首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Field Crops Research》2006,96(1):106-112
Improvement of rice (Oryza sativa L.) plant type is a major breeding objective. This study aimed to precisely localize and characterize key genomic regions for plant type using near-isogenic individuals. Selfing of partially heterozygous F5 recombinant inbred (RI) individuals [parental varieties Milyang 23 (M23) and Akihikari (AK)] developed heterogeneous inbred families (HIFs) composed of 108 and 93 F7 progenies, which segregated at molecular marker loci on the long arms of chromosomes 4 and 6, respectively. The progeny lines (F8) were evaluated for traits composing plant type in Los Baños, Philippines, to locate quantitative trait loci (QTLs) using interval mapping and to evaluate the effects of the QTL region by phenotypic comparison between the genotypes. QTLs for the traits were detected in 17 cM across XNpb12 on chromosome 6. The M23 homozygote for the QTL region resulted in a >7% increase and decrease in plant length and tiller number at heading, respectively, relative to the AK homozygote. Consequently, culm length (CL) and traits determining flag-leaf and panicle sizes increased 5–56% by the M23 homozygote, together with a 15% decrease in panicle number. For a QTL region detected in 6 cM across XNpb235 on chromosome 4, the AK homozygote had similar effects on these traits, except CL. The directions and magnitudes of their effects agreed with those previously estimated in the RI line population, thus increasing confidence in primary QTL analyses for plant type. Analyzing the HIFs validated and characterized the two QTL regions greatly involved in determining varietal plant type from an early growth stage to maturity, providing information useful for empirical and marker-assisted breeding towards rice improvement.  相似文献   

2.
In rainfed lowland rice ecosystem, rice plants are often exposed to alternating recurrences of waterlogging and drought due to erratic rainfall. Such soil moisture fluctuation (SMF) which is completely different from simple or progressive drought could be stressful for plant growth, thereby causing reduction in yield. Root plasticity is one of the key traits that play important roles for plant adaptation under such conditions. This study aimed to evaluate root plasticity expression and its functional roles in dry matter production and yield under SMF using Nipponbare, KDML 105 and three backcross inbred lines (BILs) and to identify QTL(s) associated with root traits in response to SMF at two growth stages using Nipponbare/KDML105 F2 plants. A BIL, G3-3 showed higher shoot dry matter production and yield than Nipponbare due to its greater ability to maintain stomatal conductance concomitant with greater root system development caused by promoted production of nodal and lateral roots under SMF. QTLs were identified for total nodal root length, total lateral root length, total root length, number of nodal roots, and branching index under SMF at vegetative and reproductive stages. The QTLs detected at vegetative and reproductive stages were different. We discuss here that relationship between root system of G3-3 and the detected QTLs. Therefore, G3-3 and the identified QTLs could be useful genetic materials in breeding program for improving the adaptation of rice plants in target rainfed lowland areas.  相似文献   

3.
Deep rooting is an important trait in rice drought resistance. Genetic resources of deep-rooting varieties are valuable in breeding of water-saving and drought-resistant rice. In the present study, 234 BC2F7 backcross introgression lines were derived from a cross of Dongye 80 (an accession of Dongxiang wild rice as the donor parent) and R974 (an indica restorer line as the recurrent parent). A genetic linkage map containing 1 977 bin markers was constructed by ddRADSeq for QTL analysis. Thirty-one QTLs for four root traits (the number of deep roots, the number of shallow roots, the total number of deep roots and the ratio of deep roots) were assessed on six rice chromosomes in two environments (2020 Shanghai and 2021 Hainan). Two of the QTLs, qDR5.1 and qTR5.2, were located on chromosome 5 in a 70-kb interval. They were detected in both environments. qDR5.1 explained 13.35% of the phenotypic variance in 2020 Shanghai and 12.01% of the phenotypic variance in 2021 Hainan. qTR5.2 accounted for 10.88% and 10.93% of the phenotypic variance, respectively. One QTL (qRDR2.2) for the ratio of deep roots was detected on chromosome 2 in a 210-kb interval and accounted for 6.72% of the phenotypic variance in 2020. The positive effects of these three QTLs were all from Dongxiang wild rice. Furthermore, nine and four putative candidate genes were identified in qRDR2.2 and qDR5.1/qTR5.2, respectively. These findings added to our knowledge of the genetic control of root traits in rice. In addition, this study will facilitate the future isolation of candidate genes of the deep-rooting trait and the utilization of Dongxiang wild rice in the improvement of rice drought resistance.  相似文献   

