共查询到20条相似文献,搜索用时 15 毫秒
1.
The present investigation was undertaken to evaluate the effect of various levels of water and N application through drip irrigation on seed cotton yield and water use efficiency (WUE). In this experiment three levels of water (Epan 0.4, 0.3, and 0.2) and three levels of N (100, 75, and 50% of recommended N, 75 kg/ha) through drip were compared with check-basin method of irrigation under two methods of planting (normal sowing, NS; paired sowing, PS). The results revealed that when the same quantity of irrigation water and N was applied through drip irrigation system, it increased the seed cotton yield to 2144 from 1624 kg/ha (an increase of 32%) under check-basin method of irrigation. When the quantity of water through drip was reduced to 75%, the increase in seed cotton yield was 12%; however, when water was reduced to 50%, it resulted 2% lower yield than check-basin. The decrease in N through fertigation resulted in reduction in seed cotton yield at all the levels of water supply, but the magnitude of reduction was the highest at highest level of water supply. In paired sowing (PS), 20% higher seed cotton yield was obtained as compared with check-basin method under NS along with 50% saving of water. In paired sowing the sacrifice of 9% seed cotton yield as compared with NS resulted in saving of 50% water as well as the cost of laterals because there was one lateral for two paired rows. The WUE increased by 26% (22.1 from 17.6 kg/ha cm) in drip irrigation system when same quantity of water and N fertilizer was applied as compared with check-basin. WUE was not affected with quantity of water but decrease in rate of N caused a decrease in WUE at all the quantities of water applied. In general, WUE was higher in PS as compared with NS. The agronomic efficiency of nitrogen increased from 21.65 to 28.59 kg of seed cotton per kg of N applied when same quantity of water and N was applied through drip irrigation as compared with check-basin. However, decrease in quantity of water applied resulted in a decrease in agronomic efficiency of N but reverse was true for rates of N applied. When the same quantity of water and N was applied under both the methods of planting, PS produced 22% higher seed cotton yield and along with reduced cost owing to half the number of laterals required. 相似文献
2.
为探究不同灌溉时段及水温对膜下滴灌棉花生理特性及产量的影响,设置4个灌溉水温梯度分别为15.00(正常灌溉水温),20.00,25.00,30.00℃,2个灌溉时段分别为日间、夜间(分别记为DW,NW)进行完全组合设计,共计8个处理.结果表明,增温灌溉提前了棉花生育进程,促进了棉花株高、茎粗、叶面积增长,有利于棉花光合作用的进行,且在夜间进行增温灌溉效果更显著.增温灌溉使棉花产量显著提高2.95%~14.13%,夜间灌溉较日间灌溉棉花产量平均提高3.34%.基于回归分析确定提高棉花产量的最佳灌溉时段为夜间,最佳灌溉水温为26.38℃,对应的产量为7 482.96 kg/hm 2.该研究可为北疆膜下滴灌棉花实施增温灌溉技术提供理论依据和技术参考. 相似文献
3.
A field experiment comparing different irrigation frequencies and soil matric potential thresholds on potato evapotranspiration (ET), yield ( Y) and water-use efficiency (WUE) was carried out in a loam soil. The experiment included five treatments for soil matric potential: F1 (-15 kPa), F2 (-25 kPa), F3 (-35 kPa), F4 (-45 kPa) and F5 (-55 kPa) and six treatments for irrigation frequency: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days). Results indicate that both soil matric potential and drip irrigation frequency influenced potato ET, Y and WUE. Potato ET increased as irrigation frequency and soil matric potential increased. Comparing soil water potential, the highest ET was 63.4 mm (32.1%) more than the lowest value. Based on irrigation frequency treatments, the highest ET was 36.7 mm (19.2%) more than the lowest value. Potato Y and WUE were also found to increase as irrigation frequency increased. Potato Y increased with an increase in soil water potential then started to decrease. The highest Y and WUE values were achieved with a soil matric potential threshold of -25 kPa and an irrigation frequency of once a day.Communicated by J. Ayars 相似文献
4.
