首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substitution of wheat flour with barley flour (i.e. native or pretreated/extruded) reduced the loaf volume. Depending on the barley variety and flour pretreatments, the colour and firmness/texture of the bread loaves were altered. Amongst the barley breads prepared from native flours (at 15% barley flour substitution level), Phoenix had higher loaf volume and lower crumb firmness than Candle. However, amongst the barley breads prepared from extruded flours, CDC-Candle had higher loaf volume and lower crumb firmness than Phoenix. The lower loaf volume and firmer crumb texture of barley breads as compared with wheat bread may be attributed to gluten dilution. Also, the physicochemical properties of barley flour components, especially that of β-glucan, can affect bread volume and texture. β-glucan in barley flour, when added to wheat flour during bread making, could tightly bind to appreciable amounts of water in the dough, suppressing the availability of water for the development of the gluten network. An underdeveloped gluten network can lead to reduced loaf volume and increased bread firmness. Furthermore, in yeast leavened bread systems, in addition to CO2, steam is an important leavening agent. Due to its high affinity for water, β-glucan could suppress the amount of steam generated, resulting in reduced loaf volume and greater firmness. In the present study, breads made with 15% HTHM CDC-Candle flour had highly acceptable properties (loaf volume, firmness and colour) and it indicated that the use of extruded barley flours would be an effective way to increase the dietary fibre content of barley breads.  相似文献   

2.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

3.
The potential of sourdough to improve bread quality of barley and oat enriched wheat breads may depend on the characteristics of the added flour (cereal type, variety, extraction rate). We compared the effect of different barley flours and oat bran (substitution level 40%), unfermented and as sourdoughs (20% of total flour), on composite wheat dough and bread characteristics by combining empirical rheological analyses (DoughLab, SMS/Kieffer Dough and Gluten Extensibility Rig) with small-scale baking of hearth loaves. Whole grain barley flour sourdough increased resistance to extension (Rmax) of the dough and improved the form ratio of hearth loaves compared to unfermented whole grain barley flour. However, sourdough showed little effect on the breads prepared with sifted barley flour or oat bran. The breads made with oat bran showed highest bread volume, lowest crumb firmness and highest β-glucan calcofluor weight average molecular weight (MW). The heat treatment of oat bran inactivated endogenous enzymes resulting in less β-glucan degradation. High MW β-glucans will increase the viscosity of the doughs water phase, which in turn may stabilise gas cells and may therefore be the reason for the higher bread volume of the oat bran breads observed in our study.  相似文献   

4.
This work evaluates rheological properties of dough and quality of bread prepared from the flour of ancient varieties and modern breeding lines of spelt compared to common wheat. Spelt flours of old varieties exhibited similar water absorption; the largest was noted in the STH-8 line flour. Spelt doughs had longer development time and were more stable than wheat dough. The doughs made of old spelt varieties were more resistant to extension than that produced from new lines flours. Of the spelt breads, this of the STH-8 line spelt line had the largest loaf volume but smaller than wheat bread. In addition, spelt doughs had similar porosity; the most porous was the bread baked from the Frankenkorn cv, Schwabenkorn cv and STH-8 line flours. Moreover, the crumb of the bread manufactured from the flours of spelt variety Frankenkorn and the STH 28-4614 line showed the greatest resistance to compression and the smallest compressibility.  相似文献   

5.
Physico-chemical properties of bread baked by partially replacing normal wheat (Triticum aestivum L.) flour (15, 30, and 45%) with two hard waxy wheat flours were investigated. Substitution with waxy wheat flour resulted in higher loaf volume and softer loaves. However, substitution at >30% resulted in excessive post-bake shrinkage and a ‘key-hole’ shape with an open crumb structure. Bread crumb microstructure indicated a loss of starch granule rigidity and fusing of starch granules. The cells in the interior of the bread did not become gas-continuous and as a result, shrunk as the loaf cooled. Soluble starch content was significantly higher in bread crumb containing waxy wheat flour than in control bread. Debranching studies indicated that the soluble starch in bread made with 30-45% hard waxy wheat flour was mostly amylopectin. Incorporation of waxy wheat flour resulted in softer bread immediately after baking but did not retard staling upon storage.  相似文献   

