共查询到20条相似文献,搜索用时 0 毫秒
1.
Houshang Ghamarnia Mohsen Golamian Saloome Sepehri Issa Arji Samera Norozpour 《Irrigation Science》2013,31(3):285-299
Lysimetric experiments were conducted to determine the contribution made by groundwater to the overall water requirements of safflower (Carthamus tinctorius L.). The plants were grown in 24 columns, each having a diameter of 0.40 m and packed with silty clay soil. The four replicate randomized complete block factorial experiments were carried out using different treatment combinations. Six treatments were applied during each experiment by maintaining groundwater, with an EC of 1 dS m?1, at three different water table levels (0.6, 0.8 and 1.10 m) with and without supplementary irrigation. The uptake of groundwater as a part of crop evapotranspiration was measured by taking daily readings of the water levels found in Mariotte tubes. The supplementary irrigation requirement for each treatment was applied by adding water (EC of 1 dS m?1). The average percentage contribution from groundwater for the treatments (with and without supplementary irrigation under water table levels of 0.6, 0.8 and 1.10 m) were found to be 65, 59, 38% and 72, 70, 47% of the average annual safflower water requirement (6,466 m3 ha?1). The increase in groundwater depths under supplementary irrigation treatments from 0.6 to 0.80 and 1.10 m caused seed and oil yield reductions of (7, 23.10%) and (48.23, 65.40%), respectively. 相似文献
2.
Two-year lysimeter experiments were conducted to determine groundwater contributions by safflower (Carthamus tinctorius L.)
crop. The plants were grown in twenty columns each with a diameter of 0.40 m packed with Silty Clay soil. The experiments
were carried out in a complete randomized blocks design with four replicates. In each experiment, five treatments were applied
by maintaining groundwater salinity to a control treatment with EC 1 dS/m, while the groundwater salinity of the other treatments
was 2, 5, 8 and 10 dS/m, and 0.8 m water table level, respectively. The use of groundwater as a part of crop evapotranspiration
was characterized by using daily measurements of the water level in Mariotte tubes. The extra magnitude of irrigation water
requirement for each treatment was applied by water with EC of 1 dS/m. The results of experiments showed that for different
control treatments with 1 dS/m, 2, 5, 8 and 10 dS/m, the groundwater contributions were achieved as 59, 51, 38, 32 and 19%
of the total plant water requirements, respectively. 相似文献
3.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water (ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss. 相似文献
4.
The field experiments were carried out in 2007 and 2008 to study the effects and strategies of drip irrigation with saline water for oleic sunflower. Five treatments of irrigation water with average salinity levels of 1.6, 3.9, 6.3, 8.6, and 10.9 dS/m were designed. For each treatment, 7 mm water was applied when the soil matric potential (SMP) 0.2 m directly underneath the drip emitters was below −20 kPa, except during the seedling stage. To ensure the seedling survival, 28 mm water was applied after sowing during the seedling stage. Results indicate that amount of applied water decreases as salinity level of irrigation water increases. The emergence will be delayed when the salinity level of irrigation water is higher than 6.3 dS/m, but these differences will be alleviated if there is rainfall during emergence period. The final emergence percentage is not changed when salinity level of irrigation is less than 6.3 dS/m, and the percentage decreases by 2.0% for every 1 dS/m increase when the salinity level of irrigation water is above 6.3 dS/m, but the decreasing rate will be reduced if there is rainfall. The plant height and yield decrease with the increase of salinity of irrigation water. The height of plants decreases by 0.6-1.0% for every 1 dS/m increase in salinity level of irrigation water. The yield decreases by 1.8% for every 1 dS/m increase in salinity level of irrigation water, and irrigation water use efficiency (IWUE) increases with increase in salinity of irrigation water. The soil salinity increases as the salinity of irrigation water increasing after drip irrigation with saline water in the beginning, but the soil salinity in soil profile from 0 to 120 cm depths can be maintained in a stable level in subsequent year irrigation with saline water. From the view points of yield and soil salt balance, it can be recognized even as the salinity level of irrigation water is as high as 10.9 dS/m, saline water can be applied to irrigate oleic sunflower using drip irrigation when the soil matric potential 0.2 m directly under drip emitter is kept above −20 kPa and the beds are mulched in semi-humid area. 相似文献
5.