4.
The identification of markers linked to genes contributing to drought resistance promises opportunities to breed high yielding rice varieties for drought prone areas. Several studies using different mapping populations have previously identified quantitative trait loci (QTLs) for traits theoretically related to drought resistance. A mapping population of 176 F6 recombinant inbred lines (RILs) derived from two upland rice varieties with contrasting aboveground drought avoidance traits (Bala and Azucena) with a linkage map of 157 markers was used to map QTLs for aboveground leaf morphological and physiological traits related to drought avoidance. Plants were grown for 6 weeks under controlled environmental conditions with three replications. Leaves were excised and placed on a balance. The rate of leaf rolling and water loss was recorded, after which leaf area, dry weight and specific leaf area were characterized. A simple method of estimating time to stomatal closure was employed. A total of 13 QTLs were detected for leaf morphological traits, three for initial transpiration and four for the proportion of water loss required to reach a specific advanced state of leaf rolling. No QTLs were detected for time of stomatal closure or speed of leaf rolling, nor for either water loss or transpiration at stomatal closure despite clear parental differences and moderate heritabilities in most of these traits. The co-location of QTLs for traits measured here and for drought avoidance previously reported from field experiments on chromosome 1, 3 and 5 link the genetics of drought resistance to leaf dimensions and physiology. However, a physiological explanation for a QTL for drought avoidance on chromosome 7 remains elusive.  相似文献   

5.
水稻胚芽鞘长度与抗旱性的关系及QTL定位   总被引:8,自引:0,他引:8  
对由水稻品种珍汕97B和旱稻品种IRAT109构建的重组自交系195个株系的胚芽鞘长度及抗旱系数的研究表明,水分胁迫下水稻重组自交系群体的胚芽鞘长度与抗旱系数的相关系数为0.2206**。应用由213个SSR标记构建的遗传连锁图对控制胚芽鞘长度和抗旱系数的QTL进行了定位。检测到胚芽鞘长度和抗旱系数的主效QTL各为13个和5个,单个QTL对表型的贡献率为2.28%~22.65%;在第9染色体上两者的QTL出现在相同的分子标记区间(RM160-RM215)。检测到胚芽鞘长度和抗旱系数的互作位点分别为17对和3对,影响胚芽鞘长度的互作位点联合贡献率为5835%;影响抗旱系数的互作位点联合贡献率为11.93%。控制胚芽鞘长度和抗旱系数的QTL分别与其他研究中控制根系性状(深根干质量、根深、根长、根数等)的QTL位于相同的标记区间。  相似文献   

6.
《Field Crops Research》2006,95(2-3):171-181
The importance of root systems in acquiring water has long been recognized as crucial to cope with drought conditions. This investigation was conducted to: (i) evaluate the variability on root length density (RLD) of chickpea in the vegetative growth stage; (ii) estimate the effect of RLD on seed yield under terminal drought conditions; and (iii) set up a procedure to facilitate the screening of chickpea genotypes with large RLD. Twelve diverse chickpea genotypes were grown in tall PVC cylinders with two different soil water treatments in 2000 and 2001, and in field under water deficit conditions during 2000/2001 and 2001/2002. In field trials, the mean RLD at 35 days after sowing showed a significant positive correlation with seed yield in both years. Similarly, the RLD in the 15–30 cm soil depth had significant positive effects to the seed yield in both years. The importance of the root trait was particularly relevant in 2001/2002, a more severe drought year, when the RLD in deeper soil layer, 30–60 cm depth, showed a significant positive relationship with seed yield. Also, the RLD at deeper soil layer, 30–60 cm depth, was higher in 2001/2002 than in 2000/2001, in particular in tolerant genotypes. The PVC cylinder trials were set up to facilitate the screening of chickpea genotypes with large RLD. RLD of plants grown in cylinders with 70% field capacity was correlated with RLD in the field trials (r = 0.731; p = 0.01). This work highlights the importance of roots in coping with terminal drought in chickpea. The cylinder system offers a much easier procedure to screen chickpea genotypes with large RLD.  相似文献   

