首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Field Crops Research》2003,82(1):59-73
Stalk water content is an important variable for a sugarcane simulation model as sugar industries in many countries use cane yield and sucrose content on a wet mass basis for payment and yield reports. The prime objective was to develop a stalk water content module (SWCM) that can be incorporated into a sugarcane simulation model. SWCM starts from consideration of the dynamics of water concentration (ρ, g water g−1 dry matter) along stalks and through seasons. The quantities of stalk water were modelled separately for the top and basal sections of the millable stalks. Field observations showed that the stalk water concentration (ρ) declined from 7.8 to 11.8 in the top internodes to 1.6–2.9 g water g−1 dry matter in bottom internodes. In the basal section, ρ ranged from 1.98 in winter to 2.83 g water g−1 stalk dry matter in summer. A two-parameter equation was used to model ρ and resulted in a range of coefficients of determination from 0.8 to 0.97 for six varieties. The SWCM was developed to simulate both the effects of seasonal variation and the age of internodes on the quantity of stalk water. The module was incorporated into a process oriented model of sugarcane growth for validation against field observations in tropical and subtropical areas of Australia and Hawaii, USA. Comparison of observed yields with cane yield simulated by the model that included the SWCM, gave an average of R2 of 0.95, compared with the average of R2 of 0.97 for simulation of stalk dry matter. The average relative root mean squared error (RMSE) was 15.2% in simulation of cane yield and 15.1% for simulation of cane dry weight. The module can be readily incorporated into a model that simulates sugarcane dry matter so that commercial crop yield can be estimated.  相似文献   

2.
《Field Crops Research》2004,86(1):53-65
Deceleration in rice (Oryza sativa L.) yield over time under fixed management conditions is a concern for countries like Bangladesh, where rice is the primary source of calories for the human population. Field experiments were conducted from 1990 to 1999 on a Chhiata clay loam soil (Hyperthermic Vertic Endoaquept) in Bangladesh, to determine the effect of different doses of chemical fertilizers alone or in combination with cow dung (CD) and rice husk ash (ash) on yield of lowland rice. Two rice crops—dry season rice (December–May) and wet season rice (July–November) were grown in each year. Six treatments—absolute control (T1), one-third of recommended fertilizer doses (T2), two-thirds of recommended fertilizer doses (T3), full doses of recommended fertilizers (T4), T2+5 t CD and 2.5 t ash ha−1 (T5) and T3+5 t CD and 2.5 t ash ha−1 (T6) were compared. The CD and ash were applied on dry season rice only. The 10-year mean grain yield of rice with T1 was 5.33 t ha−1 per year, while the yield with T2 was 6.86 t ha−1 per year. Increased fertilizer doses with T3 increased the grain yield to 8.07 t ha−1 per year, while the application of recommended chemical fertilizer doses (T4) gave 8.87 t ha−1 per year. The application of CD and ash (T5 and T6) increased rice yield by about 1 t ha−1 per year over that obtained with chemical fertilizer alone (T2 and T3, respectively). Over 10 years, the grain yield trend with the control plots was negative, but not significantly, both in the dry and wet seasons. Under T3 through T6, the yield trend was significantly positive in the dry season, but no significant trend was observed in the wet season. The treatments, which showed positive yield trend, also showed positive total P uptake trend. Positive yield trends were attributed to the increasing P supplying power of the soil.  相似文献   

3.
《Field Crops Research》2005,91(2-3):171-184
Understanding the effect trees have on the growth of crops requires an understanding of the multiple interacting processes that determine resource uptake by the crops. On a Ferralsol in sub-humid western Kenya maize (Zea mays L.) growth was primarily limited by phosphorus availability. We observed that maize growth near grevillea (Grevillea robusta A. Cunn.) tree lines was strongly reduced, while maize growth was slightly increased near cassia (Cassia spectabilis DC (syn. Senna spectabilis, DC, H.S. Irwin and R.C. Barneby). This was contrary to expectations because grevillea has a relatively low nutrient demand while Cassia has a relatively high nutrient demand.We compared maize growth in an experiment with simulations using the mechanistic tree–crop interaction model WaNuLCAS. The model simulations showed that the measured 30–40% decrease in maize growth near the Grevillea tree line was due to 0.025 m3 m−3 lower soil water contents (at mean levels of 0.35 m3 m−3 and high pF). This was not due to direct water limitation. The lower soil water content caused decreased P diffusion to roots and a cumulative decrease in crop root-growth and a concomitant decrease in crop growth over time.Measured maize yield near Cassia was 115%, unaffected by trees. Model simulations predicted it should be reduced to 80% due to direct competition for P between tree and crop. This suggests that rhizosphere modifications measured near Cassia roots probably supplied P to the tree itself and also to the maize crop.On P-limiting tropical soils, it is important to prevent soil drying to avoid soil drying induced P deficiency. In these conditions tree species that are able to mobilize P can prevent competition with the crop and may even increase crop performance.  相似文献   

