首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 786 毫秒
1.
This study is based on 12708 first-parity and 7062 second-parity Yorkshire litters from Swedish nucleus herds; and on 1037 first-parity Yorkshire litters from an experimental herd. Gestation length was analysed together with litter size, piglet mortality and average piglet growth rate. A sire–dam model was used to estimate direct (litter) and maternal (sow) genetic effects. Direct heritability for gestation length was 0.3. Maternal heritability was estimated at 0.2 in nucleus data and 0.3 in experimental data. The maternal genetic correlation between gestation length and litter size was negative. The genetic correlations between gestation length and number stillborn were not consistent between the two data sets. Genetic correlations between gestation length and number dead after birth were negative. Genetic correlations between gestation length and average birth weight and piglet growth rate were positive. We conclude that gestation length is influenced by the genotype of the piglets and the genotype of the sow. Selection for prolonged gestation would probably improve piglet survival after birth and piglet growth; it might, however, result in more stillbirths.  相似文献   

2.
Litter characteristics at birth were recorded in 4 genetic types of sows with differing maternal abilities. Eighty-two litters from F(1) Duroc x Large White sows, 651 litters from Large White sows, 63 litters from Meishan sows, and 173 litters from Laconie sows were considered. Statistical models included random effects of sow, litter, or both; fixed effects of sow genetic type, parity, birth assistance, and piglet sex, as well as gestation length, farrowing duration, piglet birth weight, and litter size as linear covariates. The quadratic components of the last 2 factors were also considered. For statistical analyses, GLM were first considered, assuming a binomial distribution of stillbirth. Hierarchical models were also fitted to the data to take into account correlations among piglets from the same litter. Model selection was performed based on deviance and deviance information criterion. Finally, standard and robust generalized estimating equations (GEE) procedures were applied to quantify the importance of each effect on a piglet's probability of stillbirth. The 5 most important factors involved were, in decreasing order (contribution of each effect to variance reduction): difference between piglet birth weight and the litter mean (2.36%), individual birth weight (2.25%), piglet sex (1.01%), farrowing duration (0.99%), and sow genetic type (0.94%). Probability of stillbirth was greater for lighter piglets, for male piglets, and for piglets from small or very large litters. Probability of stillbirth increased with sow parity number and with farrowing duration. Piglets born from Meishan sows had a lower risk of stillbirth (P < 0.0001) and were little affected by the sources of variation mentioned above compared with the 3 other sow genetic types. Standard and robust GEE approaches gave similar results despite some disequilibrium in the data set structure highlighted with the robust GEE approach.  相似文献   

3.
A Bayesian threshold model was fitted to analyze the genetic parameters for farrowing mortality at the piglet level in Large White, Landrace, and Pietrain populations. Field data were collected between 1999 and 2006. They were provided by 3 pig selection nucleus farms of a commercial breeding company registered in the Spanish Pig Data Bank (BDporc). Analyses were performed on 3 data sets of Large White (60,535 piglets born from 4,551 litters), Landrace (57,987 piglets from 5,008 litters), and Pietrain (42,707 piglets from 4,328 litters) populations. In the analysis, farrowing mortality was considered as a binary trait at the piglet level and scored as 1 (alive piglet) or 0 (dead piglet) at farrowing or within the first 12 h of life. Each breed was analyzed separately, and operational models included systematic effects (year-season, sex, litter size, and order of parity), direct and maternal additive genetic effects, and common litter effects. Analyses were performed by Bayesian methods using Gibbs sampling. The posterior means of direct heritability were 0.02, 0.06, and 0.10, and the posterior means of maternal heritability were 0.05, 0.13, and 0.06 for Large White, Landrace, and Pietrain populations, respectively. The posterior means of genetic correlation between the direct and maternal genetic effects for Landrace and Pietrain populations were -0.56 and -0.53, and the highest posterior intervals at 95% did not include zero. In contrast, the posterior mean of the genetic correlation between direct and maternal effects was 0.15 in the Large White population, with the null correlation included in the highest posterior interval at 95%. These results suggest that the genetic model of evaluation for the Landrace and Pietrain populations should include direct and maternal genetic effects, whereas farrowing mortality could be considered as a sow trait in the Large White population.  相似文献   

