首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Stump sprouts are an important form of regeneration for a number of species in the southern Appalachians, especially the oaks (Quercus spp.). Alternative regeneration systems to clearcutting such as shelterwood and leave-tree systems are being implemented in many hardwood stands in the Appalachians. However, the effects of these alternative silvicultural systems on stump sprouts are not known. Therefore, we evaluated the impact of three silvicultural systems: a clearcut, leave-tree, and shelterwood on stump sprouting. These treatments were implemented in seven stands in Virginia and West Virginia in the Appalachian Plateau (AP) and Ridge and Valley (RV) physiographic provinces. The stands were even-aged oak dominated Appalachian hardwood stands with ages ranging from 62 to 100 years.  相似文献   

2.
To understand long-term impacts of partial cutting practices on stream-dwelling salamanders in the central Appalachians, we examined pooled abundance of Desmognathus fuscus and D. monticola salamanders (hereafter Desmognathus) in headwater streams located within long-term silvicultural research compartments on the Fernow Experimental Forest, Tucker County, West Virginia. We sampled Desmognathus salamanders in 12 headwater streams within silvicultural research compartments that have been subjected to partial cutting for approximately 50 years. We used an information-theoretic approach to test five a priori models explaining partial cutting effects at the compartment-level on Desmognathus abundance and eight a priori models explaining stream reach-scale habitat effects on Desmognathus abundance. Our modeling efforts resulted in the selection of two competing models explaining partial cutting effects on Desmognathus abundance at the compartment-level. The VOLUME model, which incorporated cumulative timber volume harvested within compartments, received the greatest support and indicated that Desmognathus abundance was impacted negatively by increased timber volume removal. The second model, LASTDISTURB, incorporating the single variable of time since last harvest activity, indicated that Desmognathus abundance increased with time since last harvest at the compartment-level. For stream reach-scale habitat variables, the EMBEDDED model incorporating the percent of embedded substrate within streams, received the strongest support for explaining Desmognathus abundance. Our results suggest that long-term partial cutting suppresses Desmognathus abundance, possibly by increasing stream sedimentation and thereby reducing available cover for juvenile and adult salamanders. However, these practices do not appear to have threatened long-term persistence of Desmognathus in central Appalachian headwater streams.  相似文献   

3.
The search for indicators to monitor management impact on biodiversity is a crucial question because management practices promote changes in community structure and composition of different animal groups. This study explores the effect of widely conducted management practices (forest logging and livestock) in Pinus uncinata forests in the Pyrenees range (NE Spain) on the structure and composition of ground ant communities compared to those of old-growth stands. Forest structure clearly differed in stands with different forest managements. These stands managed for different uses also showed marked differences in structure and composition of ground ant communities. There was a great dominance of a single species, Formica lugubris, which accounted for 99% of ants collected in pitfall traps. Rarefaction curves indicated that species richness was highest in old-growth stands and lowest in even-aged ones, with woodland pasture stands showing an intermediate value. Classification methods allowed us to identify two groups of species: six species related to old-growth plots and three species (including F. lugubris) associated to managed stands. Habitat structure played an important role in determining the structure of ant communities: forests with high tree density but low basal area were the most favourable forest type for F. lugubris, while the abundance of the remaining ant species was negatively affected by the abundance of F. lugubris and by tree cover.  相似文献   

