerance to salinity.  相似文献   

7.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

8.
《Field Crops Research》1998,59(2):91-98
Single irrigation, compared to the conventional four or five irrigations, has been practised in northern China on winter wheat on a relatively large scale since 1991. In a field study, irrigation was reduced from normally four times (I4, 4×75 mm) to one (I1, 75 mm at the end of the second internode elongation) in an area with an annual rainfall of about 600 mm. A control without irrigation (I0) was also included. Late sowing and early soil drying at seedling stage resulted in a relatively deep root system. Leaf area index, the size of upper leaves and the length of base internodes were also significantly reduced under I1, but kernel number per panicle was not reduced, suggesting that the development of inflorescence was not disrupted. During the active grain-filling stage, it was found that leaf water potential under I1 was maintained similar to that of I4, while daytime stomatal conductance was substantially reduced. Leaf temperature was increased, indicating an inhibited leaf transpiration. Early senescence was induced in I1 and I0 crops and resulted in a substantially lower kernel weight. Although the grain yield of I1 was reduced by about 15% from I4, the water-use efficiency (WUE) for total water consumption was increased by 24–30%. Single irrigation can potentially make wheat cropping sustainable in this area in terms of water usage and prevent further depletion of the underground water resource. Explanations for the small or zero reduction in yield are: (1) the encouraging development of a deep root system that enabled the plants to use more water at depth (below 1 m), which is recharged annually by the relatively high summer rainfall. (2) A large portion of root system in the drying soil and its induced shoot physiological changes, that is, reduced leaf expansion and stomatal conductance, which helped the plants to establish a better canopy structure with a much reduced water consumption. (3) An improved harvest index.  相似文献   

9.
《Field Crops Research》1998,58(3):213-221
Under the Mediterranean farming conditions of Syria, rain-fed cropping predominates, but irrigation is increasing where water sources are available. In both rain-fed or irrigated systems, it is important to understand N use by crops and its behavior in the soil. In this paper, we report on nitrogen fertilizer-use efficiency (NFUE) by wheat (Triticum aestivum L.) under 1/3, 2/3 and full irrigation with 15N-labeled fertilizer at different application rates (0, 50, 100 and 150 kg N ha−1) for two seasons with varying rainfall, i.e. 323 and 275 mm. NFUE values in the above-ground crop varied with measurement date, reaching a maximum before anthesis, and then, during the grain-filling period, either remaining constant under irrigation or decreasing, particularly under the rain-fed conditions. Irrigation increased the recovery of applied N in grain and straw at harvest from 10% in the wetter year to over 60% in the drier year. Nitrogen at 100 kg ha−1 level increased recovery by >45% in the wetter year, while fertilizer recovery improved in the drier year only with enhanced water availability from irrigation. The Difference method (28–95%) for estimating N recovery diverged from the 15N Direct method (21–63%), emphasizing the need to examine both labeled, and unlabeled, N pools for interpretation of 15N studies. With irrigation, the crop removed significantly more fertilizer N than under rain-fed conditions, with less remaining in the soil; over 40% of the fertilizer N remained in the top 20-cm soil as organic N. Irrigation had no effect on the 15N recovery at depth, with no significant re-mineralization being detected. While NFUE is increased by higher rainfall and irrigation, fertilizer N losses under the Mediterranean climatic conditions of Syria are low. The apparent inefficiency induced by organic immobilization adds to total soil N, which can potentially be used by future crops.  相似文献   

10.
Miscanthus × giganteus is one of the most promising biomass crops for non-food utilisation. Taking into account its area of origin (Far East), its temperature and rainfall requirements are not well satisfied in Mediterranean climate. For this purpose, a research was carried out with the aim of studying the adaptation of the species to the Mediterranean environment, and at analysing its ecophysiological and productive response to different soil water and nitrogen conditions. A split plot experimental design with three levels of irrigation (I1, I2 and I3 at 25%, 50% and 100% of maximum evapotranspiration (ETm), respectively) and three levels of nitrogen fertilisation (0 kg ha−1: N0, 60 kg ha−1: N1 and 120 kg ha−1: N2 of nitrogen) were studied. The crop showed a high yield potential under well-watered conditions (up to 27 t ha−1 of dry matter). M. × giganteus, in Mediterranean environment showed a high yield potential even in very limited water availability conditions (more than 14 t ha−1 with a 25% ETm restoration). A responsiveness to nitrogen supply, with great yield increases when water was not limiting, was exhibited. Water use efficiency (WUE) achieved the highest values in limited soil water availability (between 4.51 and 4.83 g l−1), whilst in non-limiting water conditions it decreased down to 2.56 and 3.49 g l−1 (in the second and third year of experiment, respectively). Nitrogen use efficiency (NUE) decreased with the increase of water distributed (from 190.5 g g−1 of I0 to 173.2 g g−1 of I2); in relation to N fertilisation it did not change between the N fertilised treatments (N1 and N2), being much higher in the unfertilised control (177.1 g g−1). Radiation use efficiency (NUE) progressively declined with the reduction of the N fertiliser level (1.05, 0.96 and 0.86 g d.m. MJ−1, in 1994, and 0.92, 0.91 and 0.69 g d.m. MJ−1, in 1995, for N2, N1 and N0, respectively).  相似文献   