4.
Genetic parameters of piglet survival traits and birth weight were estimated on the first generation data of a selection experiment aimed at improving piglet survival using a multiple trait linear and threshold model. Data on 5293 piglets for survival at birth, at day one after birth and during the entire nursing period, as well as individual birth weight and litter size, were recorded in an outdoor production system. Genetic effects of piglet survival traits and birth weight were estimated based on threshold and Gaussian models, respectively, using a Bayesian approach. The statistical model included as fixed effects selection group, parity, gender, fostering, gestation length and month of farrowing and, alternatively, an adjustment for litter size. Direct genetic effects (i.e. the piglet's genetic potential) for piglet survival and birth weight were estimated separately, whereas maternal genetic and environmental effects could only be estimated for the given data structure in a combined litter effect. Posterior means of heritabilities for direct genetic effects of survival at birth, at first day after birth and the entire nursing period, as well as birth weight, were 0.08, 0.07, 0.08 and 0.20, respectively. Genetic correlations among survival traits were in the range of 0.29 to 0.40 and indicate that these traits were mainly attributable to different genetic effects. Genetic correlations between direct effects of survival traits and birth weight ranged between 0.18 and 0.23 and were reduced when weights of stillborn piglets were omitted in the analysis or the traits were adjusted for litter size. The magnitudes of direct genetic effects of survival traits are substantially higher than estimates in the literature, which may indicate that these traits have a higher genetic influence under outdoor conditions. The use of birth weight in the multiple trait estimation provided important information for the estimation of survival traits due to its favourable genetic correlations with survival, its high heritability and its high information content as a continuously measured trait.  相似文献   

5.
The aim of the study was to investigate the effects of a number of environmental, behavioural and biological factors on passive immunization of piglets as assessed by transfer of porcine parvovirus (PPV) antibodies (ab) from the colostrum of PPV vaccinated mothers to the serum of the piglets. Twenty primiparous sows were housed in pens with peat, straw and branches for nest building. Half the sows were prevented from achieving feedback from a completed farrowing nest by repeated removal of the nest from 10 to 12 h after nest building had begun, whereas the other half kept their nests. Sow serum PPV-ab titres were positively related to colostrum PPV-ab titres at birth of the first piglet (BFP) (P < 0.001). Litter average piglet PPV-ab titre was positively related to both sow serum and colostrum PPV-ab titres (both P < 0.001). In addition, in the individual piglets. PPV-ab titres were reduced as time from BFP to birth and time from birth to first sucking increased and time spent sucking decreased (all P < 0.01). There were no effects of treatment, time spent in lateral recumbency by the sow, number of times the sow stood or piglet weight on day 1 on piglet serum PPV-ab titres. Preventing prolonged farrowing, while at the same time ensuring the piglets' access to the udder, is important for transfer of maternal immunity. Measurements of specific antibodies in sow serum during the periparturient period and in piglet serum at 28 days of age may provide a practical tool for evaluating transfer of maternal immunity from sow to piglets.  相似文献   

6.
Data obtained during 4 generations of divergent selection for placental efficiency were used to determine factors influencing survival at farrowing and weaning in litters produced by first-parity females. Data were collected from 193 litters and included records on 2,053 individuals. Farrowing survival (FS) and weaning survival (WS) were considered traits of the piglet and were scored 1 if the individual was alive at a time point or 0 if dead. Estimates of (co)variance components for direct and maternal additive genetic effects for FS and WS were obtained using an animal model and computed with the MTDFREML program. Estimates of direct heritability were 0.16 for FS and 0.18 for WS. Estimates of maternal heritability were 0.14 for FS and 0.10 for WS. Genetic correlation estimates between direct and maternal effects were high and negative for both traits. The direct genetic correlation between FS and WS was 0.92. Variables associated with FS and WS were determined using logistic regression procedures. Birth weight (BRW), placental weight, their interaction, and total born can be used as predictors of survival at farrowing in the absence of estimates of genetic merit for survival. The same model, excluding total number born, was the best model for predicting WS. In the presence of BRW information, placental efficiency did not improve the prediction of survival. While it was clearly disadvantageous for a piglet to be below the litter mean in BRW, being above the mean did not provide a substantial advantage in survival. Results from this analysis suggest that it is possible to select for increased survival at farrowing and at weaning. Information on a piglet's BRW, placental weight, litter average BRW, and deviation from litter average BRW can be used to optimize those values at levels resulting in high survival probability.  相似文献   