4.
In western North America, quaking aspen (Populus tremuloides) is the most common hardwood in montane landscapes. Fire suppression, grazing and wildlife management practices, and climate patterns of the past century are all potential threats to aspen coverage in this region. If aspen-dependent species are losing habitat, this raises concerns about their long-term viability. Though lichens have a rich history as air pollution indicators, we believe that they may also be useful as a metric of community diversity associated with habitat change. We established 47 plots in the Bear River Range of northern Utah and southern Idaho to evaluate the effects of forest succession on epiphytic macrolichen communities. Plots were located in a narrow elevational belt (2134–2438 m) to minimize the known covariant effects of elevation and moisture on lichen communities. Results show increasing total lichen diversity and a decrease in aspen-dependent species as aspen forests succeed to conifer cover types. The interactive roles of stand aspect, basal area and cover of dominant trees, stand age, aspen bark scars, and recent tree damage were examined as related to these trends. We developed an aspen index score based on lichens showing an affinity for aspen habitat (Phaeophyscia nigricans, Physcia tenella, Xanthomendoza fulva, Xanthomendoza galericulata) and found a significant negative relationship between the index and successional progression. Indicator species analysis showed the importance of all stages of aspen-conifer succession for lichen community diversity and highlighted the decline of aspen-dependent species with advancing succession. We present a landscape-level community analysis of lichens in the context of a conceptual model for aspen succession for the southern Rocky Mountains. We conclude that while total number of lichen species increases with succession, aspen-dependent species cover and richness will decline. In this way, epiphytic lichens communities may constitute an effective indicator of community-level diversity in for aspen-dependent species at-large.  相似文献   

5.
Understory herb communities in the Southern Appalachians are among the highest biodiversity plant communities in North America. In the mid-1990s, a debate began over whether understory herb communities recover to their pre-disturbance states following logging. Studies showing reduced herb-layer diversity in previously logged forests were criticized for not accounting for intersite environmental heterogeneity. More recent studies have addressed environmental heterogeneity, but have neglected long-term recovery by using “mature forests” as young as 80 years old as the benchmark for diversity comparison, even though old growth stands have disturbance return intervals exceeding 500 years. Here we address concerns clouding previous studies of high-diversity Appalachian herb communities and investigate their long-term recovery by comparing paired sites of old growth forest and forest logged 100–150 years ago. We found that species richness and individual abundance is greater in old growth forests than mature forests and that species composition differed significantly between the two. Turnover in species among old growth and mature forests accounted for 11% of the total species richness and was significantly greater than expected. Species turnover at intermediate (5–50 m) and landscape-scales (>10 km) contributed the most towards total species richness. Herb communities in rich cove forests have successional trajectories that exceed 150 years, with important community changes still occurring long after the forest returns to what has been previously termed a “mature” state. To conserve the diverse herb layer, we conclude that mature forest stands are too young to serve as baselines for recovery, landscape-scale preservation of multiple forest stands is needed to maximize species richness, and maintaining 100–150-year logging rotations will likely lead to loss of biodiversity.  相似文献   

6.
Using coverboard arrays, we monitored woodland salamanders on the Fernow Experimental Forest in the central Appalachian Mountains, West Virginia, USA prior to and following two prescribed fires in mixed oak (Quercus spp.) forest stands. Treatments were burn plots on upper slopes or lower slopes fenced to prevent white-tailed deer (Odocoileus virginianus) herbivory or control plots that were unfenced and unburned. Most of the 7 species we observed were the mountain dusky salamander (Desmognathus ocropheaus), red-backed salamander (Plethodon cinereus) and slimy salamander (Plethodon glutinosis). Significant population responses were difficult to interpret with numerous treatment and year interactions. Results largely were equivocal. We found no change in woodland salamander assemblage prior to burning or afterwards. There were few differences in adult to juvenile ratios of salamanders among treatments. Still, a priori contrasts of mountain dusky salamanders and red-backed salamander counts corrected for detection probability were greater under coverboards in the 2 years monitored after both prescribed fires had occurred than before burning or in unburned controls. This suggests that these species responded to the reduced leaf litter on the forest floor by utilizing coverboards more. Similarly, the three predominate species of salamanders also were more numerous under coverboards in plots subjected to deer herbivory with less subsequent forest floor vegetation as compared to those burned plots that were fenced. Our observations would suggest that woodland salamanders somewhat are tolerant of two prescribed fires within close temporal proximity. However, because woodland salamanders can be significantly reduced following timber harvest, continued research is needed to fully understand impacts of fire as a pre-harvest management tool in central Appalachian forests.  相似文献   