11.
《Field Crops Research》2006,95(2-3):103-114
The Apulia region in Southern Italy is an important area for sugar beet cultivation. It is characterised by clay soils and a hot-arid and winter-temperate climate. The capability of sugar beet to exploit solar radiation, water use and irrigation supply in root yield, total dry matter and sucrose production was studied and analysed in relation to two experimental factors: sowing date – autumn (October–December) and spring (March) – and irrigation regime – optimal and reduced (respectively with 100 and 60% of actual evapotranspiration). Data sets from three experiments of spring sowing and three of autumn sowing were used to calculate: (1) water use efficiency in the conversion in dry matter (WUEdm, plant dry matter at harvest versus seasonal water use ratio), in sucrose (WUEsuc, sucrose yield versus seasonal water use ratio); (2) irrigation water use efficiency in the conversion in dry matter (IRRWUEdm), in sucrose (IRRWUEsuc) and fresh root yield (IRRWUEfr); and (3) radiation use efficiency (RUE, plant dry matter during the crop cycle and at harvest versus intercepted solar radiation ratio).Autumnal beet was more productive than spring for fresh root, plant total dry matter, sucrose yield and concentration; also WUEsuc and IRRWUEs were higher in the autumnal sugar beet, but no difference was observed in WUEdm (on average, 2.83 g of dry matter kg−1 of water used). An average saving of about 26% of seasonal irrigation supply (equivalent to about 100 mm) was measured in the three years with the earliest sowing time. The optimal irrigation regime produced higher root yield, plant total dry matter and sucrose yield than the reduced one; on the contrary the IRRWUEfr and IRRWUEdm were higher in the reduced irrigation strategy. WUEs and IRRUWEs correlated positively with the length of crop cycle, expressed in growth degree days and, in particular, to the length of the period from full soil cover canopy to crop harvest, the period when plant photosynthetic activity and sucrose accumulation are at maximum rates. Seasonal RUE was higher in the spring than in the autumn sowing (1.14 μg J−1 versus 1.00 μg J−1). The RUE values during the crop cycle reached the maximum in the period around complete canopy soil cover. The results showed the importance for better use of water and radiation resources of autumnal sowing time and of reduced irrigation regime in sugar beet cropped in a Mediterranean environment.  相似文献   

12.
《Field Crops Research》2005,92(1):61-74
One of the main sources of considerable amounts of chloride to soils is irrigation water. The responses of tobacco (Nicotiana tabacum L.) to chloride are varied and inconsistent depending on the tobacco type, variety and methods of fertilization, cultivation and harvesting used. In this work, the impact of the interaction between four chloride levels (10, 20, 40, 80 mg L−1) in irrigation water and three nitrogen fertilizer forms (NO3–N 100%, NH4–N 100% and NO3–N 50%:NH4–N 50%) on growth, agronomic and chemical characteristics of Virginia tobacco was evaluated over 2 years (1999, 2000) in an outdoor pot experiment. The results showed that the adverse influence of chloride in irrigation water on plant height and number of leaves per plant was already substantial above 40 mg L−1, within 30 days after transplanting. In this period, visual toxicity symptoms of chloride appeared on the lower leaves of plants treated with ammonium nitrogen. In addition, the effect of chloride on flowering time, chlorophyll content of leaves, aboveground fresh weight of plant, total cured product yield and chemical characteristics, depended on the form of nitrogen, with nitrate nitrogen restricting the detrimental effects of chloride in irrigation water up to 40 mg L−1. The reduced yield of cured product at 80 mg L−1 was the result of the adverse effects of chloride on the leaves of the middle and upper stalk position. Leaf chloride concentration was highest in the upper leaves and increased linearly with the increase of chloride level in irrigation water at each leaf position on the stalk and this increase was more rapid as ammonium nitrogen percentage was increased. Chloride increased the concentration of reducing sugars in cured leaves at each leaf position, in all nitrogen forms and nicotine mainly in plants treated with nitrate nitrogen. The changes in total nitrogen and ash content are considered as minimal. We conclude that the optimum chloride level in irrigation water is below 20 mg L−1, whereas the level of 40 mg L−1 in combination with nitrate nitrogen fertilizers can be considered as the upper threshold to avoid adverse effects on Virginia tobacco.  相似文献   