《Agricultural Water Management》2006,84(3):274-280
Effects on water use, green bean yield, irrigation water-use efficiency (IWUE), water-use efficiency (WUE), plant dry weight and crop water relationship were investigated for two-drip irrigation techniques and four irrigation water levels in the Mediterranean region of Turkey. The treatments were conventional (SDI) and alternating subsurface drip irrigation (SPRD). At each irrigation event, half of the volume of water applied to the SDI was applied to one side of the crop, representing the partial rootzone-drying treatment. All treatments received 295 mm of irrigation during crop establishment, prior to beginning the different irrigation regimes. Differing irrigation amounts corresponded to four crop-pan coefficients (Kcp1 = 0.6, Kcp2 = 0.8, Kcp3 = 1.0 and Kcp4 = 1.2), appropriate to pan data. Total water applied to the SDI and SPRD treatments ranged from 366 to 437 mm and from 331 to 366 mm, respectively, depending on Kcp values, with water uptake varying from 396 to 470 mm and 364 to 409 mm, respectively. While differences of green bean yield and dry plant weights were not significantly affected by the SDI and SPRD irrigation techniques, the overall irrigation water saving was found to be 16% for the SPRD irrigation treatment compared with the SDI treatment. SPRD irrigation techniques increased IWUE, WUE, and slopes of yield water relationships. Increase in slopes of the yield–irrigation water and yield–water-use function of SPRD according to the equivalent slopes of the SDI were 215.8 and 151.4%, respectively. SPRD increased the green bean yield response factor (ky) with value of 128.4% according to the equivalent slopes of the SDI. In conclusion, irrigation scheduling based on a 0.8 crop-pan coefficient is recommended for conventional SDI, with 1.0 being more appropriate for partial rootzone-drying practice. 相似文献
6.
Shuqin Wan Yanping Jiao Yaohu Kang Shufang Jiang Junli Tan Wei Liu Jing Meng 《Irrigation Science》2013,31(5):943-957
A four-year trial was set up to test the feasibility of growing oleic sunflower in a very strongly saline wasteland with drip irrigation in the Ningxia plain of Northwest China. The soil salinity expressed as electrical conductivity of the saturation paste extract (EC e ) was around 28 dS/m, and soil nutrient was deficient in the upper 120 cm depth. The experiment included five soil matric potential (SMP) treatments, with the SMP at 20-cm depth immediately under the emitters maintained to be higher than ?5, ?10, ?15, ?20 and ?25 kPa after sunflower establishment. Drip irrigation consistently created a favourable soil moisture and low-salinity region in the root zone when the SMP was maintained higher than ?25 kPa. The sunflower dry seed yield decreased by 3.8 % for each unit increase in seasonal average soil salinity in the root zone. Plant vegetative growth, yield characteristics, irrigation frequency and irrigation amount all increased with the increase in SMP from ?25 to ?5 kPa, and the highest irrigation water use efficiency was available when the SMP was between ?10 and ?15 kPa (the amount of applied water was around 750 mm). Leaching of salts by drip irrigation gradually turned the very strongly saline soil into a moderately saline soil. This research suggests that drip irrigation can be successfully used in oleic sunflower cultivation in this highly saline soil and a SMP threshold between ?10 and ?15 kPa is suggested for irrigation scheduling. 相似文献
7.