Field experiment was carried out to investigate the effect of soil matric potential (SMP) on tomato yield, evapotranspiration (ET), water use efficiency (WUE) and irrigation water use efficiency (IWUE) under drip irrigation condition in North China Plain. The experiment included five treatments, which controlled SMP at 0.2 m depth immediately under drip emitter higher than −10 (S1), −20 (S2), −30 (S3), −40 (S4) and −50 kPa (S5), respectively, after tomato plant establishment. The results showed that different SMP affected irrigation amount and tomato ET. Irrigation amount decreased from 185 mm (S1) to 83.6 mm (S5) in 2004, and from 165 mm (S1) to 109 mm (S5) in 2005, respectively. The ET decreased from 270 mm (S1) to 202 mm (S5) in both years. However, it was found that SMP did not affect the tomato yield significantly, for the range of SMP investigated. Both WUE and IWUE increased as SMP decreased. The maximum WUE (253 and 217 kg/ha mm) and IWUE (620 and 406 kg/ha mm) were for S5 in 2 years, whereas the minimum WUE (178 and 155 kg/ha mm) and IWUE 261 and 259 kg/ha mm) were for S1 in 2004 and 2005. Based on the above results, therefore, it is recommended that if the tomatoes are well irrigated (SMP is higher than −20 kPa) during establishment, controlling SMP higher than −50 kPa at 0.2 m depth immediately under drip emitter can be used as an indicator for drip irrigation scheduling during following period of tomato growth in North China Plain. 相似文献
5.
Non-uniformities in soil hydraulic properties and infiltration rates are considered to be major reasons for the inefficiencies
of some surface irrigation systems. These non-uniformities may cause non-uniformities in soil water contents and could potentially
affect plant growth. To investigate whether the non-uniformities in soil water contents can be overcome by well-managed irrigation
systems, fields with clay loam soils and planted to cotton were irrigated with a continuous-flow, a surge flow, and a subsurface
drip system. Measurements of water contents in each field were taken throughout the growing season at several depths. The
water contents measured within the top 0–0.9 m in the three irrigations systems were evaluated in terms of their spatial and
temporal variabilities. The analyses indicated that on this soil, use of the surge flow system did not lead to increased spatial
uniformities of soil water contents compared with the continuous-flow system. Use of the subsurface drip system resulted in
very non-uniform soil water contents above the depth of the emitters. Variability in water contents below the emitter depth
was comparable to the surface irrigation systems.
Received: 26 March 1996 相似文献
6.
A field study for the arid northwest China has been conducted to find water-saving strategies of drip irrigation for dense-planted crops. The annual water consumption for optimal growth was 420 mm, of which soil evaporation was 27% and the foliage transpiration 73%. A relationship between soil water consumption and the irrigation amount, crop yield and water use efficiency were established. It was found that for high crop yield, it is important to maintain rather high soil water content during the two sensitive growth stages: elongation and milky filling stages. It is concluded that with drip irrigation higher yield was achieved although much less water was applied than what was used in block irrigation experiment. 相似文献
7.
以华北地区冬小麦为试验对象,参考直径20 cm标准蒸发皿的累计水面蒸发量 E,通过2 a的大田试验(2012—2013),研究了大田地表滴灌条件下水氮耦合制度对作物耗水量、作物生理指标、产量、氮残留及水氮利用效率的影响,结果表明,冬小麦生育期内的耗水量、叶面积指数及产量受灌水定额的影响更为显著( P<0.05);滴灌条件下,当施氮量在120~290 kg/hm 2时,水氮耦合效应对冬小麦耗水量的影响不具有统计学意义;在滴灌灌水定额为0.80 E,施氮量为140~190 kg/hm 2的水氮耦合模式下,冬小麦的产量较高,土壤硝态氮的当季残留较少,且进一步显著增加灌水定额和氮肥投入量将导致产量的明显下降;综合考虑冬小麦水氮利用效率和对地下水的潜在淋失风险,华北典型区滴灌水氮耦合的优化组合范围宜为灌水定额为0.80 E,施氮量为140~190 kg/hm 2. 相似文献
8.