7.
Genetically improved crops with higher water productivity help maintaining and increasing agricultural production in drought-prone areas. Their development involves, as in the case of maize, selection for high grain yield and improved secondary traits. With the objective of better understanding the role and regulation of the morphology of drought adaptation, a recombinant inbred line (RIL) population of tropical maize (Zea mays L.) was evaluated in six field experiments under intermediate (IS) and severe (SS) drought stress at flowering and under well-watered (WW) conditions in Mexico. The analyses per water regime revealed 32 quantitative trait loci (QTLs) for the five measurements of relative content of leaf chlorophyll (CL), 25 for the five visual ratings of plant senescence (SEN), and 11 for the three measurements of electric root capacitance (RCT). Impressive clusters of QTLs were observed on chromosomes 2 (bins 2.03-05), 4 (bin 4.09), and 10 (bins 10.04-05), suggesting that a small number of genes control chlorophyll metabolism and plant senescence. The high CL and low SEN of the drought resistant parent are aspects of its high water productivity resulting from improved constitutive traits. Co-locations of QTLs for CL, SEN and RCT with QTLs for plant height (PHT), the anthesis-silking interval (ASI), and grain yield (GY) were observed in bins 1.06-07, 8.06, and 4.09 but not for the large QTL clusters on chromosomes 2 and 10, suggesting independent genetic control of reproductive traits. Still, the phenotypic data showed that high CL and low SEN were favorable for grain yield production under drought, while delayed SEN was associated with higher grain yield under WW conditions. CL and SEN are suitable to complement selection for drought tolerance in order to sustain future breeding progress.  相似文献   

8.
《Field Crops Research》2001,71(1):57-70
Rice accessions from the International Rice Research Institute (IRRI) germplasm bank were evaluated for root traits of 40-day-old plants grown in soil in the greenhouse. The 136 accessions represented six groups defined on the basis of isozyme classification, with isozyme group six further subdivided on the basis of origin and morphology. An additional 28 rice cultivars were evaluated for seminal root xylem vessel diameter when grown in pots in a growth chamber. Rice groups differed in root thickness, root xylem vessel diameter, root:shoot ratio, and patterns of root distribution. Isozyme group 1, which corresponds generally to the indica subspecies, had thin, superficial roots with narrow vessels and a low root:shoot ratio. The other major isozyme group, group 6, comprising japonica types, was characterized by thick roots with wider vessels, a greater proportion of the root weight below 15 cm, and a larger root:shoot ratio. On an average, the bulu and temperate group 6 accessions were similar to the non-bulu types except that their root:shoot ratios and proportion of root weight above 15 cm were more similar to group 1. Group 2, with aus types from South Asia, was characterized by intermediate root thickness, but vertical root distribution and root:shoot ratio were more similar to group 6. The minor isozyme groups 3–5 were represented by few accessions, and in general, they had root thickness and root distribution profiles more similar to group 1 than to group 6. While significant differences were observed among isozyme groups for all the traits under study, there was significant variation within groups and groups overlapped for all traits measured. This study highlights the wide range of variability for constitutive root traits in rice. For example, root thickness ranged from 0.68 to 1.04 mm, seminal root xylem vessel diameters from 30 to 58 μm, root:shoot ratios from 0.05 to 0.21, and accessions had from 44 to 73% of the total root weight concentrated in the surface 15 cm of soil. For the 28 cultivars evaluated, root xylem vessel diameter was highly correlated with reported values of leaf epicuticular wax content (r=0.89). These values indicate the range of genetic variation within the rice genome for root morphological traits.  相似文献   