4.
《Field Crops Research》2006,95(2-3):234-249
The use of Al-tolerant and P-efficient maize cultivars is an important component of a successful production system on tropical acid soils with limited lime and P inputs. Grain yield and secondary plant traits, including root and aboveground biomass, nutrient content and leaf development, were evaluated from 1996 to 2002 in field experiments on an Oxisol in order to identify maize characteristics useful in genetic improvement. Here we present the results of the 2002 trial and compare them with previous results. The aim of this experiment was to assess the effect of assimilate and nutrient partitioning on the growth and grain yield of two tropical cultivars having different Al tolerance (CMS36, tolerant, Spectral, moderately tolerant). The soil had an Al saturation of 36% in topsoil (pH 4.5) and >45% below 0.3 m depth (pH 4.2). Measurements made from emergence to grain filling included: root, stem and leaf biomass, P and N content, leaf area index (LAI), radiation use efficiency (RUE), soil available N and root profiles at anthesis. The experiments consisted of two P treatments, zero applied or 45 kg P ha−1 (−P and +P). All the treatments received N and K fertilizers. In −P, root biomass and LAI at anthesis were twice as great in CMS36 as in Spectral. In +P the differences between cultivars were negligible. Roots were deeper in CMS36 due to its higher Al tolerance. Total biomass and grain yield were not strongly related to root biomass and LAI. Other factors such as the leaf biomass and the amount of nutrients per unit leaf area were highly correlated with RUE and biomass. In −P, Spectral had the same total biomass but a higher grain yield than CMS36 (2.1 Mg ha−1 versus 1.5 Mg ha−1). This was due to a higher leaf P content (+40%), a greater RUE (+74%), and a lower number of sterile plants. In +P, CMS36 had higher total biomass and grain yield (4.1 Mg ha−1 versus 3.1 Mg ha−1). This was due to its higher leaf P (+25%) and leaf N (+43%) contents, and an increased RUE (+130%) that were associated with higher P and N uptake. Our results indicated that although root tolerance to Al toxicity is necessary for good crop performance on acid soils, assimilate and nutrient partitioning in the aboveground organs play a major role in plant adaptation and may partially compensate for a lower root tolerance.  相似文献   

5.
Comparable data are lacking from the range of environments found in sub-Saharan West Africa to draw more general conclusions about the relative merits of locally available rockphosphate (RockP) in alleviating phosphorus (P) constraints to crop growth. To fill this gap, a multi-factorial field experiment was conducted over 4 years at eight locations in Niger, Burkina Faso and Togo. These ranged in annual rainfall from 510 to 1300 mm. Crops grown were pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor (L.) Moench) and maize (Zea mays L.) either continuously or in rotation with cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). Crops were subjected to six P fertiliser treatments comprising RockP and soluble P at different rates and combined with 0 and 60 kg N ha−1. For legumes, time trend analyses showed P-induced total dry matter (TDM) increases between 28 and 72% only with groundnut. Similarly, rotation-induced raises in cereal TDM compared to cereal monoculture were only observed with groundnut. For cereals, at the same rate of application, RockP was comparable to single superphosphate (SSP) only at two millet sites with topsoil pH-KCl<4.2 and annual average rainfall>600 mm. Across the eight sites NPK placement at 0.4 g P per hill raised average cereal yields between 26 and 220%. This was confirmed in 119 on-farm trials revealing P placement as a promising strategy to overcome P deficiency as the regionally most growth limiting nutrient constraint to cereals.  相似文献   