Deficit irrigation occurrence while maintaining acceptable yield represents a useful trait for sunflower production wherever irrigation water is limited. A 2-year experiment (2003–2004) was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to investigate sunflower response to deficit irrigation. In the plots, irrigation was held at early flowering (stage F1), at mid flowering (stage F3.2) and at early seed formation (stage M0) until physiological maturity. Deficit-irrigated treatments were referred to as WS1, WS2 and WS3, respectively, and were compared to a well-irrigated control (C). Reference evapotranspiration (ET rye-grass) and crop evapotranspiration (ET crop) were measured each in a set of two drainage lysimeters of 2 m × 2 m × 1 m size cultivated with rye grass ( Lolium perenne) and sunflower ( Helianthus annuus L., cv. Arena). Crop coefficients ( Kc) in the different crop growth stages were derived as the ratio (ET crop/ET rye-grass). Lysimeter measured crop evapotranspiration (ETcrop) totaled 765 mm in 2003 and 882 mm in 2004 for total irrigation periods of 139 and 131 days, respectively. Daily ETcrop achieved a peak value of 13.0 mm day−1 at flowering time (stage F3.2; 80–90 days after sowing) when LAI was >6.0 m2 m−2. Then ETcrop declined to 6.0 mm day−1 during seed maturity phase. Average Kc values varied from 0.3 at crop establishment (sowing to four-leaf stage), to 0.9 at late crop development (four-leaf stage to terminal bud), to >1.0 at flowering stage (terminal bud to inflorescence visible), then to values <1.0 at seed maturity phase (head pale to physiological maturity). Measured Kc values were close to those reported by the FAO. Average across years, seed yield at dry basis on the well-irrigated treatment was 5.36 t ha−1. Deficit irrigation at early (WS1) and mid (WS2) flowering stages reduced seed yield by 25% and 14% (P < 0.05), respectively, in comparison with the control. However, deficit irrigation at early seed formation was found to increase slightly seed yield in WS3 treatment (5.50 t ha−1). We concluded that deficit irrigation at early seed formation (stage M0) increased the fraction of assimilate allocation to the head, compensating thus the lower number of seeds per m2 through increased seed weight. In this experiment, while deficit irrigation did not result in any remarkable increase in harvest index (HI), water use efficiency (WUE) was found to vary significantly (P < 0.05) among treatments, where the highest (0.83 kg m−3) and the lowest (0.71 kg m−3) values were obtained from WS3 and WS1 treatments, respectively. Finally, results indicate that irrigation limitation at early flowering (stage F1) and mid flowering (stage F3.2) should be avoided while it can be acceptable at seed formation (stage M0). 相似文献
9.
Field experiments were conducted to study the effects of plant-furrow treatments and levels of irrigation on potato ( Solanum tuberosum L.) water use, yield, and water-use efficiency. The experiments were carried out under deficit irrigation conditions in a sandy loam soil of eastern India in the winter seasons of 1991/92, 1992/93, and 1993/94. Two plant-furrow treatments and two levels of irrigation were considered. The two plant-furrow treatments were F 1 - furrows with single row of planting in each ridge with 45 cm distance between adjacent ridges, and F 2 - furrows with double rows of planting spaced 30 cm apart in each ridge with 60 cm distance between adjacent ridges. The two levels of irrigation (LOI) were I 1 - 0.9 IW/CPE and I 2 - 1.2 IW/CPE, where IW is irrigation water of 5 cm and CPE is cumulative pan evaporation. Treatment F 2 produced highest tuber yield in all years with average value of 10,610 kg ha -1 and 12,780 kg ha -1 at LOI of I 1 and I 2, respectively. On average, six irrigations with a total of 25 cm, and seven irrigations with a total of 30 cm were required for both treatments F 1 and F 2 at LOI of I 1 and I 2, respectively. Treatment F 2 resulted in a significantly higher number of branches and tubers per plant, foliage coverage and water-use efficiency for both irrigation levels than treatment F 1. Average daily crop evapotranspiration was found to range from 1.1 to 3.4 mm and from 1.2 to 3.9 mm for treatment F 1 and from 1.1 to 3.6 mm and from 1.2 to 4.0 mm for treatment F 2 at LOI of I 1 and I 2, respectively. 相似文献
10.
为揭示滴灌水分亏缺对辣椒营养品质及产量的影响,以"陇椒6号"为对象,在辣椒苗期分别施加轻度(65%~75%田间持水量)、中度(55%~65%田间持水量)和重度水分调亏(45%~55%田间持水量),在盛果期和后果期分别施加轻度水分亏缺,以全生育期充分供水(75%~85%田间持水量)为对照,分别测定各水分处理辣椒青果营养品... 相似文献
11.
The interpretation of soil water dynamics under drip irrigation systems is relevant for crop production as well as on water use and management. In this study a three-dimensional representation of the flow of water under drip irrigation is presented. The work includes analysis of the water balance at point scale as well as area-average, exploring uncertainties in water balance estimations depending on the number of locations sampled. The water flow was monitored by detailed profile water content measurements before irrigation, after irrigation and 24 h later with a dense array of soil moisture access tubes radially distributed around selected drippers. The objective was to develop a methodology that could be used on selected occasions to obtain ‘snap shots’ of the detailed three-dimensional patterns of soil moisture. Such patterns are likely to be very complex, as spatial variability will be induced for a number of reasons, such as strong horizontal gradients in soil moisture, variations between individual sources in the amount of water applied and spatial variability is soil hydraulic properties. Results are compared with a widely used numerical model, Hydrus-2D. The observed dynamic of the water content distribution is in good agreement with model simulations, although some discrepancies concerning the horizontal distribution of the irrigation bulb are noted due to soil heterogeneity. 相似文献
12.