9.
A mapping population of 114 lines from Bala × Azucena was grown under drought stress at two field sites with contrasting soil physical properties. Drought was imposed between 35 and 65 days after sowing (DAS) and root density at 35 cm depth was measured 70 DAS. Leaf rolling, leaf drying and relative water content were recorded as indicators of drought avoidance. Root density correlated with indicators of drought avoidance. Two significant and two putative quantitative trait loci (QTLs) for root density and 28 QTLs for drought avoidance were identified. Most QTLs did not agree between sites. There was also reasonable agreement between leaf-drying QTLs and previously reported root-growth QTLs detected under controlled conditions (in contrast to a previous screen on soil with a higher penetration resistance). These data also reveal QTL × environment interaction, which will need to be understood more clearly if progress towards breeding for drought resistance via alterations of root morphology is to be achieved.  相似文献   

10.
栽培稻抗旱性研究的现状与策略   总被引:87,自引:4,他引:87  
 水资源短缺正成为制约我国农业发展的重要因素。培育抗旱的栽培稻品种并实现水稻旱作,不但可在很大程度上节约水资源,而且有利于增产稳产,节约能源和减少环境污染。抗旱性包括逃旱性、避旱性、耐旱性和复原抗旱性。形态生理学的研究揭示出大量的与栽培稻抗旱性有关的形态特征和生理特性,如根系和叶片性状、生育期、渗透调节、脱落酸含量与栽培稻抗旱性密切相关,且已利用分子标记对上述性状进行了基因定位(QTL)研究。旱稻品种改良也已取得重大进展。在进行抗旱品种改良的基础上,通过引进相应的栽培技术,节水种植,实现水稻旱作,并达到稳产与增产的目的,是抗旱性研究的战略目标。在增产、稳产和优质的前提下,以培育耐旱性极强的水稻(或旱稻)为中心,建立有代表性的抗旱性研究基地, 进一步加强稻属抗旱基因资源的发掘和创新、抗旱生理学和遗传学的研究、利用现代生物技术实现不同物种间抗旱基因的转移、建立节水种植栽培技术新体系是目前抗旱性研究的主要内容。  相似文献   

11.
《Field Crops Research》2006,95(2-3):355-366
Nitrogen (N) demand of soybean [Glycine max (L.) Merrill] can be supplied via biological nitrogen fixation (BNF), however, higher yielding cultivars increase plant demand for N. Phenotypes differing for traits associated with biological nitrogen fixation result from the expression of the multiple genes of both the host plant and the microsymbiont, but limited studies have been done on the genetics of the soybean BNF. Integrated maps of soybean with simple sequence repeat (SSR) markers [Cregan, P.B., Jarvik, T., Bush, A.L., Shoemaker, R.C., Lark, K.G., Kahler, A.L., Kaya, N., Van Toai, T.T., Lohnes, D.G., Chung, J., Specht, J.E., 1999. An integrated genetic linkage map of the soybean genome. Crop Sci. 39, 1464–1491.] offer an excellent opportunity for the identification of traits related to BNF. This study aimed at the identification of quantitative trait loci (QTLs) controlling BNF and nodulation in an F2 population of 160 plants derived from an intraspecific cross between two Brazilian cultivars, Embrapa 20 × BRS 133, previously identified as having good potential for mapping of QTLs [Nicolás, M.F., Arias, C.A.A., Hungria, M., 2002. Genetics of nodulation and nitrogen fixation in Brazilian soybean cultivars. Biol. Fertil. Soils 36, 109–117.]. From 252 SSR markers tested in the parental genotypes 45 were polymorphic with high heterozygotes resolution. Mapping was performed with those 45 SSR markers for nodulation [nodule number (NN) and nodule dry weight (NDW)] and plant growth [shoot dry weight (SDW)] phenotypes in F2:3 lines. A total of 21 SSR loci were mapped with a likehood of odds (LOD) value of 3.0 and a maximum Haldane distance of 50 cM, and were distributed in nine linkage groups with coverage of 251.2 cM. The interval mapping analysis with Mapmaker/QTL revealed two genomic regions associated with NN and NDW, with a contribution of putative QTLs of 7.1 and 10%, respectively. The regression analysis identified 13 significant associations between the marker loci and QTLs due to additive effects, with some of them being significantly associated with more than one phenotypic trait. Effects were observed in all variables studied, ranging from 2 to 9%. A one-way analysis of variance (ANOVA) also detected 13 significant associations, related to dominance effects. A two-way-ANOVA showed six epistatic interactions among non-linked QTLs for SDW, NN and NDW, explaining up to 15% of the trait variation and increasing the phenotypic expression from 8 to 28%. The data obtained in this work establish the initial stage for additional studies of the QTLs controlling BNF and indicate that effective marker-assisted selection using SSR markers may be feasible for enhancing BFN traits in soybean breeding programs.  相似文献   