6.
《Field Crops Research》1999,63(3):237-246
Using data from large, grower-managed fields we investigated the variation in yield of dryland soybean in an area with low and variable summer rainfall, and soils that are variable in depth and poor in phosphorus (P). First, using data from unfertilised, wide-row (0.7 m) crops grown under standard management between 1989 and 1992 (Series 1), we quantified the relationship between yield and W, a rainfall-based estimate of water availability during the period of pod and grain set. Separate functions were established for deep (depth  1 m) and shallow soils (0.75 m  depth  0.5 m). Second, we partially tested these functions using two independent data sets (Series 2 and 3). Third, we evaluated the effects on yield of large (18 kg P ha−1, Series 4) or moderate doses of P fertiliser (8–12 kg P ha−1) in narrow-row crops (0.35 m, Series 5). To investigate water × management interaction we (i) calculated ΔY, the difference between actual yield in Series 4 and 5 and yield calculated with the functions derived from Series 1, and (ii) tested the association between ΔY and actual W. In a set of 24 crops (Series 1), yield varied between 2.1 and 3.1 t ha−1 in deep soils and between 1.3 and 2.6 t ha−1 in shallow soils; non-linear functions described fairly well, the response of yield to W. Fertilisation with 18 kg P ha−1 increased yield by 0.6 t ha−1 irrespective of water availability. The combination of narrow rows and a moderate dose of fertiliser increased yield in 73% of crops in deep soil but only in 53% of crops in shallow soil. There was a positive association between ΔY and W in deep soil but no relationship between these variables in shallow soil. Yield responses to management were thus differentially affected by rainfall in deep and shallow soils.  相似文献   

7.
《Field Crops Research》2005,92(1):61-74
One of the main sources of considerable amounts of chloride to soils is irrigation water. The responses of tobacco (Nicotiana tabacum L.) to chloride are varied and inconsistent depending on the tobacco type, variety and methods of fertilization, cultivation and harvesting used. In this work, the impact of the interaction between four chloride levels (10, 20, 40, 80 mg L−1) in irrigation water and three nitrogen fertilizer forms (NO3–N 100%, NH4–N 100% and NO3–N 50%:NH4–N 50%) on growth, agronomic and chemical characteristics of Virginia tobacco was evaluated over 2 years (1999, 2000) in an outdoor pot experiment. The results showed that the adverse influence of chloride in irrigation water on plant height and number of leaves per plant was already substantial above 40 mg L−1, within 30 days after transplanting. In this period, visual toxicity symptoms of chloride appeared on the lower leaves of plants treated with ammonium nitrogen. In addition, the effect of chloride on flowering time, chlorophyll content of leaves, aboveground fresh weight of plant, total cured product yield and chemical characteristics, depended on the form of nitrogen, with nitrate nitrogen restricting the detrimental effects of chloride in irrigation water up to 40 mg L−1. The reduced yield of cured product at 80 mg L−1 was the result of the adverse effects of chloride on the leaves of the middle and upper stalk position. Leaf chloride concentration was highest in the upper leaves and increased linearly with the increase of chloride level in irrigation water at each leaf position on the stalk and this increase was more rapid as ammonium nitrogen percentage was increased. Chloride increased the concentration of reducing sugars in cured leaves at each leaf position, in all nitrogen forms and nicotine mainly in plants treated with nitrate nitrogen. The changes in total nitrogen and ash content are considered as minimal. We conclude that the optimum chloride level in irrigation water is below 20 mg L−1, whereas the level of 40 mg L−1 in combination with nitrate nitrogen fertilizers can be considered as the upper threshold to avoid adverse effects on Virginia tobacco.  相似文献   

8.
《Field Crops Research》1999,61(3):193-199
The prominent effects of a soil surface crust on crop production, impedance to seedling emergence and reduced infiltration rate, were examined using a quantitative land evaluation model under the Sahelian environmental and soil conditions of north-central Burkina Faso. The model integrated data from climate, soil and crop for quantifying potential grain yield of sorghum (Sorghum bicolor), grown on a sandy loam soil for 14 production years (1977–1990). Crust development was induced using `simulated rainfall' with an intensity of 75 mm h−1 from a 2 m height. Results revealed that seeding sorghum in small holes without sufficiently breaking the surface crust depressed grain yield. Observed and potential yield correlated closely over a 7-year period (r = 0.79, p < = 0.05). Substantial yield gap was found between estimated potential yield (crust broken scenario set to 75% of the predicted yield) and observed, indicating however, the possibility of significantly improving yield by using appropriate tillage to break the crust before seeding.  相似文献   

9.
Integrated use of organic and inorganic fertilizers can improve crop productivity and sustain soil health and fertility. The present research was conducted to study the effects of application of green manures [sesbania (Sesbania aculeate Poiret) and crotalaria (Crotalaria juncea L.)] and farmyard manure on productivity of rice (Oryza sativa L.) and its residual effects on subsequent groundnut (Arachis hypogaea L.) crop. Rice and groundnut crops were grown in sequence during rainy and post-rainy seasons with and without green manure in combination with different fertilizer and spacing treatments under irrigated conditions. The results showed that application of green manures sesbania and crotalaria at 10 t ha−1 to rice compared to no green manure application significantly increased grain yield of rice by 1.6 and 1.1 t ha−1, and pod yields of groundnut crop succeeding rice by 0.25 and 0.16 t ha−1, respectively. There was no significant difference between the application of crotalaria or farmyard manure at 10 t ha−1 on grain yields of rice, but pod yields of subsequent groundnut crop were greater with application of green manure. There was no significant effect of different spacing 20×15,15×15,15×10 cm2 (333 000; 444 000; 666 000 plant ha−1, respectively) on grain yield of rice. Pod yields of groundnut were significantly greater with closer spacing 15×15 cm2 (444 000 plants ha−1) as compared to spacing of 30×10 cm2 (333 000 plants ha−1). Maximum grain of rice was obtained by application of 120:26:37 kg NPK ha−1 in combination with green manures, whereas maximum pod yield of groundnut was obtained by residual effect of green manure applied to rice and application of 30:26:33 kg NPK ha−1 in combination with gypsum applied to groundnut crop.  相似文献   