7.
The objective of this study was to ascertain whether maternal additive genetic variance exists for within-litter variation in birth weight and for change in within-litter variation in piglet weight during suckling. A further objective was to estimate maternal genetic correlations of these two traits with mortality, birth weight, growth, and number of piglets born alive. Data were obtained from L?vsta research station, Swedish University of Agricultural Sciences, and included 22,521 piglets born in 2,003 litters by 1,074 Swedish Yorkshire sows. No cross fostering was used in the herd. The following seven traits were analysed in a multivariate animal (sow) model: number of piglets born alive, within-litter SD in birth weight, within-litter SD in piglet weight at 3 wk of age, mean weight at birth, mean weight at 3 wk of age, proportion of stillborn piglets, and proportion of dead piglets during suckling. Maternal genetic variance for the change in within-litter SD in piglet weight during suckling was assessed from the estimated additive genetic covariance components by conditioning on within-litter SD in birth weight. Similarly, mean growth of piglets during suckling was assessed from the additive genetic covariance components by conditioning on mean weight at birth. The heritability for within-litter SD in birth weight was 0.08 and 0.06 for within-litter SD in piglet weight at 3 wk. The genetic correlation between these two traits was 0.71. Little maternal genetic variance was found for the change in within-litter SD in piglet weight during suckling, and opportunity for genetic improvement of this trait by selective breeding seems limited. The genetic correlation of within-litter SD in birth weight with proportion of dead piglets during suckling was 0.25 and of within-litter SD in birth weight with mean growth of piglets was -0.31. The maternal genetic variance and heritability found for within-litter SD in birth weight indicates that genetic improvement of this trait by selective breeding is possible. In addition, selection for sows' capacity to give birth to homogeneous litters may be advantageous for piglet survival, piglet growth, and litter homogeneity at weaning.  相似文献   

8.
Data of 127,800 Iberian piglets were used to study genetic parameters of mortality at birth at the piglet level. These records proceed from three data sets: 4,987 litter of 2,156 sows of a dam line, 2,768 litter of 817 sows of a complete diallel cross between four Iberian strains and 7,153 litter of 2,113 sows of the Torbiscal composite line. Perinatal mortality was considered as a binary trait, and Bayesian threshold animal models were fitted to separately analyse the three data sets. The posterior means of direct heritability were 0.010, 0.004 and 0.003, and those of maternal heritability were 0.034, 0.011 and 0.014 for dam line, diallel cross and Torbiscal line, respectively. Important effects of litter size and parity order were inferred in the three data sets, of within‐breed cross‐breeding parameters in the diallel cross and of sex and sow handling in the Torbiscal line Therefore, the inclusion of perinatal mortality in the objective of selection is questionable in this breed and strategies for reducing piglet mortality successful in other breeds should be considered.  相似文献   

9.
The effects of amperozide on sow performance when administered as a single intramuscular injection of 1 mg kg-1 at the time of either farrowing or weaning, or on both occasions were evaluated. Treatments were given during the rearing of two consecutive litters with each individual sow remaining on the same treatment throughout the trial. In total, 64 sows, 16 per treatment group, were used to investigate the effects on weight loss during lactation, mastitis-metritis agalactia (MMA) and duration of the reproductive cycle. Untreated control sows lost more weight (2 to 3 kg) during lactation than sows treated with amperozide at farrowing. No clinical outbreak of MMA was recorded in the amperozide groups dosed at the time of farrowing. The number of empty days was decreased (about three days) in sows treated with amperozide at weaning. Furthermore, pre-weaning mortality decreased (8 per cent) and piglet growth rate improved (6 per cent) when sows were treated with amperozide at farrowing. The results suggest that amperozide improves the health status and productivity of sows by reducing their emotional responses to novel or threatening situations.  相似文献   