12.
Rainfed lowland rice fields are characterized by soil moisture fluctuations (SMF) and the presence of hardpan that impedes deep rooting and thus limits water extraction from deep soil layer during the periods of drought. In this study, we used rootboxes with three layers; shallow layer, artificial hardpan, and deep and wet layer below the hardpan, to evaluate differences in the plasticity of nodal roots elongation through the hardpan and promote root branching below the hardpan in response to SMF among four rice varieties; Sasanishiki, Habataki, Nipponbare, and Kasalath. Experiments were conducted during the summer and autumn seasons. Plasticity was computed as the difference in root traits within each variety between the SMF and continuously well-watered treatments. In both experiments, Habataki consistently tended to exhibit higher root plasticity than the other three varieties by increasing number of nodal roots that penetrated the hardpan during rewatering period in SMF, when the soil moisture increased and penetration resistance decreased. This root plasticity then contributed to greater water use at the deeper soil during the subsequent drought period and overall shoot dry matter production. Habataki had significantly higher δ13C value in roots at deep layer than roots at the shallow and hardpan layers under SMF, which may indicate that these were relatively newly grown roots as a consequence of root plasticity. This study also indicates that CSSLs derived from Sasanishiki and Habataki varieties may be suitable for the analysis of QTLs associated with root plasticity expression in rainfed lowland with hardpan and experiencing SMF.  相似文献   

13.
To improve efficiency of soil N and water use in the savanna, maize (Zea mays L.) cultivars with improved root systems are required. Two rainfed field experiments were conducted in Samaru, Nigeria in the 1993 and 1994 growing seasons with five maize cultivars under various rates of nitrogen fertilizer. The capacity of maize for rapid early root growth and to later develop a deep, dense root system was assessed. In addition, the effect of N fertilization on root growth of maize was studied in 1994. The widely cultivated cultivar TZB-SR had a poor root system in the surface soil layer and was more susceptible to early-season drought, as indicated by low plant vigor and aboveground dry matter yield during that time. It had a lower grain yield and a relatively small harvest index, but ranked among the highest in total aboveground dry matter production compared to other cultivars. The size of root system alone did not always relate well with grain yield among cultivars. Partitioning of dry matter within the plant was important in determining differences in grain yield and N stress tolerance between cultivars. A semiprolific cultivar (SPL) had high seedling vigour and a dense root system in the surface soil layer that conferred a greater tolerance to early-season drought stress and improved uptake of the early-season N flush, as indicated by a greater dry matter yield at 35 days after sowing (DAS). It also had a fine, deep, dense root system at flowering that could have improved water- and N-use efficiency in the subsoil (> 45 cm), thereby avoiding midseason drought stress in 1994. SPL had a large harvest index and the greatest yield among cultivars in 1994. Averaged across cultivars, greater root growth and distribution was observed at a moderate N rate of 0.56 g plant−1 than at zero-N or high N (2.26 g plant−1). Differences in root morphology could be valuable as selection criteria for N-efficient and drought-tolerant maize.  相似文献   