10.
To evaluate the production potential of fiber nettle crops in Tuscany (Italy), a German clone of fiber nettle was cultivated during 2006–2007.Although a longer experimentation is essential, the two first years of trials showed that the German clone used also seems to give good results in term of growth and fiber yield in an environment like central Italy, with higher temperatures and generally lower rainfall. Indeed the stalk mean dry matter obtained was about 15.4 Mg ha?1 with a mean fiber content of about 11% of stalk dry matter, and the resulting fiber yield was 1696 kg ha?1, comparable to or higher than those reported in the literature.The differences in chemical, physical and mechanical characteristics of fibers extracted from different portions of stalks seemed to indicate an intrinsic heterogeneity of the fibers along the stem. Fiber mean diameter values ranged from 47 to 19 μm and fiber length from 43 to 58 mm moving from stalk bottom to top. Tensile strength of the bottom part of the stalk was much lower than that of the other parts, with mean values of about 24 and 60 cN tex?1, respectively. More constant mean values along the stalk were found for the elongation parameter (2.3–2.6%). Lignin content decreased moving toward the stalk top from about 4.4% to 3.5%.These physical–mechanical characteristics confirmed the potential of the fibers of nettle cultivated in Tuscany to be used for textile purposes. Indeed they were similar to hemp fibers in diameter, lignin content and elongation, and similar to flax or cotton in tensile strength.  相似文献   

11.
《Field Crops Research》2004,89(1):17-25
The pigeonpea (Cajanus cajan (L.) Millsp.) crop retains appreciable amounts of green foliage even after reaching physiological maturity, which if allowed to defoliate, could augment the residual benefit of pigeonpea to the following wheat (Triticum aestivum L.) in a pigeonpea–wheat rotation. The effect of addition of leaves present on mature pigeonpea crop to the soil was examined on the following wheat during the 1999/2000 growing season at Patancheru (17°4′N, 78°2′E) and during the 2001–2003 growing seasons at Modipuram (29°4′N, 77°8′E). At Patancheru, an extra-short-duration pigeonpea cultivar ICPL 88039 was defoliated manually and using foliar sprays of 10% urea (30 kg/ha) and compared with a millet (Pennisetum glaucum (L.) R.Br.) crop, naturally senesced leaf residue and no-leaf residue controls. At Modipuram, the effect of 10% urea spray treatment on mature ICPL 88039 was compared with the unsprayed control. At both locations, the rainy season crops were followed by a wheat cultivar UP 2338 at four nitrogen levels applied in a split plot design, which at Patancheru were 0, 30, 90 and 120 kg N ha−1 and at Modipuram 0, 60, 120 and 180 kg N ha−1. At Patancheru, urea spray added 0.5 t ha−1 of extra leaf litter to the soil within a week without significantly affecting pigeonpea yield. This treatment, however, increased mean wheat yield by 29% from 2.4 t ha−1 in the no-leaf residue pigeonpea or pearl millet plots to 3.1 t ha−1. At Modipuram, the foliar sprays of urea added more leaf litter to the soil than at Patancheru. Here, increase in subsequent wheat yield due to additional pigeonpea leaf litter was 7–8% and net profit 21% more than in the unsprayed control. The addition of pigeonpea leaf litter to the soil resulted in a saving of 40–60 kg N for the following wheat crops in both the environments. The results demonstrated that pigeonpea leaf litter could play an important role in the fertilizer N economy in wheat. The urea spray at maturity of the standing pigeonpea crop significantly improved this contribution in increasing wheat yield, the effect of which was additional to the amount of urea used for inducing defoliation. The practice, if adopted by farmers, may enhance sustainability of wheat production system in an environmentally friendly way, as it could reduce the amount of fertilizer N application to soil and enhance wheat yield.  相似文献   