13.
《Field Crops Research》1999,63(3):211-224
Vertic Inceptisols are prone to land degradation because of excessive run-off and soil erosion during the rainy season. Productivity of soybean-based systems on these soils needs to be improved and sustained by better management of natural resources, particularly soil and water. During 1995–1997 a field study was conducted in Peninsular India on a Vertic Inceptisol watershed to study the effect of two soil depths, namely shallow (<50 cm soil depth) and medium-deep (≥50 cm soil depth) and two landform treatments, namely flat and broadbed-and-furrow (BBF) systems, on productivity and resource-use efficiency of soybean–chickpea rotation (soybean in rainy season followed by chickpea in post-rainy season). Soybean grown on flat landform on medium-deep soil had a higher leaf area index and more light interception compared to the soybean grown on the BBF landform. This resulted in an increase in mean seed yield for the flat landform (2120 kg ha−1) compared to the BBF landform (1870 kg ha−1). However, the landform treatments on shallow soil did not affect soybean yields. The soybean yield was higher on the medium-deep soil (1760 kg ha−1) than on the shallow soil (1550 kg ha−1) during 1995–1996, but were not different during 1996–1997. In both years chickpea yields and total system productivity (soybean + chickpea yields) were greater on medium-deep soil than on the shallow soil. Total run-off was higher on the flat landform (25% of seasonal rainfall) than on the BBF landform (20% of seasonal rainfall). This concomitantly increased profile water content (10–30 mm) of both soils in BBF compared to the flat landform treatment during 1995–1996, but not during 1996–1997. Deep drainage was higher in the BBF landform than in flat, especially for the shallow soil. Across landforms and soil depths, water use (evapotranspiration) by soybean–chickpea rotation during 1996–1997 ranged from 496 to 563 mm, which accounted for 54–61% of the rainfall. These results indicate that while the BBF system is useful in decreasing run-off and increasing infiltration of rainfall on Vertic Inceptisols, there is a need to increase light use by soybean on BBF during the rainy season to increase its productivity. A watershed-based farming system needs to be adopted to capture significant amount of rain water lost as run-off and deep drainage. The stored water can be used for supplemental irrigation to increase productivity of soybean-based systems leading to overall increases in resource-use efficiency, crop productivity, and sustainability.  相似文献   

14.
《Field Crops Research》2001,70(2):101-109
Field pea (Pisum sativum L.) and spring barley (Hordeum vulgare L.) were intercropped and sole cropped to compare the effects of crop diversity on productivity and use of N sources on a soil with a high weed pressure. 15N enrichment techniques were used to determine the pea–barley–weed-N dynamics. The pea–barley intercrop yielded 4.6 t grain ha−1, which was significantly greater than the yields of pea and barley in sole cropping. Calculation of land equivalent ratios showed that plant growth factors were used from 25 to 38% more efficiently by the intercrop than by the sole crops. Barley sole crops accumulated 65 kg soil N ha−1 in aboveground plant parts, which was similar to 73 kg soil N ha−1 in the pea–barley intercrop and significantly greater than 15 kg soil N ha−1 in the pea sole crop. The weeds accumulated 57 kg soil N ha−1 in aboveground plant parts during the growing season in the pea sole crops. Intercropped barley accumulated 71 kg N ha−1. Pea relied on N2 fixation with 90–95% of aboveground N accumulation derived from N2 fixation independent of cropping system. Pea grown in intercrop with barley instead of sole crop had greater competitive ability towards weeds and soil inorganic N was consequently used for barley grain production instead of weed biomass. There was no indication of a greater inorganic N content after pea compared to barley or pea–barley. However, 46 days after emergence there was about 30 kg N ha−1 inorganic N more under the pea sole crop than under the other two crops. Such greater inorganic N levels during early growth phases was assumed to induce aggressive weed populations and interspecific competition. Pea–barley intercropping seems to be a promising practice of protein production in cropping systems with high weed pressures and low levels of available N.  相似文献   