6.
Wheat flour replacement from 0 to 40% by single tef flours from three Ethiopian varieties DZ-01-99 (brown grain tef), DZ-Cr-37 (white grain tef) and DZ-Cr-387 (Quncho, white grain tef) yielded a technologically viable ciabatta type composite bread with acceptable sensory properties and enhanced nutritional value, as compared to 100% refined wheat flour. Incorporation of tef flour from 30% to 40% imparted discreet negative effects in terms of decreased loaf volume and crumb resilience, and increase of crumb hardness in brown tef blended breads. Increment of crumb hardness on aging was in general much lower in tef blended breads compared to wheat bread counterparts, revealing slower firming kinetics, especially for brown tef blended breads. Blended breads with 40% white tef exhibited similar extent and variable rate of retrogradation kinetics along storage, while brown tef-blended breads retrograded slower but in higher extent than control wheat flour breads. Breads that contains 40% tef grain flour were found to contain five folds (DZ-01-99, DZ-Cr-387) to 10 folds (DZ-Cr-37) Fe, three folds Mn, twice Cu, Zn and Mg, and 1.5 times Ca, K, and P contents as compared to the contents found in 100% refined wheat grain flour breads. In addition, suitable dietary trends for lower rapidly digestible starch and starch digestion rate index were met from tef grain flour fortified breads.  相似文献   

7.
The objective of this study was to produce wholegrain wheat flour on a laboratory-scale with particle size distributions similar to commercially-milled samples without re-milling the bran. The moisture contents of four hard winter wheat cultivars were adjusted to 7.29–7.98% (by drying), 9.00–10.6% (“as is”), and 15.6% (by tempering) prior to milling into wholegrain flour. The moisture treatments appeared to affect the partitioning of wholegrain flour particles into each of three categories: fine (<600 μm), medium (600–849 μm) and coarse (≥850 μm). When the distributions of particles were grouped into these categories, wholegrain flours made from dried and “as is” wheat fell within the values for commercial wholegrain flours, while that from tempered wheat contained more coarse particles than even the coarsest commercial wholegrain flour. Loaf volumes and crumb firmness were not significantly different between bread made from wholegrain flour that had been produced from dried or “as is” wheat, but loaf volume was significantly lower and bread crumb firmness was significantly higher when wholegrain flour from tempered wheat was used. These results show that wheat may be milled without tempering to produce wholegrain flour with particle size similar to some commercially-milled flours without needing to re-grind the bran.  相似文献   

8.
The objective of this study was to produce wholegrain wheat flour on a laboratory-scale with particle size distributions similar to commercially-milled samples without re-milling the bran. The moisture contents of four hard winter wheat cultivars were adjusted to 7.29–7.98% (by drying), 9.00–10.6% (“as is”), and 15.6% (by tempering) prior to milling into wholegrain flour. The moisture treatments appeared to affect the partitioning of wholegrain flour particles into each of three categories: fine (<600 μm), medium (600–849 μm) and coarse (≥850 μm). When the distributions of particles were grouped into these categories, wholegrain flours made from dried and “as is” wheat fell within the values for commercial wholegrain flours, while that from tempered wheat contained more coarse particles than even the coarsest commercial wholegrain flour. Loaf volumes and crumb firmness were not significantly different between bread made from wholegrain flour that had been produced from dried or “as is” wheat, but loaf volume was significantly lower and bread crumb firmness was significantly higher when wholegrain flour from tempered wheat was used. These results show that wheat may be milled without tempering to produce wholegrain flour with particle size similar to some commercially-milled flours without needing to re-grind the bran.  相似文献   