12.
《Field Crops Research》2005,93(1):94-107
Bangladesh is currently self sufficient in rice (Oryza sativa L.), which accounts for approximately 80% of the total cropped area, and 70% of the cost of crop production. However, farmers are increasingly concerned about the perceived decline in productivity, expressed as the return on fertiliser inputs. Agronomic efficiency is a measure of the increase in grain yield achieved per unit of fertiliser input that can provide a way to quantify the observation of farmers. This study indicates that the yields achieved where only P and K fertiliser were applied ranged from 3–5 t ha−1, indicating good soil fertility, particular in terms of soil N supply (37–112 kg N ha−1). However, at recommended rates and at rates used by farmers, the yield response to application of fertiliser N was low. Data shows that grain yields were significantly correlated in both years (R2 = 0.77 and R2 = 0.67) with plant uptake in nitrogen. The internal nitrogen use efficiency seems to confirm that sink formation was limited by factors other than nitrogen. Low agronomic efficiency (5–19 kg grain kg−1 N) was caused by poor internal efficiency (45–73 kg grain kg−1 N), rather than low supply of soil N or loss of fertiliser N. Thus, often the applications of large amounts of N fertiliser (39–175 kg N ha−1) by farmers to increase yields of high yielding variety Boro rice were not justified agronomically and ecologically. A rate of 39 kg N ha−1 is very low, hardly an environmental threat. No one single factor could be identified to explain the low internal efficiency. Therefore, it is concluded that the data presented tend to confirm the indication that yields are limited by a factor other than nitrogen, which could be crop establishment, plant density, water or pest management, micro-nutrients deficiency, poor seed and transplanted seedling quality, varieties and low radiation.  相似文献   

13.
《Field Crops Research》1999,63(3):187-198
Rice is subjected to excessive waterlogging and flash-flooding on large areas in south and south-east Asia. Besides cultivars, submergence tolerance of plants is influenced by various agronomic practices. A field experiment was conducted at Cuttack, India during 1994–1995 to study the effect of method of stand establishment (direct seeding and transplanting), vigour of seed (low and high-density) or seedlings (N-fertilized and unfertilized), plant population (normal and 50% more) and N fertilizer (single basal and split application) on yield performance of lowland rice under conditions of natural submergence and simulated flash-flooding (impounding up to 90 ± 3 cm depth for 10 days at vegetative stage). Flooding reached a maximum depth of 80 cm in 1994 and 52 cm in 1995 under natural submergence. The crop performance was better in 1994 due to timely sowing in dry soil and delayed accumulation of water (43 days after sowing) than in 1995 when sowing was done late in saturated soil followed by early water accumulation (28 days after sowing). Grain yield of rice decreased by 30.0–33.6% due to simulated flash-flooding compared with natural submergence, and by 21.4–33.1% due to transplanting in July compared with direct seeding in May-end/early June. The yield of direct-sown crop increased by using high-density seed of 22.9–23.0 mg weight (5.2–9.0%), higher seed rate of 600 m−2 (2.2–2.3%) and basal fertilization at 40 kg N ha−1 (19.4–25.7%) compared with low-density seed (19.4–20.1 mg), 400 seed m−2 and no N, respectively. The yield of transplanted crop increased by using N-fertilized seedlings of 0.49–1.65 g weight (29.5–38.5%), higher number of seedlings at 155 m−2 (3.5–16.7%) and basal fertilization at 40 kg N ha−1 (31.9–32.5%) compared with unfertilized seedlings (0.19–0.79 g), 115 seedlings m−2 and no N. Split application of 40 kg N ha−1 — 50% each at basal and top dressing (105–115 days of growth after flash-flooding) — improved yield significantly (10.1–13.1%) over single basal application under simulated flash-flooding, but not under natural submergence conditions. Regression analysis indicated that relative contribution of various factors in increasing grain yield was in order: N fertilizer > seed density > seed m−2 in direct-sown rice, and N fertilizer > seedlings m−2 > seedling dry weight in transplanted rice. It was concluded that grain yield of flood-prone lowland rice can be increased by establishing the crop early through direct seeding using high-density seed and basal N fertilization.  相似文献   