10.
The present study aims to determine the occurrence of piglet pre-weaning mortality in commercial swine herds in Thailand in relation to piglet, sow, and environmental factors. Data were collected from the database of the computerized recording system from 47 commercial swine herds in Thailand. The raw data were carefully scrutinized for accuracy. Litters with a lactation length < 16 days or >28 days were excluded. In total, 199,918 litters from 74,088 sows were included in the analyses. Piglet pre-weaning mortality at the individual sow level was calculated as piglet pre-weaning mortality (%) = (number of littermate pigs ? number of piglets at weaning) / number of littermate pigs. Litters were classified according to sow parity numbers (1, 2–5, and 6–9), average birth weight of the piglets (0.80–1.29, 1.30–1.79, 1.80–2.50 kg), number of littermate pigs (5–7, 8–10, 11–12, and 13–15 piglets), and size of the herd (small, medium, and large). Pearson correlations were conducted to analyze the associations between piglet pre-weaning mortality and reproductive parameters. Additionally, a general linear model procedure was performed to analyze the various factors influencing piglet pre-weaning mortality. On average, piglet pre-weaning mortality was 11.2% (median = 9.1%) and varied among herds from 4.8 to 19.2%. Among all the litters, 62.1, 18.1, and 19.8% of the litters had a piglet pre-weaning mortality rate of 0–10, 11–20, and greater than 20%, respectively. As the number of littermate pigs increased, piglet pre-weaning mortality also increased (r = 0.390, P < 0.001). Litters with 13–16 littermate pigs had a higher piglet pre-weaning mortality than litters with 5–7, 8–10, and 11–12 littermate pigs (20.8, 7.8, 7.2, and 11.2%, respectively; P < 0.001). Piglet pre-weaning mortality in large-sized herds was higher than that in small- and medium-sized herds (13.6, 10.6, and 11.2%, respectively; P < 0.001). Interestingly, in all categories of herd size, piglet pre-weaning mortality was increased almost two times when the number of littermates increased from 11–12 to 13–16 piglets. Furthermore, piglets with birth weights of 0.80–1.29 kg in large-sized herds had a higher risk of mortality than those in small- and medium-sized herds (15.3, 10.9, and 12.2%, respectively, P < 0.001). In conclusion, in commercial swine herds in the tropics, piglet pre-weaning mortality averaged 11.2% and varied among herds from 4.8 to 19.2%. The litters with 13–16 littermate pigs had piglet pre-weaning mortality of up to 20.8%. Piglets with low birth weight (0.80–1.29 kg) had a higher risk of pre-weaning mortality. Management strategies for reducing piglet pre-weaning mortality in tropical climates should be emphasized in litters with a high number of littermate pigs, low piglet birth weights, and large herd sizes.  相似文献   

11.
The aim of this study was to estimate genetic and phenotypic parameters for growth and survival traits of Sahiwal cattle in Kenya and determine their relationship to milk production and fertility. Performance records of 5,681 animals were obtained from the National Sahiwal Stud and the traits considered were: birth weight (kilogrammes), weaning weight (kilogrammes), pre-weaning average daily gain (grammes per day), post-weaning average daily gain (grammes per day), yearling weight (kilogrammes), mature weight at 36 months (kilogrammes), pre-weaning survival rate (SR), post-weaning survival rate (PSR), lactation milk yield (kilogrammes), age at first calving (days), and calving interval (days). The data was analysed using univariate and bivariate animal model based on restricted maximum likelihood methods, incorporating all known pedigree relationship among animals. The additive direct effects were more pronounced than maternal genetic effects in early and in post-yearling growth performance. The additive genetic variance and heritabilities were low for SR and PSR. The correlation between direct additive genetic and maternal genetic effect were negative for pre-yearling traits. Genetic and phenotypic correlations among growth traits and between growth and milk yield were positive, whilst those between growth and fertility were weak and negative. Correlations between survival and growth were generally low and positive. The estimates obtained in this study provide the necessary technical parameters for evaluating alternative breeding programmes and selection schemes for sustainable improvement of Sahiwal cattle.  相似文献   