14.
PEG模拟干旱胁迫下甘蓝型油菜的根系特性与抗旱性   总被引:4,自引:0,他引:4  
采用砂培法,利用14%(m/V)聚乙二醇(PEG-6000)模拟干旱胁迫,研究39份甘蓝型油菜发芽期根系性状的变化及其与抗旱性的关系。结果表明,干旱胁迫对油菜根鲜重和侧根数有明显的抑制作用,而对根长和根冠比的影响较小。相关分析表明,相对侧根数与活力指数之间以及根长与活力指数之间均呈显著正相关,可作为抗旱性鉴定的辅助指标。杂交种和常规种在根系性状上差别不显著,表明其抗旱能力相当。对油菜的抗旱性进行综合评价和聚类分析发现,在欧式距离为60时39份材料可分为5个类群,其中A类抗旱性最强,平均相对侧根数77.9%,相对根长98.9%;E类抗旱性最差,平均相对侧根数69.3%,相对根长84.5%。筛选出发芽期抗旱性较强的3份材料:OR918、OR805和OR2025。    相似文献   

15.
水稻是我国主要粮食作物之一,整个生长阶段对水分的需求远远大于其它作物。然而随着极端气候以及水资源短缺的影响,干旱已经成为造成农作物产量损失最大的非生物胁迫。全面详细地了解水稻抗旱研究相关内容,有助于抗旱水稻品种的培育。本综述从水稻抗旱筛选方法、筛选指标、干旱胁迫条件下产量及其产量相关性状QTL发掘以及抗旱基因的克隆和应用进行论述,并对水稻抗旱品种的培育进行展望。   相似文献   

16.
Identification of genetic factors controlling traits associated with seed germination under drought stress conditions, leads to identification and development of drought tolerant varieties. Present study by using a population of F2:, derived from a cross between a drought tolerant variety, Gharib (indica) and a drought sensitive variety, Sepidroud (indica), is to identify and compare QTLs associated with germination traits under drought stress and non-stress conditions. Through QTL analysis, using composite interval mapping, regarding traits such as germination rate (GR), germination percentage (GP), radicle length (RL), plumule length (PL), coleorhiza length (COL) and coleoptile length (CL), totally 13 QTLs were detected under pole drought stress (-8 MPa poly ethylene glycol 6000) and 9 QTLs under non-stress conditions. Of the QTLs identified under non-stress conditions, QTLs associated with COL (qCOL-5) and GR (qGR-1) explained 21.28% and 19.73% of the total phenotypic variations, respectively Under drought stress conditions, QTLs associated with COL (qCOL-3) and PL (qPL-5) explained 18.34% and 18.22% of the total phenotypic variations, respectively. A few drought-tolerance-related QTLs identified in previous studies are near the QTLs detected in this study, and several QTLs in this study are novel alleles. The major QTLs like qGR-1, qGP-4, qRL-12 and qCL-4 identified in both conditions for traits GR, GP, RL and CL, respectively, should be considered as the important and stable trait-controlling QTLs in rice seed germination. Those major or minor QTLs could be used to significantly improve drought tolerance by marker-assisted selection in rice.  相似文献   

17.
大豆底荚高度QTL定位及候选基因挖掘   总被引:1,自引:0,他引:1  
底荚高度是衡量大豆品种是否适宜机械收获的关键指标。底荚高度较低的品种在机械收割过程中可能造成植株部分被切断或漏割,引起总产量损失。因此,大豆底荚高度候选基因对大豆机械化育种至关重要。本研究利用完备区间作图法(Inclusive Composite Interval Mapping, ICIM)对208染色体片段代换系群体(chromosome segment substitution lines, CSSL)进行大豆底荚高度QTL定位,获得9个与大豆底荚高度相关的QTL,分布在8条连锁群上。结合BSA重测序结果,将与大豆底荚高度相关的QTL定位到C1连锁群上1.1Mb和L连锁群上0.05Mb的区间内,并对其进行基因注释。通过基因注释数据库和信息学分析,在两个共识QTL区间内获得5个可能与大豆底荚高度相关的候选基因。这些结果可以为大豆底荚高度QTL精细定位以及机械化优质高产大豆品种的选育提供理论依据。  相似文献   