14.
《Field Crops Research》2006,95(1):39-48
The development of perennial cultivars (CVs) of upland rice would give farmers a new tool to reduce soil erosion from hilly fields, thereby mitigating a problem of regional concern in Southeast Asia. Oryza longistaminata is an undomesticated, perennial, rhizomatous relative of domesticated Asian rice (Oryza sativa). Using five sets of 4 × 2 factorial mating designs, we crossed rhizomatous interspecific genotypes (IGs) from an intermated O. sativa/O. longistaminata population with male-fertile IG selections from the intermated population, and with O. sativa CVs. Parents and progeny were planted in an upland field at IRRI using a randomized complete block design and evaluated for rhizome expression, survival after 1 year, vigor of the survivors, and yield. For the IG parents, rhizome expression was variable and penetrance of most genotypes was incomplete, but genotypes that demonstrated the potential for moderate rhizome expression had high penetrance (89% average). The CV parents yielded 11.0 g/plant on average but none produced rhizomes or survived 1 year. The IG parents averaged yields of 3.1 g/plant, 57% rhizomatous and 36% survival. The IG/IG progeny averaged yields of 4.2 g/plant, 32% rhizomatous and 37% survival. The IG/CV progeny averaged yields of 6.0 g/plant, 18% rhizomatous and 16% survival. Nine IG/IG progeny and six IG/CV progeny were rhizomatous, perennial, and yielded at least 5 g/plant, and five of these yielded more than 10 g/plant. For the IG parents and IG/IG progeny, rhizome presence and expression were positively associated with survival and vigor of the survivors. General combining ability effects were significant for percent survival and yield but not percent rhizomatous. Specific combining ability effects were significant for percent rhizomatous, percent survival and yield. By selecting female parents for long rhizomes and male parents for fertility, considerable gains in rhizome expression, survival and yield were made. The development of perennial upland rice CVs should be feasible via introgression of genes from O. longistaminata.  相似文献   

15.
《Field Crops Research》2006,99(1):67-74
An inverse relationship between soybean [Glycine max (L.) Merr.] seed protein and oil concentration is well documented in the literature. A negative correlation between protein and yield is also often reported. The objective of this study was to determine the effect of high rates of N applied at planting on seed protein and oil. Nitrogen was surface-applied at soybean emergence at rates of 290 kg ha−1 in 2002, 310 kg ha−1 in 2003, and 360 kg ha−1 in 2004. Eight cultivars ranging from Maturity Group II–IV were evaluated under the Early Soybean Production System (ESPS). However, not all cultivars were evaluated in all 3 years. Glyphosate herbicide was used in all 3 years and a non-glyphosate herbicide treatment was applied in 2002. Cultivars grown in 2003 were also evaluated under an application of 21.3 kg ha−1 of Mn. All cultivar, herbicide, and Mn treatments were evaluated in irrigated and non-irrigated environments with fertilizer N (PlusN treatment) or without fertilizer N (ZeroN treatment). When analyzed over all management practices (years, cultivars, herbicide, and Mn treatments), the PlusN treatment resulted in a significant decrease in protein concentration (2.7 and 1.9%), an increase in oil concentration (2.2 and 2.7%), and a decrease in the protein/oil ratio (4.7 and 4.6%) for the irrigated and non-irrigated environments, respectively. However, the overall protein and oil yield increased with the application of fertilizer N at planting (protein: 5.0% irrigated, 12.7% non-irrigated and oil: 9.9% irrigated and 18.9% non-irrigated). These increases were due to the increase in seed yield with the application of large amounts of fertilizer at planting. Additionally, a significant correlation (r = 0.45, P = 0.0001) was found between seed protein concentration and seed yield. No significant correlation was found between seed oil concentration and seed yield. The data demonstrate the inverse relationship between protein and oil and indicate that large amounts of N applied at planting do not change this relationship.  相似文献   

16.
《Field Crops Research》2001,70(1):27-41
Many Australian cotton growers now include legumes in their cropping system. Three experiments were conducted between 1994 and 1997 to evaluate the rotational effects of winter or summer legume crops grown either for grain or green manuring on following cotton (Gossypium hirsutum L.). Non-legume rotation crops, wheat (Triticum aestivum) and cotton, were included for comparison. Net nitrogen (N) balances, which included estimates of N associated with the nodulated roots, were calculated for the legume phase of each cropping sequence. Faba bean (Vicia faba — winter) fixed 135–244 kg N ha−1 and soybean (Glycine max — summer) fixed 453–488 kg N ha−1 and contributed up to 155 and 280 kg fixed N ha−1, respectively, to the soil after seed harvest. Green-manured field pea (Pisum sativum — winter) and lablab (Lablab purpureus — summer) fixed 123–209 and 181–240 kg N ha−1, respectively, before the crops were slashed and incorporated into the topsoil.In a separate experiment, the loss of N from 15N-labelled legume residues during the fallow between legume cropping and cotton sowing (5–6 months following summer crops and 9 months after winter crops) was between 9 and 40% of 15N added; in comparison, the loss of 15N fertilizer (urea) applied to the non-legume plots averaged 85% of 15N added. Little legume-derived 15N was lost from the system during the growth of the subsequent cotton crop.The improved N fertility of the legume-based systems was demonstrated by enhanced N uptake and lint yield of cotton. The economic optimum N fertilizer application rate was determined from the fitted N response curve observed following the application of N fertilizer at rates between 0 and 200 kg N ha−1 (as anhydrous ammonia). Averaged over the three experiments, cotton following non-legume rotation crops required the application of 179 kg N ha−1, whilst following the grain- and green-manured legume systems required only 90 and 52 kg N ha−1, respectively.In addition to improvements in N availability, soil strength was generally lower following most legume crops than non-legume rotation crops. Penetrometer resistance during the growth of the subsequent cotton crop increased in the order faba bean, lablab, field pea, wheat, cotton, and soybean. It is speculated that reduced soil strength contributed to improvement in lint yields of the following cotton crops by facilitating the development of better root systems.  相似文献   