7.
We compared the effects of three fuel reduction techniques and a control on the relative abundance and richness of reptiles and amphibians using drift fence arrays with pitfall and funnel traps. Three replicate blocks were established at the Green River Game Land, Polk County, North Carolina. Each replicate block contained four experimental units that were each approximately 14 ha in size. Treatments were prescribed burn (B); mechanical understory reduction (M); mechanical + burn (MB); and controls (C). Mechanical treatments were conducted in winter 2001–2002, and prescribed burns in March 2003. Hot fires in MB killed about 25% of the trees, increasing canopy openness relative to controls. Leaf litter depth was reduced in B and MB after burning, but increased in M due to the addition of dead leaves during understory felling. The pre-treatment trapping period was short (15 August–10 October 2001) but established a baseline for post-treatment comparison. Post-treatment (2002–2004), traps were open nearly continuously May–September. We captured a total of 1308 species of 13 amphibians, and 335 reptiles of 13 species. The relative abundance of total salamanders, common salamander species, and total amphibians was not changed by the fuel reduction treatments. Total frogs and toads (anurans) and Bufo americanus were most abundant in B and MB; however, the proximity of breeding sites likely affected our results. Total reptile abundance and Sceloporus undulatus abundance were highest in MB after burning, but differed significantly only from B. Mean lizard abundance in MB was highest in 2004 and higher than in other treatments, but differences were not statistically significant. Our results indicate that a single application of the fuel reduction methods studied will not negatively affect amphibian or reptile abundance or diversity in southern Appalachian upland hardwood forest. Our study further suggests that high-intensity burning with heavy tree-kill, as in MB, can be used as a management tool to increase reptile abundance – particularly lizards – with no negative impact on amphibians, at least in the short-term.  相似文献   

8.
The efficiency with which trees convert photosynthetically active radiation (PAR) to biomass has been shown to be consistent within stands of an individual species, which is useful for estimating biomass production and carbon accumulation. However, radiation use efficiency (?) has rarely been measured in mixed-species forests, and it is unclear how species diversity may affect the consistency of ?, particularly across environmental gradients. We compared aboveground net primary productivity (ANPP), intercepted photosynthetically active solar radiation (IPAR), and radiation use efficiency (? = ANPP/IPAR) between a mixed deciduous forest and a 50-year-old white pine (Pinus strobus L.) plantation in the southern Appalachian Mountains. Average ANPP was similar in the deciduous forest (11.5 Mg ha−1 y−1) and pine plantation (10.2 Mg ha−1 y−1), while ? was significantly greater in the deciduous forest (1.25 g MJ−1) than in the white pine plantation (0.63 g MJ−1). Our results demonstrate that late-secondary hardwood forests can attain similar ANPP as mature P. strobus plantations in the southern Appalachians, despite substantially less annual IPAR and mineral-nitrogen availability, suggesting greater resource-use efficiency and potential for long-term carbon accumulation in biomass. Along a 260 m elevation gradient within each forest there was not significant variation in ?. Radiation use efficiency may be stable for specific forest types across a range of environmental conditions in the southern Appalachian Mountains, and thus useful for generating estimates of ANPP at the scale of individual watersheds.  相似文献   

9.
The extensive removal of competing broadleaved shrubs in forest plantations typically results in structural and compositional simplification of early seral habitat. However, information on the tradeoffs between such intensive forestry practices and biodiversity is scant. Here we assess the magnitude and direction of potential impacts of intensive forest management on populations of early seral-associated breeding birds. Observed population declines of several Neotropical migrant bird species are hypothesized to be linked to the loss of early seral habitat on the breeding grounds. We investigated the association between broadleaved hardwood cover and avian abundance and diversity in intensively managed early seral Douglas-fir (Pseudotsuga menziesii) stands of the Pacific Northwest. Bird species richness decreased across an elevational gradient, but did not vary as a function of either local vegetation composition or structure. In contrast, bird abundance was strongly associated with hardwood cover at local and landscape scales, especially for foliage-gleaning species. We found strong support for the existence of a threshold in relative bird abundance as a function of hardwood at the stand scale; abundance doubled with an increase from 1% to ∼6% hardwood and then reached a plateau. Though abundance of leaf-gleaners increased even more strongly across a gradient in hardwood cover, evidence for a distinct threshold was less clear. We conclude that when early seral hardwood forest is scarce, even small increases in hardwood may provide substantial conservation benefits. However, for some species (i.e., foliage gleaners), there may be more direct trade-offs in abundance and juvenile recruitment with hardwood management intensity.  相似文献   