12.
Data from about 2900 litters (approximately 40,000 piglets) originating from 1063 Czech Large White hyperprolific sows were analyzed. The phenotypic and genetic relations between litter size traits, piglet mortality during farrowing and from birth to weaning and several statistics referring to the distribution of the birth weight within litter were analyzed. All genetic parameters were estimated from multi-trait animal models including the following factors: mating type (natural service or insemination), parity, linear and quadratic regression on age at first farrowing (1st litter) or farrowing interval (2nd and subsequent litters), herd-year-season effect and additive-genetic effect of the sow. The phenotypic correlations of the mean birth weight with the total number of piglets born and piglets born alive were − 0.30. Traits describing the variability of the birth weight within litter (range, variance, standard deviation, coefficient of variation) were mostly positively correlated with litter size. A statistically significant phenotypic correlation (− 0.09 to − 0.15) between mean birth weight and losses at birth and from birth to weaning was found. The heritability for the number of piglets born, piglets born alive and piglets weaned was around 0.15. The number of stillborn piglets had only a very low heritability less than 0.05, whereas the heritability for losses from birth to weaning was 0.13. The heritabilities of the mean, minimal and maximal birth weight were 0.16, 0.10 and 0.10, respectively. The heritability for all statistics and measures referring to the variability of the birth weight within litter was very low and did never exceed the value of 0.05. An increase in litter size was shown to be genetically connected with a decrease in the mean piglet birth weight and an increase in the within-litter variability of birth weight. Selection on litter size should be accompanied by selection on mortality traits and/or birth-weight traits. Losses from birth to weaning and the minimal birth weight in the litter were proposed as potential traits for a selection against piglet mortality.  相似文献   

13.
Sow and piglet variables related to probability of stillbirth and to viability score were analyzed in litters from 98 multiparous Yorkshire sows. Immediately after the birth of each piglet, viability was scored using Randall's method. Sow variables related to the probability of stillbirth were average birth weight of the litter (p = 0.0001), sow age (p = 0.001), sow condition score (p = 0.003), length of gestation (p = 0.005), and number of piglets in the litter (p = 0.01). Sow variables related to average viability score were average birth weight of the litter (p = 0.001), standard deviation in birth weight in the litter (p = 0.02), sow age (p = 0.03), sow condition score (p = 0.03), and length of gestation (p = 0.03). Piglet variables related to probability of stillbirth were piglet hemoglobin (p = 0.0001), position in the birth order (p = 0.0001), broken umbilical cord (p = 0.0004), and preceding birth interval (p = 0.0004). Piglet variables related to viability score were piglet hemoglobin (p = 0.0001), position in the birth order (p = 0.0001), broken umbilical cord (p = 0.0001), preceding birth interval (p = 0.0001), and birth weight (p = 0.004). Preceding birth interval was related to whether the piglet was live or stillborn (p = 0.0001), to position in the birth order (p = 0.003), and to the sex of the piglet (p = 0.03).

The results demonstrated that sow and piglet variables were highly correlated to probability of stillbirth and to viability score. In addition it was also found that the probability of stillbirth was not associated with the duration of farrowing but with the number of piglets in the litter and piglet hemoglobin level. This study also found that lower weight piglets tend to have poor viability, but are not more prone to stillbirth as commonly suggested. These low viability piglets may survive if the necessary care is given during the farrowing process.