Long term use of saline water for irrigation 总被引:1,自引:0,他引:1
J. E. Ayars R. B. Hutmacher R. A. Schoneman S. S. Vail T. Pflaum 《Irrigation Science》1993,14(1):27-34
Use of saline drainage water in irrigated agriculture, as a means of its disposal, was evaluated on a 60 ha site on the west side of the San Joaquin Valley. In the drip irrigation treatments, 50 to 59% of the irrigation water applied during the six-year rotation was saline with an ECw ranging from 7 to 8 dS/m, and containing 5 to 7 mg/L boron and 220 to 310 g/L total selenium. Low salinity water with an ECw of 0.4 to 0.5 dS/m and B 0.4 mg/1 was used to irrigate the furrow plots from 1982 to 1985 after which a blend of good quality water and saline drainage water was used. A six-year rotation of cotton, cotton, cotton, wheat, sugar beet and cotton was used. While the cotton and sugar beet yields were not affected during the initial six years, the levels of boron (B) in the soil became quite high and were accumulated in plant tissue to near toxic levels. During the six year period, for treatments surface irrigated with saline drainage water or a blend of saline and low salinity water, the B concentration in the soil increased throughout the 1.5 m soil profile while the electrical conductivity (ECe) increased primarily in the upper l m of the profile. Increaszs in soil ECe during the entire rotation occurred on plots where minimal leaching was practiced. Potential problems with germination and seedling establishment associated with increased surface soil salinity were avoided by leaching with rainfall and low-salinity pre-plant irrigations of 150 mm or more. Accumulation of boron and selenium poses a major threat to the sustainability of agriculture if drainage volumes are to be reduced by using drainage water for irrigation. This is particularly true in areas where toxic materials (salt, boron, other toxic minor elements) cannot be removed from the irrigated area. Continual storage within the root zone of the cropped soil is not sustainable. 相似文献
8.
The effect of irrigation with water at salinity concentrations of 2.6 and 5.2 dS m–1 on the growth of pure swards of six cultivars of white clover (Trifolium repens L.) was examined over three irrigation seasons at Tatura, Victoria, Australia. After two irrigation seasons, soil EC
e
levels increased to 6 dS m–1 at 0–60 cm depth in the higher salinity treatment resulting in highly significant (p < 0.001) reductions in shoot dry matter production, flowering densities and petiole and stolon densities. These saline conditions also increased (p <0.001) concentrations of Cl and Na in the shoots and reduced (p < 0.001) leaf water potentials and canopy photosynthetic efficiency rates especially at high temperatures. In contrast, root growth increased at shallow depths (0–15 cm) under both saline irrigation treatments (p <0.001). Cultivars differed significantly in salt tolerance (p < 0.001), with cultivars Haifa and Irrigation exhibiting superior tolerance in terms of lower reductions in herbage yield (p <0.05) and petiole densities (p <0.001) during one irrigation season and lower concentrations of Na and Cl in the shoots (p <0.05) compared with the other four cultivars (Aran, Kopu, Pitau and Tamar). In addition, canopy photosynthetic efficiency rates (A
*) in plots irrigated with water at 5.2 dS m–1 were higher in cultivar Haifa compared with cultivar Tamar (p <0.05). The salt tolerance ranking obtained for the six cultivars was in broad agreement with earlier greenhouse studies. Consequently, it appears that, while white clover is an extremely salt-sensitive species, it is possible to grow cultivars which display greater salt tolerance than other cultivars and which provide some scope to increase, or at least to maintain, pasture yields in areas where the soil salinity is low to moderate or where pumped saline groundwater is re-used for Irrigation. 相似文献
9.
《Agricultural Water Management》1997,32(3):285-291
The response of wheat (Triticum aestiuum L.) to varying depths of irrigation, quantity of water applied and to the drainage conditions was studied in 2 m × 2 m × 2 m size lysimeters filled in with a sandy loam soil. Saline water with an electrical conductivity of 8.6 dS m−1 was used for irrigation. The treatments included four irrigations of 5 cm depth, four irrigations of 7 cm, and three irrigations of 9 cm, scheduled on the basis of cumulative pan evaporation, while the drainage conditions were represented by the drained and undrained lysimeters. Another treatment, using good quality water for irrigation, represented the potential yield of the crop. The growth parameters, as well as the yield, showed an improvement with larger irrigation depth increments in the drained lysimeters. But, in contrast, in the undrained lysimeters, the yield was reduced with larger irrigation depth increments, mainly due to a sharp rise in water table depth during the irrigation cycles. The rise and fall in water table showed a high sensitivity and were also highly disproportionate to the irrigation and evapotranspiration events. The yield tended to be higher with a smaller depth of water applied more frequently in the undrained lysimeters. But, in view of the limitations of conventional surface irrigation to apply water in smaller depth increments, an improved drainage is imperative for cropping in shallow saline water table conditions. 相似文献
10.