15.
《Field Crops Research》2005,91(2-3):131-148
We combined field and modelling experiments to investigate crop-level responses to soil compaction. Our working hypotheses are that the effect of soil compaction on crop growth is (i) primarily mediated by reduction in capture of water and photosynthetically active radiation (PAR), and (ii) secondarily affected by reduced transpiration efficiency (biomass per unit transpiration) and radiation-use efficiency (biomass per unit intercepted PAR).Three field experiments were carried out in the Mediterranean-type Mallee region of south Australia where the landscape alternates sand dunes (hills) and swales (flats) of sandy loam soil. All three experiments compared wheat crops grown in compacted (control) soils, and soils in which compaction was alleviated with deep tillage (ripped); additional sources of variation include season and soil type as related to topography.All soil and crop responses to ripping were more marked in sand hills than in sandy loam flats. Penetration resistance of undisturbed soil had a peak ∼2 MPa at 0.1–0.2 m depth in sandy loam flats and ∼3 MPa at 0.2–0.3 m depth in sand hills. Ripping dramatically reduced soil penetration resistance between 0.10 and 0.3–0.4 m. Control crops yielded between 1.2 and 2.9 t ha−1 and yield improvement attributable to alleviation of soil compaction ranged from nil to 43%; yield response to ripping remained for at least two cropping seasons.Increased transpiration and PAR interception fully accounted for the increase in crop growth associated with alleviation of soil compaction; ripping did not affect transpiration efficiency or radiation-use efficiency. The proportion of evapotranspiration accounted for by soil evaporation (E:ET) declined from 0.58 in controls to 0.36–0.45 in ripped sand hills.A limited modelling study showed that water availability, as characterised with the lower limit of plant available water, could partially account for the effect of soil compaction and deep tillage on crop growth and evapotranspiration. Long-term simulations indicated important changes in the fate of water in response to ripping in sandy soils, including a moderate increase in evapotranspiration, a substantial reduction in E:ET, and important reductions in the frequency and rate of drainage beyond the crop root zone.  相似文献   

16.
《Field Crops Research》2005,92(1):75-84
The effect of irrigation with saline water on quality of Burley tobacco (cv. C 104) was investigated in Southern Italy over four consecutive years. A rainfed control (RC) was compared with treatments irrigated with volumes equal to crop evapotranspiration of saline waters at 0.5 (NW), 2.5 (SW1), 5 (SW2) and 10 (SW3) dS m−1 electrical conductivity (ECw). In 2000 and 2001 an additional salinity treatment (15 dS m−1 ECw) was included (SW4). The amounts of Cl added to the soil by irrigation ranged from 36.3 kg ha−1 (good quality water in 1999) to 16.2 Mg ha−1 (saline water at 15 dS m−1 ECw in 2000). Saline irrigation did not affect yield and yield components of cured leaves. In 1998 and 1999 the filling power of Burley tobacco did not change significantly with increasing salinity of the irrigation water. In 2000 and 2001 the filling power of SW2, SW3 and SW4 treatments was significantly less than that of NW. The Cl content of tobacco grown with SW2 was significantly greater than that grown with NW and there were no differences between SW1 through SW4 treatments. The filling power and the leaf Cl content were inversely related to the amount of Cl applied in the range between 40.3 kg ha−1 and 5.1 Mg ha−1. The filling power decreased and Cl increased up to the SW2 treatment; beyond that level neither Cl nor filling power changed in response to increasing amounts of Cl applied. The leaf alkaloid content was unaffected by salinity. Total N was unaffected by either the growing season or the saline treatments. Cigarettes obtained from saline treatments did not burn during the smoking test in 1998. In 1999 cigarettes made from SW1 and SW2 did burn, but those from SW3 did not. In 2000 and 2001 the smoking test was performed only on commercial blends containing 10 or 30% of cut tobacco from saline treatments and both blends burned similarly to cigarettes made entirely from tobacco grown under non-saline conditions. In conclusion, quality of Burley tobacco was unaffected by irrigation with saline water at 2.5 dS m−1 and the inhibitory effect of salinity on burning properties could be overcome by appropriate mixture in commercial blends.  相似文献   