10.
Forests growing on former agricultural land often have reduced frequencies of many native forest herbs compared with forests that were never cleared for agriculture. A leading explanation for this pattern is that many forest herbs are dispersal limited, but environmental conditions may also hinder colonization. We examined the response of six forest herb taxa (Arisaema triphyllum, Cimicifuga racemosa, Disporum lanuginosum, Osmorhiza spp., Polygonatum spp., and Prenanthes altissima) to nitrogen (N) fertilization in forests with and without an agricultural history to investigate how N availability affects plant performance. The study was conducted in the southern Appalachian Mountains in western North Carolina, USA. There was a significant interaction between land-use history and N treatment for several species. In A. triphyllum and Osmorhiza spp., N fertilization increased aboveground biomass or leaf area more in the post-agriculture site than in the reference site. However, in the reference site, N fertilization depressed aboveground biomass or leaf area in the same taxa, as well as in C. racemosa. The foliar N concentration of these three taxa was elevated in fertilized plots regardless of land-use history, and there was no indication that the light environment differed among plots. These results suggest that some plants growing in post-agricultural stands may be N limited, whereas undisturbed stands in this region appear to be approaching N saturation. Thus, environmental conditions, and particularly N availability, may be an obstacle to the restoration of forest herb communities.  相似文献   

11.
Forest disturbances of various spatial extents and magnitudes shape species composition, structure, and stand development patterns. The disturbance regimes of most complex stage hardwood stands of the deciduous forests of eastern North America are typified by asynchronous and localized disturbance events. The overwhelming majority of gap-scale disturbance studies in hardwood forests of the region have analyzed late-successional stands. As such, there is a paucity of data on gap dynamics in hardwood stands prior to a complex developmental stage. We quantified biophysical characteristics of 60 canopy gaps in secondary Quercus stands on the Cumberland Plateau in Alabama to analyze gap-scale disturbance processes in developing systems. We found most gaps (90%) were caused by the removal of a single tree. Of the three gap formation mechanisms, snag-formed gaps were most common (40%). However, based on the number of uprooted and snapped stems we speculate that wind was also an important disturbance agent in these stands. Gap size and shape patterns were similar to what has been reported in other hardwood forests of the southern Appalachian Highlands. We did not find differences in gap size or shape based on formation mechanisms; a finding that may be related to the number of single-tree gap events. Gaps projected to close via subcanopy recruitment were significantly larger than those projected to close through lateral crown expansion. Most gaps (65%) were projected to close by lateral crown expansion of gap perimeter trees. However, the number of gaps projected to fill by subcanopy recruitment indicated the stands were approaching a transition in their developmental stage. Gap-scale processes modify residual tree architecture and stand structure. Through time these alterations result in progressively larger gaps, eventually reaching a size when most will fill by subcanopy recruitment, thus marking the complex stage of development. Gap capture by Quercus was restricted to relatively xeric sites that did not contain abundant shade-tolerant mesophytes in the understory. However, the majority of gaps contained abundant subcanopy Fagusgrandifolia, Acer saccharum, and Acer rubrum leading us to project that the forest will undergo a drastic composition shift under the current disturbance regime. Liriodendron tulipifera was projected to capture several relatively small gaps illustrating the role of topography on gap closure mechanisms.  相似文献   