9.
The growing interest in the benefits of wholegrain products has resulted in the development of baked products incorporating less utilised and ancient grains such as, millet, quinoa, sorghum and teff. However, addition of wholegrains can have detrimental effects on textural and sensory bread product qualities.Enzymes can be utilised to improve breadmaking performance of wholegrain flours, which do not possess the same visco-elastic properties as refined wheat flour, in order to produce a healthy and consumer acceptable cereal product.The effects of Teff grain on dough and bread quality, selected nutritional properties and the impact of enzymes on physical, textural and sensory properties of straight dough and sourdough Teff breads were investigated.Teff breads were prepared with the replacement of white wheat flour with Teff flour at various levels (0%, 10%, 20%, and 30%) using straight dough and sourdough breadmaking. Different combinations of enzymes, including xylanase and amylase (X + A), amylase and glucose oxidase (A + GO), glucose oxidase and xylanase (GO + X), lipase and amylase (L + A) were used to improve the quality of the highest level Teff breads. A number of physical, textural and sensory properties of the finished products were studied. The nutritional value of breads was determined by measuring chemical composition for iron, total antioxidant capacity, protein, fibre and fat. The obtained results were used to estimates intakes of nutrients and to compare them with DRIs.The incorporation of Teff significantly (P < 0.05) improved dietary iron levels as 30% Teff breads contained more than double the amount of iron when compared to corresponding wheat bread (6 mg/100 g v 2 mg/100 g). Addition of Teff also significantly (P < 0.05) improved total antioxidant capacity from 1.4 mM TEAC/100 g to 2.4 mM TEAC/100 g. It was estimated that an average daily allowance of 200 g of Teff enriched bread would contribute to DRIs in the range of 42-81% for iron in females, 72-138% for iron in males; 38-39% for protein in males, 46-48% for protein in females; and 47-50% of fibre in adults.The major challenge was encountered in producing the highest level of Teff bread with good textural and sensory attributes. Increasing the level of Teff significantly (P < 0.05) increased dough development time, degree of softening, crumb firmness and bitter flavour whilst decreasing the dough stability, specific loaf volume and overall acceptability of the bread. Teff breads produced with the addition of enzyme combinations showed significant improvements (P < 0.05) in terms of loaf volume, crumb firmness, crumb structure, flavour and overall acceptability in both straight dough and sourdough breadmaking.  相似文献   

10.
The possibility of using naked barley for food products is gaining popularity due to its dietary fibre content, especially β-glucans. The technological process (dough preparation, fermentation and baking) influences bread quality but also may contribute to degradation or preservation of valuable grain components. The aim of the study was to investigate the effects of different wholemeal barley flour share and bread production method on the quality of bread and non-starch polysaccharides content and solubility.Barley enriched bread contained more both soluble and insoluble dietary fibre and β-glucans, products of 40% barley share contained 67% more total dietary fibre and 160% more β-glucans than control. However, barley incorporation decreased the amount of soluble arabinoxylans. High barley contents contributed to the breads’ volume reduction by 14% and change in their crumb and crust colour. However, barley enriched breads gained higher ratings of taste than wheat bread. Barley sourdough fermentation improved breads’ volume, colour and sensory properties. Sourdough fermentation also resulted in higher concentration of dietary fibre, arabinoxylans and β-glucans. The beneficial effect of barley addition to wheat bread may be successfully enhanced by using barley wholemeal sourdough fermentation.  相似文献   

11.
Three commercial wholegrain oat (WO) flours from Finland (WOF), Ireland (WOI) and Sweden (WOS) were evaluated for their bread making ability with the objective of finding predictive relationships between flour physicochemical properties and bread quality. Overall, significant differences were found in the bread making properties of the WO flours. Good bread quality was obtained when using WOS and WOI flour since breads showed high specific loaf volume and slice height as well as low density and hardness. Low quality breads were obtained when WOF flour was used. In addition, positive effects on oat bread quality were observed for low batter viscosity and high deformability, as obtained for WOS and WOI. Based on the physicochemical analysis of the flours, water hydration capacity was found to be the main reason for increased elasticity of WOF batters. Small flour particle size, damaged starch granules and high protein content were identified as the key factors causing increased water hydration capacity. These findings suggest that WO flours with coarse particle size, limited starch damage and low protein content result in superior oat bread quality.  相似文献   

12.
The granule size distributions of starches isolated from eight bread wheat flours were determined. Breads were baked from the same flours by varying fermentation time, mixing speed and work input according to a central composite experimental design. Response surface equations were calculated for the bread characteristics loaf volume, weight, form ratio (height/width) and crumb firmness. Multivariate regression (PLS2) was used to relate the starch granule size distribution spectra to the coefficient matrices. The models obtained by PLS2 explained 55% and 48% of the total variance in the response surface coefficients for bread weight, and form ratio respectively, with correlation coefficients 0·74 and 0·69. No models were obtained for crumb firmness and loaf volume. The correlations obtained with the constant terms indicated that high weights and form ratios were promoted by small A-granules (size 12 μm). The effect of starch granule size distribution on the bread characteristics was modified by work input and mixing speed, while fermentation time had no effect.  相似文献   