Irrigation frequency is one of the most important factors in drip irrigation scheduling, and a proper irrigation frequency
can establish moderate moist and oxygen conditions in the root zone throughout the crop period. Field experiments on the effects
of irrigation frequency on radish growth and water use were carried out in 2001 and 2002. The experiment included six irrigation
frequencies: once every day, once every 2 days, once every 3 days, once every 4 days, once every 6 days and once every 8 days.
There was no significant difference among the six treatments on radish development and yield, but significant differences
in radish roots distribution and market quality were found. Radishes irrigated once every 3 days had well-developed roots
throughout the crop period, the lowest cracking rate and the least number of radishes of Grade 3. The observation results
of lysimeter in 2002 showed that radish evapotranspiration decreased as irrigation frequency decreased, and the general changing
tendency of 2-day ET of high irrigation frequency was related to that of 2-day evaporation. It is recommended that radish
irrigation frequency should be once every 3 days and the irrigation amount should be estimated according to the evaporation
of 20 cm diameter pan in the North China Plain. 相似文献
11.
Ahmet Istanbulluoglu 《Agricultural Water Management》2009,96(12):1792-1798
A field study was carried out in order to determine the effect of deficit irrigation regimes on grain yield and seasonal evapotranspiration of safflower (Carthamus tinctorius L.) in Thrace Region of Turkey. The field trials were conducted on a loam Entisol soil, on Dincer, the most popular variety in the research area. A randomised complete block design with three replications was used. Combination of four well-known growth stages of the plant, namely vegetative (Va), late vegetative (Vb), flowering (F) and yield formation (Y) were considered to form a total of 16 (including rain fed) irrigation treatments. The effect of irrigation and water stress at any stage of development on grain yield per hectare and 1000 kernels weight was evaluated. Results showed that safflower was significantly affected by water stress during the sensitive late vegetative stage. The highest yield was obtained in VaVbFY treatment. Seasonal irrigation water use and evapotranspiration were 501 and 721 mm, respectively, for the non-stressed treatment. Safflower grain yield of this treatment was 5.22 Mg ha−1 and weight of 1000 kernels was 55 g. The seasonal yield-water response factor value was 0.87. The total water use efficiency was 7.2 kg ha−1 mm−1. Irrigation schedule of the non-stressed treatment may be as follows: the first irrigation is at the vegetative stage, when after 40-50 days from sowing/elongation and branching stage, that is the end of May; the second irrigation is at the late vegetative stage, after 70-80 days from sowing/heading stage, that is in the middle of June; the third irrigation is at the flowering stage, approximately 50% level, that is the first half of July; and the fourth irrigation is at the yield formation stage, seed filling, that is the last week of July. 相似文献
12.
13.
14.
F. Karam R. SalibaS. Skaf J. BreidyY. Rouphael J. Balendonck 《Agricultural Water Management》2011,98(8):1307-1316
Field experiments were conducted in 2008 and 2009 to determine the effects of deficit irrigation on yield and water use of field grown eggplants. A total of 8 irrigation treatments (four each year), which received different amounts of irrigation water, were evaluated. In 2008, deficit irrigation was applied at full vegetative growth (WS-V), pre-flowering (WS-F) and fruit ripening (WS-R), while in 2009 deficit irrigation was applied during the whole growing season at 80 (WS-80), 60 (WS-60) and 40% (WS-40) of field capacity. Deficit-irrigated treatments were in both years compared to a well irrigated control. Regular readings of soil water content (SWC) in 2008 and 2009 showed that average soil water deficit (SWD) in the control was around 30% of total available water (TAW) while in deficit-irrigated treatments it varied between 50 and 75% of TAW. In 2008, deficit irrigation reduced fruit fresh yield by 35, 25 and 33% in WS-V, WS-F and WS-R treatments, respectively, when compared to the control (33.0 t ha−1). However, the reduction in fresh yield in response to deficit irrigation was compensated by an increase in fruit mean weight. Results obtained in 2009 showed that fruit fresh yield in the control was 33.7 t ha−1, while it was 12, 39 and 60% less in WS-80, WS-60 and WS-40 treatments, respectively. On the other hand, fruit dry matter content and water productivity were found to increase significantly in both years in deficit-irrigated treatments. Applying deficit irrigation for 2 weeks prior to flowering (WS-F) resulted in water saving of the same magnitude of the WS-80 treatment, with the least yield reduction, making more water available to irrigate other crops, and thereby considered optimal strategies for drip-irrigated eggplants in the semi-arid climate of the central Bekaa Valley of Lebanon. 相似文献
15.