12.
闽北毛竹林枯落物层持水功能研究   总被引:11,自引:3,他引:11       下载免费PDF全文
以杉木林和常绿阔叶林为对照,对闽北典型毛竹林(杉竹混交林、毛竹纯林、竹阔混交林)林下枯落物储量、持水特性及其对降雨的拦蓄能力进行研究,结果表明:(1)各林分未分解层、半分解层和已分解层枯落物储量、最大持水量和有效拦蓄差异较大,但均以半分解层最高,分解层次之,未分解层最小;杉木纯林枯落物总储量、最大持水量和有效拦蓄均最高,分别为14.6 t·hm-2、2.668 mm和1.43mm,竹阔混交林次之,分别为7.0 t·hm-2、1.298 mm和0.76 mm,毛竹纯林最低,分别仅为4.7 t·hm-2、0.916 mm和0.58 mm。(2)5种林分各层枯落物持水量与浸泡时间的关系为:S=k ln(t)+p,在0 - 2 h内,枯落物持水量迅速增加,此后增加速度逐渐减缓;其吸水速率与浸泡时间的关系为:V=at-1+b,在0 - 1 h内,枯落物吸水速率迅速下降,2 h后下降速度逐渐减缓。(3)竹阔混交林枯落物持水能力虽小于杉木纯林但在竹林中最强,对此,在竹林改造和竹林经营过程中应加以重视。  相似文献   

13.
American chestnut is often listed as an important component of mesic midslopes and xeric ridges in pre-blight southern Appalachian forests, but its former importance in riparian forests has generally been considered minor. To document its importance in riparian forests, 589 American chestnut stumps were located on four sites (two previously logged, two unlogged) in the Blue Ridge physiographic province of the southern Appalachians. Diameters and basal areas of chestnut were calculated and compared among sites and to basal area (BA) of live trees. Chestnut BA ranged between 8.4 and 12.4 m2/ha (25 and 40% of current BA). Vegetative composition on 58 random plots suggests that three community types were represented on the four study sites: (1) old-growth forest with sparse rhododendron; (2) logged forest with sparse rhododendron; and (3) forest dominated by rhododendron which controlled vegetative composition regardless of logging status. Thickets of ericaceous shrubs that developed after the blight were significantly denser in logged forest than in old-growth. Only shade-tolerant herbs such as galax and partridge-berry, as well as a rare orchid, Appalachian twayblade, were found growing in rhododendron thickets. Results of our study suggest that the gap-phase hypothesis, where species diversity is maintained in cove forests of the southern Appalachians through gap-phase disturbance, should be modified to allow for dynamics influenced by rhododendron. The reintroduction of periodic fire into southern Appalachian riparian habitat may control rhododendron dominance and improve tree regeneration.  相似文献   

14.
Attributes of fine roots (<2.0 mm diameter) were quantified in five southern Appalachian plant communities along an elevational gradient. These attributes include the seasonal dynamics of fine root mass and length, the depth distribution of fine roots, fine root width and, most importantly, the annual appearance and disappearance of fine roots. The principal objectives of this study were two-fold: (1) to compare these attributes of fine roots between plant communities and (2) to compare the results of the two methods used to quantify the attributes: (1) harvesting roots from forest soil with soil cores and (2) photographing roots growing against the windows of minirhizotron boxes. The plant communities that were sampled are characteristic of the region and are designated as follows from lowest elevation (782 m) to highest elevation (1347 m): (1) xeric ridge, (2) cove hardwoods, (3) low elevation mixed oak, (4) high elevation mixed oak, and (5) northern hardwoods. Fine root mass varies seasonally in this temperate region with lowest and highest mass in the spring and autumn, respectively. Fine root mass and fine root mass appearance were lowest in the cove hardwood community and highest in the low elevation mixed oak community. The total length of fine roots was highest in the xeric ridge community and lowest in the low elevation mixed oak community. The high total root length in the xeric ridge community was due to the presence of an exceptionally dense mat of very fine roots found there. The width of these roots was significantly less than that of roots on all other plots. Subsequent regression illustrates two strong patterns in the data. First, fine root mass, fine root mass appearance and leaf production were positively correlated. Second, fine root length and soil moisture were negatively correlated. The accumulation of root mass in these communities was linked to overall site productivity and the development of root length in response to moisture stress. Only the timing of root growth initiation was related to elevation and the associated parameter of soil temperature. The best estimates of fine root appearance and disappearance were generated by harvesting roots rather than photographing them. Some methodological problems with root photography implemented in this study are addressed.  相似文献   