17.
《Field Crops Research》2006,95(2-3):305-315
The value of the capacity for osmotic adjustment (OA) as a trait, which can contribute effectively to yield maintenance under drought, has not yet been established for maize (Zea mays L.) using cultivars of similar genetic background. Here we report results obtained using crops of two S4 populations derived from a cross between inbred lines exhibiting the highest and lowest capacities for osmotic adjustment in a screening applied to 20 inbred lines. The mean values of OA for the two S4 populations were 0.47 MPa for the high OA population (HOA) and 0.06 MPa for the low (LOA). Crops of these populations were grown under a rain-out shelter and subjected to 30-day droughts either before or during flowering. In both experiments, exposure to drought evoked a significant (p < 0.05) decrease in osmotic potential measured at full turgor in the HOA population, no change was found in the LOA population. This induced response became evident in plants of the HOA population in measurements effected 16–18 days after suspension of irrigation. Irrespective of the timing of drought, the HOA crops extracted significantly more water from deeper in the soil profile during the stress period, exhibited higher leaf area duration and attained greater grain yields and, in the crop droughted at flowering, greater harvest index than the LOA crops. The components of yield and their determinants (i.e., floret number per ear, grain set, grain number and weight per grain) exhibited differential responses with timing of the drought and in response to level of OA. Under irrigation, there were no differences between populations in either experiment in terms of yield and its components, or in harvest index, leaf area duration, or soil water extraction. We conclude that OA can contribute to drought tolerance in maize crops exposed to water deficit both before and during flowering, and that the trait carries no yield penalty under irrigation.  相似文献   

18.
《Field Crops Research》2006,95(2-3):367-382
For maximizing water retention and attaining high yields, transplanting into puddled soil (TPR) is often considered the optimal method of rice (Orzya sativa L.) establishment. Alternative management techniques like direct seeding (DSR) and deep tillage have been proposed as mechanisms to improve soil physical properties for subsequent dry-season crops, but the risks to rice are uncertain. In this full factorial study on a valley terrace in Nepal, the influence of tillage (shallow—T1, deep chisel—T2, deep chisel + moldboard plough—T3) and establishment practice (TPR, DSR) on the field water balance and rice performance were evaluated in two adjacent landscape settings (terrace edge “upland”, central terrace “lowland”). Although deep tillage had only modest influences on seepage and percolation (SP) rates in both years (Y1, Y2), landscape placement and establishment practice had significant implications for the water balance (e.g. Y2 SP cm day−1: TPR-lowland = 1.6, DSR-lowland = 2.3, TPR-upland = 4.1, DSR-upland = 6.1). During low rainfall periods, however, soil water potential and drought vulnerability were governed solely by landscape placement. Despite water balance differences, there was little evidence that rice rooting behavior was substantially modified by landscape or establishment method. Weed biomass was higher in DSR, but was uncorrelated with water balance and productivity trends. In Y1, lower SP rates and more days with continuous flooding were positively associated with rice productivity. DSR yields were significantly lower than TPR in both landscape positions, with the lowland outperforming the upland (Y1 mt ha−1: TPR-lowland = 6.4, DSR-lowland = 5.2, TPR-upland = 5.7, DSR-upland = 4.7). To determine if N dynamics were contributing to productivity differences, fertilizer nitrogen was increased from 120 to 150 kg N ha−1 in Y2. Results suggest that DSR performance is comparable – and landscape less important – if nitrogen is non-limiting (Y2 mt ha−1: TPR-lowland = 6.9, DSR-lowland = 6.5, TPR-upland = 7.0, DSR-upland = 6.5); no aspect of the field water balance was associated with yield variability in Y2. For direct seeding in N-deficient farming systems, landscape criteria may prove useful for minimizing production risks by identifying field areas with lower SP rates.  相似文献   

19.
Moisture-dependent physical properties of niger (Guizotia abyssinica Cass.) seed were studied at 5.60, 12.99, 19.77, 27.08 and 31.65% moisture content (wet basis). The length, width, thickness and geometric mean diameter increased significantly (p < 0.05) from 3.86 to 4.06 mm, 0.96 to 1.02 mm, 0.86 to 0.96 mm and 1.47 to 1.59 mm, respectively with increase in moisture content from 5.60 to 31.65% whereas the increase in sphericity from 38.10 to 39.01% was not significant. Similarly, thousand seed mass, porosity and angle of repose increased (p < 0.05) linearly from 2.50 to 3.69 g, 41.76 to 47.65% and 29.86° to 39.12°, respectively with increase in moisture content under the experimental condition. The bulk density decreased significantly (p < 0.05) from 635.23 to 561.06 kg m?3 with increase in the moisture content range considered in the study, whereas the true density showed a slight increase from 1090.71 to 1098.42 kg m?3 with increase in moisture content from 5.60 to 27.08% followed by a drop from 1098.42 to 1071.75 kg m?3 as moisture content increased from 27.08 to 31.65%. Coefficient of static friction increased (p < 0.05) logarithmically from 0.34 to 0.51, 0.38 to 0.56 and 0.13 to 0.53 on mild steel, plywood and glass surfaces, respectively with increase in moisture content from 5.60 to 31.65%.  相似文献   

20.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号