  相似文献   

14.
We estimated heritabilities of semen production traits and their genetic correlations with litter traits and pork production traits in purebred Duroc pigs. Semen production traits were semen volume, sperm concentration, proportion of morphologically normal sperms, total number of sperm, and total number of morphologically normal sperm. Litter traits at farrowing were total number born, number born alive, number stillborn, total litter weight at birth, mean litter weight at birth, and piglet survival rate at birth. Litter traits at weaning were litter size at weaning, total litter weight at weaning, mean litter weight at weaning, and piglet survival rate from birth to weaning. Pork production traits were average daily gain, backfat thickness, and loin muscle area. We analyzed 45,913 semen collection records of 896 boars, 6,950 farrowing performance records of 1,400 sows, 2,237 weaning performance records of 586 sows, and individual growth performance records of 9,550 animals measured at approximately 5 mo of age. Heritabilities were estimated using a single-trait animal model. Genetic correlations were estimated using a 2-trait animal model. Estimated heritabilities of semen production traits ranged from 0.20 for sperm concentration to 0.29 for semen volume and were equal to or higher than those of litter traits, ranging from 0.06 for number stillborn and piglet survival rate at birth to 0.25 for mean litter weight at birth, but lower than those of pork production traits, ranging from 0.50 for average daily gain to 0.63 for backfat thickness. In many cases, the absolute values of estimated genetic correlations between semen production traits and other traits were smaller than 0.3. These estimated genetic parameters provide useful information for establishing a comprehensive pig breeding scheme.  相似文献   

15.
Effects of sarcoptic mange on lactating swine and growing pigs   总被引:1,自引:0,他引:1  
The impact of Sarcoptic mange on sows and on performance of their offspring from birth to slaughter was determined. Sows naturally infested with Sarcoptic mange were paired, mated to the same boar, and assigned randomly to treated or control farrowing groups. Treated sows received ivermectin s.c. at 300 micrograms/kg body weight; control sows received the vehicle s.c. Sow performance was evaluated via sow feed consumption, litter size, litter birth weights, litter weaning weights and piglet death loss from birth to weaning. Seven replicates (farrowing groups), each with six sow pairs, were included in the trial. Offspring from treated and control sows, 35 head/group, were fed to slaughter weights. Untreated sows had litters that weighed 4.14 kg less than ivermectin-treated sow litters at 21 d (P less than .07). Treated sows consumed 1.95 kg less feed per weaned piglet and .13 kg less feed per kilogram of weaned piglet (P less than .05). Piglets from treated sows were 5.79 kg/head heavier at slaughter (P less than .05) and had a .05 kg/d superior average daily gain (P less than .05).  相似文献   

16.
绵羊生长性状母本效应方差组分、遗传参数估计的研究   总被引:5,自引:0,他引:5  
本文利用公畜母畜模型和公畜外祖父模型估计了初生重、断奶重的直接加性遗传方差、母本遗传方差和遗传参数,得出初生重的直接加性遗传效应、母本遗传效应和总的加性遗传效应的遗传力分别为:0.164、0.101、0.103;断奶重相应的各遗传力为:0.076、0.108、0.081。初生重和断奶重二性状加性遗传效应和母本遗传效应间的遗传相关为:-0.57和-0.36。  相似文献   

17.
Individual records from 49,788 Large White piglets were used to evaluate preweaning mortality and its relationship with birth weight (BW). Preweaning mortality included farrowing mortality (TM) was also divided into stillbirth (SB), early (EM), late (LM) and total (ELM) preweaning mortality. Farrowing mortality was also studied as a sow's trait as number of piglets born dead (NBD). Threshold-linear models were used via MCMC. Traits included (1) TM-BW, (2) SB-ELM-BW, (3) SB-EM-LM and (4) NBD-ELM-BW. Model for BW included parity number, litter size, sex, contemporary group (farm-farrowing year-month), litter, and direct and maternal additive genetic effects. For mortality traits, litter effect was of the nursing litter for cross-fostered piglets (4.9%). Models for SB (2, 3) and NBD (4) excluded the effect of sex. In Model 3, BW was fitted as covariable for EM and LM. Estimates of direct and maternal heritability for BW were 0.03–0.06 and 0.14–0.19; and for mortality traits 0.03–0.12 and 0.08–0.12. Direct-maternal correlations were negative for all traits. Genetic correlations between all mortality traits were positive. Results confirmed the importance of BW for the genetic evaluation of piglet mortality. Early mortality is a good candidate for improvement of TM because of larger heritability and high genetic correlations with other mortality traits. It is most efficient to treat SB at sow level and preweaning mortality at the piglet level.  相似文献   