13.
Composite flour blends containing wheat (W), fababean (F), cottonseed and sesame flours were formulated to provide the FAO/WHO/UNU protein requirements for the 2–5 year old child, and evaluated in pan and flat bread applications. Water absorption of composite flour doughs was up to 35% greater than the control but gluten strength and slurry viscosities were markedly reduced. Loaf volume and specific volume of pan breads prepared from composite flours were 25–60% less than that of the control bread but flat breads tolerated the protein supplements extremely well. The W/F flat bread, containing 27% of fababean flour, received acceptable taste, texture and colour scores and was only slightly inferior to the control in puffing and layer separation. Additions of cottonseed or sesame flours to the W/F blend failed to improve sensory properties of the flat breads.  相似文献   

14.
Flour milled from waxy durum grain was incorporated into bread formulations and its effects on crumb softness and loaf volume compared to those of added fats and emulsifiers. Waxy durum had a small effect on increasing loaf volume, and little of this effect could be explained by dough height or oven spring; effects of most other additives were closely related to dough height or oven spring. For all additives, the relationship between crumb softness and loaf volume fitted a power law relationship. Waxy durum and some of the additives had a greater softening effect than predicted from their effect on volume while others produced a much firmer crumb. With only one exception, when combined with other additives waxy durum reduced compression of the crumb more than predicted on the basis of the effects on loaf volume of the additives alone. In common with some of the added lipids, during compression analysis, crumb prepared with waxy durum flour had similar levels of structural damage as crumb baked from the standard formulation; other lipids and emulsifiers produced more fragile crumb. Waxy durum flour appears to have unique effects on crumb softness.  相似文献   

15.
Whole wheat flour samples having protein content of 8.9% and 10.6% were subjected to dry and moist heat conditions to improve the functionality. Dry heat treated flours (DHTF) had higher values of falling number and SDS sedimentation values when compared to moist heat treated flour (MHTF). MHTF showed decrease in water absorption from 75.4 to 56.7%, increase in dough development time from 3.3 to 11.9 min, increase in peak viscosity and cold paste viscosity from 467 to 778 BU and 678 to 1017 BU respectively when compared to untreated flour. MHTF lost its elasticity, SDS-page gel electrophoresis indicated the change especially in the region of gliadin and ELISA indicated 41% reduction in immunogenicity against gliadin. The specific volume of breads prepared from MHTF was significantly lower whereas the crumb firmness value was higher than breads from untreated flours. Breads from treated flours also showed reduction in immunogenicity against gliadin.  相似文献   

16.
Bread-making with a composite flour (CF) consisting of 60% wheat flour (WF) and 40% hull-less barley flour, increased the total and soluble (1→3,1→4)-β-D-glucan and total arabinoxylan (AX) contents of dough and bread samples, but decreased the specific bread loaf volume. A xylanase insensitive to inhibition by Triticum aestivum L. xylanase inhibitor (TAXI) and xylanase inhibiting protein (XIP), increased loaf volume by 8.8 and 20.1% for WF and CF breads, respectively. Xylanase addition not only markedly improved loaf volume of CF bread, but also increased the soluble AX content of the WF and CF dough and bread samples because of conversion of water-unextractable AX into soluble AX. The xylanase had no impact on the extractability and molecular weight of (1→3,1→4)-β-D-glucan, but (1→3,1→4)-β-D-glucan was degraded during bread-making probably because of endogenous β-glucanase activity. Taken together, the results clearly show that the combined use of hull-less barley flour and a xylanase active during bread making, lead to palatable breads with high total and soluble AX and (1→3,1→4)-β-D-glucan contents. The sum of total AX and (1→3,1→4)-β-D-glucan was 1.70% for WF bread and 3.06% for CF bread, while the sum of soluble AX and (1→3,1→4)-β-D-glucan was 0.49 and 1.41% for control WF and CF xylanase supplemented breads, respectively.  相似文献   