15.
16.
Uneven-aged silviculture in loblolly pine (Pinus taeda L.) stands has many economic and ecological benefits. Here, the consequences of various uneven-aged management regimes are predicted with the SouthPro simulator. Results indicate that target distributions for pines with residual merchantable basal areas of ≈12.5 m2 ha−1, maximum diameters of ca. 40 cm, and q-ratios of 1.2–1.25 for 2.5 cm DBH classes are likely to provide high economic returns on good sites when combined with hardwood control. Increasing this maximum diameter would enhance tree-size diversity, but reduce sawtimber production and profits. Retaining a hardwood component with 1.15–2.3 m2 ha−1 of basal area could enhance tree-species diversity, but this too would result in moderate reductions in income. Insisting on maximizing tree-size diversity or tree-species diversity among softwoods, soft hardwood, and hard hardwoods would be quite costly in terms of lost income and production. Results also illustrate how short-term economic incentives can lead to high-grading practices, despite substantial reductions in stand productivity and net returns in the long term.  相似文献   

17.
A methodological approach to the identification of biodiversity indicators in commercial forest stands is illustrated by analysis of the relationships between syrphid (hoverflies) and carabid (ground beetles) community composition and diversity, and stand structure and field layer vegetation. Data were collected from 12 commercial forest sites encompassing a range of climatic conditions and different crop types (Scots pine, Sitka spruce, Norway spruce and Corsican pine) across the UK. Comparisons were also made between unmanaged semi-natural Scots pine woods and Scots pine plantations. For both syrphids and carabids, no differences in species richness and diversity were recorded between semi-natural stands and plantations; one rare syrphid considered to be restricted to semi-natural pine stands was also found in spruce. Syrphid species diversity and richness was higher in southern spruce sites than in the northern sites. Northern sites had distinctive carabid communities, as did sites in the New Forest, a large ancient woodland in southern England. Of the measured habitat variables, vertical stand structure showed the best correlation with species richness and diversity of both carabids and syrphids. Richness and diversity were less in stands with high vertical cover values for canopy layers. Stands with higher field layer cover supported greater syrphid diversity, but lower carabid diversity. Measures of stand structure could be used as potential indicators of syrphid and carabid diversity, but additional habitat parameters also need to be tested.  相似文献   

18.
The vegetation of Pinus radiata plantation forests in New Zealand was studied to examine how the indigenous flora has responded to this novel habitat. A chronosequence of stands about 5, 16 and 27 years was assessed in each of four different biogeographic regions to test the effects of several stand and site factors on the succession of vascular understorey plant communities. A total of 202 indigenous and 70 adventive vascular plant species were found across all study areas, with considerable geographic variation among forests in species composition, species richness (range 48–135 species), and the percentage of indigenous species (50–86%). Both richness and cover of adventive species decreased significantly over time, whereas richness and cover of indigenous species was highest in the oldest stands, and overall species richness was lowest at mid-rotation. The guild composition changed from dominance of grasses and forbs in young stands to dominance of ferns and understorey trees in mature stands. These temporal changes were accompanied by a decrease in light-demanding pioneer species and an increase in shade tolerant, later seral species adapted to a forest environment. Measurements of the degree of canopy closure in stands with low or high stocking and modelling of temporal changes of canopy closure indicated that these understorey plant dynamics are influenced by changes in light availability as stands age. Despite the successional changes within forests, geographic variation more strongly influenced understorey communities because stands within a forest area were grouped together in DCA and TWINSPAN analyses, along rainfall and temperature gradients. Although the canopy species of such intensively managed plantation forests is an alien element in the New Zealand flora, the sheltered forest environment of older stands allows the establishment of a mostly indigenous forest understorey community with considerable similarities to indigenous forests located nearby.  相似文献   