An alternative water source and combined agronomic practices for cotton irrigation in coastal saline soils 总被引:1,自引:0,他引:1
Xiaobin Wang Quansheng Zhao Yujiao Hu Yan Zheng Xueping Wu Huijun Wu Guoxia Zhang Dianxiong Cai Clemencia Licona Manzur 《Irrigation Science》2012,30(3):221-232
The field experiment for cotton crop (Gossypium hirsutum L.) was conducted at the Zhongjie Farm, Huanghua city of Hebei province in the coastal salinity-affected areas in North China
Plain, to determine the effects of an alternative of irrigation water sources/methods and agronomic practices on seedling
emergence and yields of cotton, soil water–salt distributions, and soil pH changes during cotton growth stages. The experiment
was setup using split-plot design with two water sources as main treatments (well water/desalinized sea-ice water); two irrigation
methods (+PAM (Polyacrylamide)/−PAM); and four fertilization modes: check (CK), mineral fertilizer (F), mineral + organic
fertilizer (FM), and mineral fertilizer + gypsum (FG). Using desalinized sea-ice water irrigation showed the same effects
on top-soil salt leaching and desalinization as using well water did. There was no significant difference in seedling emergence
and cotton yields between two irrigation water sources for cotton irrigation. Using PAM-treated irrigation, the 10-cm top-soil
salinity significantly decreased to about 2.3–3.9 g kg−1 from 4.6 to 8.6 g kg−1 (PAM untreated). The PAM-treated irrigation increased seedling emergence by about 13, 29 and 36% and yields by about 50,
49, and 70%, with F, FM, and FG, respectively, as compared with CK. PAM-treated irrigation, either using well water or desalinized
sea ice, especially in combination with gypsum-fertilization, shows the best practice for both seedling emergence and cotton
yields. In conclusion, the desalinized sea-ice water used as an alternative water source, integrated with better agronomic
practices of soil water-salt management could be acceptable for cotton irrigation in the coastal saline areas. 相似文献
16.
为了揭示棉花生长发育对咸水灌溉的响应特征,采用小区对比试验,研究了不同矿化度咸水灌溉对棉花出苗、株高、叶面积、果枝数、地上部干质量等形态指标以及产量构成、耗水量和水分利用率的影响.结果表明,棉花出苗率和成苗率随着灌溉水矿化度的增大而减小,但3 g/L灌水处理与对照间的差异不具有统计学意义,而5,7 g/L处理与对照间差异极具统计学意义.在移栽补全苗情况下,咸水灌溉对棉花形态生长指标产生了一定的抑制效应,灌溉水矿化度愈大,抑制作用愈大;对株高、叶面积和地上部干质量的影响在蕾期最明显,花铃期之后开始逐渐减弱;对果枝数和棉铃生长的影响程度随着棉花生育进程的推进而降低.处理间棉花的耗水量差异不具有统计学意义,籽棉产量和水分利用率的大小顺序,按灌水处理依次为3,1,5,7 g/L,其中7 g/L处理与对照间的差异具有统计学意义.与灌水前初始值相比,试验结束后1,3 g/L灌水处理的0~40 cm土层盐分未增加,5,7 g/L灌水处理则形成了积盐.研究结果可为咸水安全利用提供重要参考. 相似文献
17.
In a conducting medium, the energy of a time-domain reflectometry (TDR) pulse is dissipated and the signal is attenuated.
Above a certain high conductivity, however, the signal is completely attenuated and the soil short-circuits the sensor. This
behaviour of the signal with conductivity severely limits the TDR technique in measuring water content in highly saline soils.