17.
One accession of einkorn (Triticum monococcum) and five spring spelt accessions (T. aestivumsubsp.spelta) were selected and grown at five locations in 1992 and 1993 for evaluation of kernel, milling and baking properties. The high protein einkorn accession (TM23) was similar to common hard red spring (HRS) wheat in kernel size but the soft grain gave low flour yields. Einkorn flour had low sedimentation values, weak Mixograph curves and low loaf volumes with no bromate response. The two large-seeded spelt accessions, SK0021 and PGR8801, were comparable to common HRS wheat in kernel hardness, flour yield and protein content, but were very inferior in falling number, sedimentation value, Mixograph characteristics, loaf volume, crumb texture and colour. The spelt accessions, SK0505, SK0263 and RL5407, also exhibited large kernels but were soft in texture and gave high flour yields, intermediate sedimentation values, weak Mixograph characteristics, but satisfactory loaf volumes and bromate responses relative to HRS wheat. With addition of only 15 ppm bromate, the latter spelt accessions gave breads with loaf volumes similar to those of HRS wheat breads. In sensory tests, these spelt breads were intermediate in preference as compared to HRS wheat breads.  相似文献   

18.
Baking performance of hearth bread and pan bread were investigated using 10 wheat varieties with variable protein quality. For most varieties, samples were selected at two protein levels, approximately 11 and 13% (d.m.). The effects of flour quality on loaf characteristics were different for hearth bread compared to pan bread, where both protein quality and protein content affect loaf volume positively in an optimised baking test. Hearth bread is more complex as both the form ratio and loaf volume are critical external characteristics. When using fixed proving time, the form ratio was positively affected by dough resistance and mixing peak time at high speed mixing, and negatively affected by dough extensibility. Dough resistance and mixing peak time correlated strongly to the HMW glutenin composition, whereas dough extensibility was related to protein content. In contrast to the form ratio, loaf volume was positively affected by dough extensibility, whereas protein quality had no significant effect. This was seen both for doughs produced at optimal mixing time at high speed mixing (126 rev/min) and for doughs produced at fixed mixing times at low speed mixing (63 rev/min). When proving time was optimised to achieve a defined form ratio, flours of strong protein quality should be proved longer than flours of week protein quality, resulting in higher loaf volume for flours of the strongest protein quality. With respect to protein content, the positive effect of protein content on loaf volume was counteracted due to reduced proving time when aiming for a defined form ratio.  相似文献   

19.
The effects of different percentages of barley flour (i.e. 0–25%) in wheat flours on the physico-chemical properties and structure of dough and bread were investigated. As the percentage of barley flour in mixed flour was increased, its protein and gluten contents decreased whereas the ash content and enzyme activity increased. The rheological characteristics of the four dough mixes were studied using Farinograph, Extensograph and Alveograph. The water absorption (p < 0.01) and stability (p < 0.05) decreased significantly as the percentage of barley flour increased, while no changes were observed in the extensibility and maximum heights. Significant differences were observed in the structural and physical properties as well as in the image analysis of breads. With the increase in the percentage of barley flour, the crumb apparent density decreased (p < 0.1) whereas the porosity (i.e., fraction to total volume) increased (p < 0.1). Overall, the shape and pore structure at 10% barley flour (W90B10) were similar to the pure wheat flour bread, while addition at 15 and 25% of barley flour (W85B15 and W75B25) showed more non-uniform and larger pores.  相似文献   

20.
Fat is commonly added to bakery products to improve eating qualities and extend shelf life. Flour milled from waxy durum grain was incorporated into bread formulations and its effects on crumb softness and loaf volume compared to those of added fat. Low levels of fat (0.1-0.3% of flour weight) softened the bread crumb and increased loaf volume. Most of the softening effects were evident in the crown of the loaves protruding above the tin and a high proportion of the reduction in compression was associated with increased volume. Loaves baked with waxy durum flour were softer than those baked with fat and the softening effects were evident both in the crown of the loaf and at its base where it had been confined within the tin. Waxy durum flour reduces compression independently of increased volume. It is suggested waxy durum flour acts by slowing the migration of water from the gluten phase to the starch phase so maintaining the level of mobile water in the gluten where it acts as a plasticiser. Independent organoleptic assessment of bread quality baked with combinations of waxy durum and fat confirmed the quality enhancing effects of waxy durum flour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号