17.
Agricultural intensification through the application of mineral fertilizers, the recycling of crop residues and animal manures and through plant breeding are the only means to increase food supply in the poverty ridden West African Sahel, where pearl millet (Pennisetum glaucum (L.) R. Br.) is the dominant staple. Research on the effects of soil amendments on the quality of millet straw and grain is scarce, comparative studies of possible quality differences in traditional landraces versus improved varieties and hybrids are lacking. This paper reports results from 22 landrace populations, 22 improved varieties, six inbred×variety hybrids (IVHs, fertile inbred×open-pollinated varieties) and four topcross hybrids (TCHs, male-sterile line×open-pollinated varieties), whose grains were analyzed for protein concentration and amino acid composition, macro- and micronutrients (total and phytate P, K, Ca, Mg, Zn, Cu), metabolizable energy (ME), fat and β-carotene. At similar yield levels, landraces showed a 2.9 and 3.5% higher protein concentration compared with improved varieties and hybrids without a detrimental effect on protein quality as determined by the relative amount of lysine and threonine. Landrace populations also had the highest fat concentrations and the largest micronutrient densities. However, in-vitro digestibility and ME were (79.8% and 12.2 MJ kg−1 respectively) larger for both groups of hybrids. The concentration of β-carotene was (0.13 μmol kg−1) highest in the improved varieties, but appeared overall too low to significantly contribute to vitamin A nutrition in local diets. While the results of this genotype screening need to be verified in replicated multi-location trial studies, they underline the potential of including landraces in breeding programs to concurrently improve grain yield and grain quality in this area of the world.  相似文献   

18.
《Field Crops Research》2006,95(1):64-74
This paper explores the soil responses to alfalfa that is established using a field micro-catchment technique to harvest water under semiarid conditions. The field micro-catchment technique involved setting up ridges and furrows alternately on the flat land. The ridges served as the rainfall harvesting zone and the furrows as the planting zone. Five treatments were set up in this study: (1) conventional cultivation in a flat plot without mulch (CK), (2) plastic mulched ridge with 30 cm width of ridge and furrow (M30), (3) plastic mulched ridge with 60 cm width of ridge and furrow (M60), (4) bare ridge with 30 cm width of ridge and furrow (B30), (5) bare ridge with 60 cm width of ridge and furrow (B60). The mulching treatments increased the productivity of seeded alfalfa and significantly (p < 0.05) increased water use efficiency, causing the soil organic carbon (SOC), total soil nitrogen (TSN) and C/N ratio to increase. We also found that the alfalfa root system was very good at breaking up the plowing pan created by many years of tillage. In the M30 and M60 treatments, the total forage yield during the 3 years was higher than in CK by 10.7% and 40.3% respectively, whereas the total forage yield over the 3 years in the B30 and B60 treatments were lower than in the CK treatment by 14.2% and 28.3%, respectively. The water use efficiency in the mulching treatment was significantly higher than in the other treatments. After 3 years (2001–2003), the SOC content in ridge and furrow treatments (M30, M60, B30 and B60) was increased by 7.4%, 14.2%, 4.5% and 1.8%, respectively, contrasting with a decrease of 3.5% in the CK treatment. The increase in SOC positively correlated (R2 = 0.6257) with the forage yield of alfalfa in the ridge and furrow treatments. The TSN for CK, M30, M60, B30 and B60 increased by 0.35%, 1.70%, 2.30%, 0.75% and 0.64%, respectively by the end of the 3 years. However, we found that the available phosphorus (P) in the mulch treatments during the 3-year period decreased rapidly indicating that it is necessary to apply P fertilizer to alfalfa-cultivated land under these management conditions. In conclusion, the ridge and furrow with mulch treatments, especially M60 treatments, proved to be a better pattern for alfalfa establishment, soil quality and nutrient cycling under semiarid conditions.  相似文献   