18.
Malt extract is one of the major traits contributing to high malting quality and thus a major objective in malting barley breeding programs. Understanding the genetic behaviour of this trait could make selection more efficient. However, the measurement of this trait is very time-consuming and cannot be done in a single plant since it needs a certain amount of grain. In this paper, 10 different varieties with different malting quality were selected to make two 6 × 6 half-diallel crosses for the purpose of studying the genetic behaviour of flour pasting properties, in particular pasting temperature which has been shown to be closely related with malt extract. The pasting properties were measured with a Rapid ViscoAnalyser. Both Australian malting varieties showed significantly higher general combining ability for lower pasting temperature (higher malt extract). The Japanese malting variety also appeared to be a good parent for lower pasting temperature. All the other feed varieties which are used in the breeding programs for improving waterlogging tolerance or salinity tolerance showed significantly higher pasting temperature. Since specific combining ability was not significant, the selection of parents when breeding for pasting temperature can be based on the pasting temperature of the parents. Combined with the fact that only a small amount of grain is needed for the measurement of pasting temperature, the selection can be made in early segregating generations. Preliminary study showed that a major QTL associated with pasting temperature was located on chromosome 7H, indicating the possibility of marker assisted selection for this trait.  相似文献   

19.
By using a set of recombinant inbred line(RIL)population involving in 195 lines derived from a cross of Zhenshan 97B (lowland variety)and IRAT109(upland variety),the correlation analysis between coleoptile length(CL)and drought resistance index (DRI)and their QTL identification were conducted.There existed a significantly positive relationship between CL and DRI with the correlation coefficient of 0.2206**under water stress conditions.Under normal and water stress conditions,a total of eleven and four QTLs for CL and DRI,respectively,were detected on chromosomes 1,2,4,5,6,7,9,11 and 12 by using a linkage map including 213 SSR markers,which explained 4.84%to 22.65%of phenotypic variance.Chromosomes 1 and 9 possessing the QTLs for DRI harbored simultaneously QTLs for CL,and qCL9 shared the same chromosome location with qDRI9(RM160-RM215).Comparing the QTLs related to drought resistance in other studies,QTLs for CL and DRI were located in the same or adjacent marker interval as those related to root traits,such as number,dry weight,depth,and length of root.Moreover,sixteen and three pairs of epistatic loci for CL and DRI were found,which accounted for 56.17%and 11.93%of the total variation in CL and DRI,respectively.  相似文献   

20.
Early vigour is an important characteristic for direct-seeded rice systems. The genetic control of early vigour was studied using a population of 129 backcross lines derived from a cross between Vandana, an improved indica, and Moroberekan, a traditional japonica. Screening was conducted under controlled conditions in greenhouse and field conditions, and indicators of early vigour, including shoot length, shoot biomass, leaf area, number of roots, root biomass, partitioning coefficients, and growth rates, were measured. Phenotypic correlations suggested that traits that were related and combined could be used to define early vigour. Broad-sense heritability ranged from moderate to high. Many regions were identified containing more than one QTL, suggesting that these traits were controlled by pleiotropic and/or closely linked QTLs. Many QTLs were specific to one environment but G × E interaction analysis showed that the main effects of the environment were large. Differences in temperature between experiments resulted in large differences in seedling age when expressed in thermal time. Different genes (QTLs) may be expected to control growth at different time intervals and thus may partly explain the limited agreement between experiments. However, several regions showed co-location of QTLs from more than one experiment. Comparisons with published studies revealed that these regions were previously identified in different genetic backgrounds and could potentially be used as introgression targets in a marker-assisted breeding program to improve germplasm for direct-seeded environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号