18.
The limited space in farrowing crate imposes many challenges, such as prolonged farrowing duration and high piglet stillbirth rate. Although the features of farrowing pens compensate for the drawbacks of farrowing crates, they are associated with high piglet crushing mortality caused by the greater space afforded to sows and their rolling-over behaviour. Therefore, a freedom farrowing pen was designed to overcome the drawbacks of both farrowing crates and farrowing pens. The main features of the freedom farrowing pen are its left anti-crushing bar and detachable right anti-crushing bar on the sides of the sow lying area. It also has a 10 cm-high anti-crushing bar in the non-lying area. Eighteen healthy, multiparous Yorkshire sows (3-7 parity) were averaged and randomly assigned to farrowing crates, farrowing pens, and freedom farrowing pens to compare the effects of the farrowing systems on sow behaviour and performance. Results showed that the farrowing duration and the mean piglet birth intervals were longer for the sows in farrowing crates than for those in farrowing pens and freedom farrowing pens (P<0.05), but there was no difference between the sows in farrowing pens and those in freedom farrowing pens (P>0.05). The piglet stillbirth rate was higher for the sows in farrowing crates than for those in farrowing pens and freedom farrowing pens (P<0.001). Crushing mortality was higher among piglets in farrowing pens (P<0.001), but there was no difference between piglets in freedom farrowing pens and those in farrowing crates (P>0.05). The freedom farrowing pen and the farrowing pen allowed sows to turn around and move freely, but because of the different structures of their anti-crushing bars, the increase in sow movement did not cause higher piglet crushing mortality (P>0.05). Sows in freedom farrowing pens were found to be more protective of their piglets.  相似文献   

19.
Low piglet weight at weaning implies a loss of income for the farmer and might influence the welfare of the affected animals negatively. The objective of our cohort study was to identify risk factors in the farrowing section associated with average daily weight gain (ADG) of piglets from birth to weaning. The study was done in 3 Danish farrow-to-finish herds and included 581 sows, 277 pens, 814 farrowings, and 8241 piglets. The data were analysed with a linear mixed model where the response was ADG, and sow and litter were random effects. Piglet treatments for arthritis (-38 g per day), diarrhoea (-8 g per day) and other infections (-21 g per day) were the major infectious contributors to lower ADG. Forelimb-skin abrasions on a piglet (-5 g per day), weak pasterns of sows on concrete slats (-34 g per day), suckling a sow with poor milking 3 weeks after farrowing (-14 g per day), low birth weight (-8.4 g per day per 100 g), male compared to female (-4 g per day) also were associated with lower ADG in the suckling period.  相似文献   

20.
Data and pedigree information used in the present study were 3,022 records of kids obtained from the breeding station of Raini goat. The studied traits were birth weight (BW), weaning weight (WW), average daily gain from birth to weaning (ADG) and Kleiber ratio at weaning (KR). The model included the fixed effects of sex of kid, type of birth, age of dam, year of birth, month of birth, and age of kid (days) as covariate that had significant effects, and random effects direct additive genetic, maternal additive genetic, maternal permanent environmental effects and residual. (Co) variance components were estimated using univariate and multivariate analysis by WOMBAT software applying four animal models including and ignoring maternal effects. Likelihood ratio test used to determine the most appropriate models. Heritability ( \texth\texta2 ) \left( {{\text{h}}_{\text{a}}^2} \right) estimates for BW, WW, ADG, and KR according to suitable model were 0.12 ± 0.05, 0.08 ± 0.06, 0.10 ± 0.06, and 0.06 ± 0.05, respectively. Estimates of the proportion of maternal permanent environmental effect to phenotypic variance (c 2) were 0.17 ± 0.03, 0.07 ± 0.03, and 0.07 ± 0.03 for BW, WW, and ADG, respectively. Genetic correlations among traits were positive and ranged from 0.53 (BW-ADG) to 1.00 (WW-ADG, WW-KR, and ADG-KR). The maternal permanent environmental correlations between BW-WW, BW-ADG, and WW-ADG were 0.54, 0.48, and 0.99, respectively. Results indicated that maternal effects, especially maternal permanent environmental effects are an important source of variation in pre-weaning growth trait and ignoring those in the model redound incorrect genetic evaluation of kids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号