By reducing the direct contact between the conductive soil and the metallic sensor the energy of the pulse is better maintained.
Different combinations were tried: we insulated the central wire, outer two wires, and all wires of a three-wire sensor with
two different insulators. The first insulator was an adhesive polyethylene sheet usually used as a transparent cover and the
second insulator was an adhesive tape. The insulated sensors were used to measure dielectric constants in non-saline soils
and water and in saline soils. The sensors with the insulated centre wire preserve maximum energy and maintain a clear signal
in saline soils. The insulating materials have very small dielectric constants. The TDR exerts a larger influence in the vicinity
of the wires of the sensor during measurements. Therefore, the insulated sensor measures a dielectric constant which is smaller
than the apparent dielectric constant of the surrounding medium. The type of insulating material also has an effect on the
dielectric constant. Therefore, it is necessary to calibrate the sensors for the specific insulator.
Received: 30 December 1996 相似文献
18.
Summary Cowpea and mung bean were subjected to three irrigation schedules during summer dry months (May–June). In general, cowpea had higher rates of net photosynthesis (P
n
,Figs. 1, 2), dark respiration (R
d
,Table 1), absorption of photosynthetically active radiation (PAR, Table 2), and growth (Fig. 7) than mung bean. Mung bean reflected more PAR and maintained a slightly cooler canopy than cowpea (Table 2). Moisture stress decreased P
n
, R
d
,absorption coefficient of PAR, evaporative cooling and growth in both the species. However, the reductions in P
n
rates of stressed leaves were more than the decreases in R
d
.Restoration of water supply to stressed cowpea resulted in a more rapid recovery of growth as compared to mung bean. 相似文献
19.
The reduction in agricultural water use in areas of scarce supplies can release significant amounts of water for other uses. As improvements in irrigation systems and management have been widely adopted by fruit tree growers already, there is a need to explore the potential for reducing irrigation requirements via deficit irrigation (DI). It is also important to quantify to what extent the reduction in applied water through DI is translated into net water savings via tree evapotranspiration (ET) reduction. An experiment was conducted in a commercial pistachio orchard in Madera, CA, where a regulated deficit irrigation (RDI) program was applied to a 32.3-ha block, while another block of the same size was fully irrigated (FI). Four trees were instrumented with six neutron probe access tubes each, in the two treatments and the soil water balance method was used to determine tree ET. Seasonal irrigation water in FI, applied through a full-coverage microsprinkler system, amounted to 842 mm, while only 669 mm were applied in RDI. Seasonal ET in FI was 1024 mm, of which 308 mm were computed as evaporation from soil (Es). In RDI, seasonal ET was reduced to 784 mm with 288 mm as Es. The reduction in applied water during the deficit period amounted to 147 mm. The ET of RDI during the deficit period was also reduced relative to that of FI by 133 mm, which represented 33% of the ET of FI during the deficit irrigation period. There was an additional ET reduction in RDI of about 100 mm that occurred in the post-deficit period. 相似文献
20.
《Agricultural Water Management》2006,79(3):312-320
Shrinking water resources in northwest India calls for diversification from a rice–wheat cropping system to low-water-requiring crops and development of water-efficient technologies in Punjab state. Chickpea, because of its lower water demand (evapotranspiration) and irrigation requirement has been identified as a suitable alternate crop to wheat. Simulations, averaged over 18 years, using the CROPMAN model indicated that the yield of chickpea on coarse- to medium-textured soils was higher in a rice–chickpea cropping system compared with maize–chickpea and mung–chickpea systems because of increased availability of water. Yield response of chickpea to irrigation depended upon soil texture, the timings and number of irrigations. The optimum yield (2 t ha−1) on coarse- to medium-textured soils after rice can be obtained with one heavy pre-plant and two post-plant irrigations, i.e., one in mid-February and one in mid-March synchronizing irrigations with flowering and grain development stages. Grain yield with irrigation water followed a quadratic function and linear with evapotranspiration. Water use efficiency and evapotranspiration was curvilinear. Grain yield was significantly sensitive to water stress during the pod setting to grain development period irrespective of soil texture. 相似文献