19.
《Field Crops Research》2004,85(2-3):213-236
Three different experiments were designed to study the effects of N fertilizer rate, timing and splitting, and the response to combined application of N and S fertilizer on the bread-making quality of hard red spring wheat (Triticum aestivum L.) over a 3-year period in Vertisols under rainfed Mediterranean conditions. The following parameters were analyzed: grain yield, test weight, grain protein content, gluten index and alveograph parameters (W: alveogram index; P: dough tenacity; L: dough extensibility; P/L: tenacity–extensibility ratio). The N rate experiment included rates of 0, 100, 150 and 200 kg N ha−1 applied on four different sites. The experiment was designed as a randomized complete block with four blocks. For the experiment on N timing and splitting, a single rate of 150 kg N ha−1 was used, different fractions being applied at sowing, tillering and stem elongation, at a single site; again, experimental design was a randomized complete block with four blocks. Finally, for the experiment on the response to combined application of N and S fertilizer, a single fertilizer dose of 150 kg N ha−1 was applied in two forms (urea+ammonium nitrate and urea+ammonium nitrosulfate) with one leaf application at ear emergence (zero, 25 kg S ha−1, 25 kg N ha−1, 25kgSha−1+25 kg N ha−1 and 50 kg N ha−1), also at a single site, using a split-plot design with four replications. Year-on-year variation in rainfall led to marked variations in wheat yield, grain protein content and bread-making quality indices. A close correlation was observed between rainfall over the September–May period and both grain yield and grain protein content (optimum values for both being recorded in the rainfall range 500–550 mm) as well as the alveogram index. A negative correlation was observed between mean maximum temperatures in May and both test weight and alveogram index (W). N fertilizer rate had a more consistent effect on bread-making quality than on grain yield. The highest values for grain yield were recorded at an N rate of 100 kg ha−1, while maximum grain protein content values were recorded at 150 kg ha−1. Application of half or one-third of total fertilizer N at stem elongation improved grain yield and grain protein content with respect to applications at sowing alone or at both sowing and tillering. Increased N rates led to a considerable increase in W values and to a reduction in the P/L ratio, thus improving dough balance, with a negative effect on the gluten index. Leaf application of N at ear emergence only affected grain protein content and the W index. Soil or leaf application of S had no effect on protein quality indices. The response of grain yield and grain protein content to fertilizer N differed from that reported for temperate climates.  相似文献   

20.
《Field Crops Research》2001,71(3):159-171
The burgeoning poultry industry in the southeastern US is presenting a major environmental problem of safe disposal of poultry litter (PL). In a comprehensive study, we explored ways of PL use in conservation tillage-based cotton (Gossypium hirsutum L.) production systems on a Decatur silt loam soil in north Alabama, from 1996 to 1999. The study reported here-in presents the residual effects of PL applied to cotton in mulch-till (MT) and no-till (NT) conservation tillage systems in 1997 and 1998 cropping seasons on N uptake, growth, and yield of rye (Secale cereale, L.) cover crop and rotational corn (Zea mays L.) in 1999. Rye was grown without additional N, whereas corn was grown at three inorganic N levels (0, 100, and 200 kg N ha−1). Poultry litter was applied to cotton in 1997 and 1998 at 0, 100, and 200 kg N ha−1. Residual N from PL applied to cotton in 1997 and 1998 produced up to 2.0 and 17.3 Mg ha−1, respectively, of rye cover crop and corn biomass (includes 7.1 Mg ha−1 of corn grain yield) without additional fertilizer. Therefore, in addition to supplying crop residues which reduce soil erosion, increase soil organic matter, and conserve soil moisture, the rye cover crop was able to scavenge residual N left by the cotton crop, which would otherwise, be at risk of being leached and pollute groundwater resources. Poultry litter applied to cotton also increased corn grain quality as shown by up to 100% increase in grain N content compared to the 0N treatment. Using PL with a slower rate of N release compared to inorganic fertilizer to meet some of the N requirements of corn, will not only reduce N fertilizer costs for corn, but will also reduce the risk of nitrate N leaching into groundwater. The maximum amount of crop residues added to the cotton based cropping system by residual N from PL and inorganic N was 21.3 Mg ha−1. This will lead to an increase in soil organic carbon and soil structure in the long term and a reduction in soil erosion, thereby further improving soil productivity, while at the same time, protecting the environment from nitrate pollution and soil degradation. Our study demonstrates that cotton under conservation tillage system in combination with rye cover crop and rotational corn cropping could use large quantities of PL thereby avoiding serious potential environmental hazards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号