19.
Tank-bromeliads are discrete habitats which contain distinct aquatic communities, and which commonly occur in the neotropics. Because they span a broad range of ecological gradients in terms of habitat structure and amount of resources, researchers study the associations between the biodiversity of communities and these gradients in rainforests, where the very high species richness and densities within other continuous habitats makes it difficult to quantify animal communities. We analysed the diversity of aquatic insect communities in relation to different tank-bromeliad species in a primary rainforest (French Guiana) using artificial intelligence and complex optimization techniques to classify communities and model their determinants. First, the self-organizing map (neural network) was used to classify 158 bromeliads according to the quantitative structure of the insect communities. Catopsis berteroniana and Guzmania lingulata formed separate clusters of plants on the virtual map, while Vriesea splendens, Vriesea pleiosticha and Aechmea melinonii were grouped together in the remaining clusters. Some insect taxa occurred in all bromeliads, while other taxa were specific to a given species. Second, general linear modelling allowed us to specify the influence of the bromeliad species; water volume and volume of fine particulate organic matter inside of the tank; elevation above the ground; and sampling site on taxonomic richness and insect abundance. The number of taxa and individuals per plant increased with greater water volume, but the slope of the relationships depended on the bromeliad species. The significant influence of bromeliad species suggested that at similar water volumes different plant species had different taxon richness and insect abundance. Greater amounts of fine particulate organic matter were detrimental to community diversity in the tanks, probably because they decreased available space by clogging it and/or affected oxygen concentrations. The influence of tank-bromeliad species on the aquatic insect community was primarily related to their physical (and probably chemical) features rather than to species-specific associations sensu stricto. The classification of bromeliads with respect to animal species is likely to provide referential schemes for those biodiversity patterns to be expected under certain conditions, and may help to target model communities for subsequent experimental research.  相似文献   

20.
In the Euro-Mediterranean region, mechanical fuel reduction is increasingly used in response to the mounting occurrence of catastrophic wildfires, yet their long-term ecological effects are poorly understood. Although Mediterranean vegetation is resilient to a range of disturbances, it is possible that widespread fuel management at short intervals may threaten forest structural complexity and the persistence of some plant species and functional types, with overall negative consequences for biodiversity. We used a chronosequence approach to infer woody vegetation changes in the first 70 years after understory clearing in upland cork oak (Quercus suber) forests, and to assess how these are affected by treatment frequency. Across the chronosequence there was a shift between plant communities with contrasting composition, structure and functional organization. Understory cover increased quickly after disturbance and a community dominated by pioneer seeder and dry-fruited shrubs (Cistus ladanifer, C. populifolius, Genista triacanthos, and Lavandula stoechas) developed during about 15 years, but this was slowly replaced by a community dominated by resprouters and fleshy-fruited species (Arbutus unedo, Erica arborea) >40 years after disturbance. During the first 15 years there were rapid increases in woody species richness, vertical structural diversity, cover by Q. suber juveniles and saplings, and shrub cover at <1.5 m strata, which levelled off or slightly declined thereafter. In contrast, tree species richness, tree density and density of arboreal A. unedo and E. arborea, vertical structural evenness, and cover at >1.5 m strata increased slowly for >50 years. Treatment frequency showed strongly negative relationships with species richness, structural diversity and evenness, and horizontal and vertical understory cover, particularly that of slowly recovering species. These findings suggest that fuel reduction programs involving widespread and recurrent understory clearing may lead to the elimination at the landscape scale of stands with complex multi-layered understory occupied by large resprouters and fleshy-fruited species, which take a long time to recover after disturbance. Fuel management programs thus need to balance the dual goals of fire hazard reduction and biodiversity conservation, recognizing the value of stands untreated for >50 years to retain ecological heterogeneity in Mediterranean forest landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号