针对宁夏扬黄灌区严重缺水、土壤瘠薄、肥力低下等问题,在玉米苗期穴施不同用量(0,30,60,90和120 kg/hm 2)的沃特保水剂,并以不施保水剂为对照,研究保水剂不同施用量对土壤水肥状况及作物生长的影响,以探寻玉米滴灌条件下砂质土壤田的保水剂最佳施用量.结果表明,在玉米整个生育期,0~100 cm土壤层贮水量随保水剂施用量增加而增加,施用保水剂90和120 kg/hm 2处理使土壤贮水量,分别较对照显著提高14.0%和17.1%;施用保水剂60 kg/hm 2处理下,土壤养分含量较对照显著增加,其保肥和供肥效果最佳;施用保水剂不同量可促进玉米生长,施用保水剂90 kg/hm 2处理对玉米吐丝期的促进效果显著.与对照处理相比,施用保水剂60 kg/hm 2处理对提高玉米水分利用效率、增产和增收效果最佳,分别较对照处理显著增加41.8%,22.2%和33.9%.因此,适量穴施沃特保水剂可有效改善土壤水肥状况,实现玉米增产增收,以施用保水剂60~90 kg/hm 2为最优,适宜于在宁夏扬黄灌区进行推广应用. 相似文献
13.
为探讨水、盐、氮三因素对棉花生长的耦合效应及最优水肥制度,分别设置了4种灌溉定额(1 575,2 100,2 625,3 150 m 3/hm 2)、4种施氮量(0,150,300,450 kg/hm 2)和4种土壤盐分(非盐化土、轻度、中度和重度盐化土),通过盆栽试验,研究了水、氮、盐对膜下滴灌棉花产量的影响.结果表明:灌溉定额、施氮量和土壤盐分与棉花产量之间符合回归模型,模型对水氮盐的耦合效果较好;单因素对棉花产量影响按因素排序由大到小为灌水量,土壤含盐量,施氮量;耦合作用的影响按因素排序由大到小为盐氮,水氮,水盐;水氮施加量对棉花产量的影响均存在阈值,低于此阈值,棉花增产效果较为明显;中、重度土壤盐分含量明显抑制棉花生长;通过回归模型进行耦合分析,最适合研究区的水肥盐耦合方式为轻盐土壤、灌溉定额2 677 m 3/hm 2和施氮量202 kg/hm 2.本研究可为盐碱区棉田水肥高效利用提供科学依据. 相似文献
14.
为了了解耕培土滴灌条件下种植密度对马铃薯生长、产量以及水分利用效率的影响.试验共设密度分别为7.28×10 4 株/hm 2(RS25),6.67×10 4 株/hm 2(RS35),5.55×10 4 株/hm 2(CK)3个处理.结果表明:随着种植密度的增加,株高、茎粗、干物质积累量以及商品薯率均有降低的趋势;产量、水分利用效率随种植密度的增加表现出先增大后减少,其中RS35处理产量和水分利用效率均表现最高,分别达到47 325 kg/hm 2和12.05 kg/m 3;在马铃薯品质方面,种植密度对马铃薯粗蛋白含量的影响不具有统计学意义;淀粉和维生素C随着密度的大幅增加而降低,其中RS25处理的淀粉较CK降低了5.57%,RS25处理的维生素C较CK降低了7.96%,同时RS35与CK处理不具有统计学意义.综上所述,种植密度为6.67×10 4 株/hm 2的RS35处理马铃薯高产优质,且水分利用效率最高,为黑龙江地区滴灌马铃薯较为适宜的种植密度. 相似文献
15.
Subsurface drip system is the latest method of irrigation. The design of subsurface drip system involves consideration of
structure and texture of soil, and crop’s root development pattern. A 3-year experiment was conducted on onion ( Allium Cepa L., cv. Creole Red) in a sandy loam soil from October to May in 2002–2003, 2003–2004 and 2004–2005 to study the effect of depth
of placement of drip lateral and different levels of irrigation on yield. Tests for uniformity of water application through
the system were carried out in December of each year. Three different irrigation levels of 60, 80 and 100% of the crop evapotranspiration
and six placement depths of the drip laterals (surface (0), 5, 10, 15, 20 and 30 cm) were maintained in the study. Onion yield
was significantly affected by the placement depth of the drip lateral. Maximum yield (25.7 t ha −1) was obtained by applying the 60.7 cm of irrigation water and by placing the drip lateral at 10 cm soil depth. Maximum irrigation
water use efficiency (IWUE) (0.55 t ha −1 cm −1) was obtained by placing the drip lateral at 10 cm depth. The greater vertical movement of water in the sandy-loam soil took
place because of the predominant role of gravity rather than that of the capillary forces. Therefore, placement of drip lateral
at shallow depths is recommended in onion crop to get higher yield. 相似文献
16.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn ( Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc ( R2 = 0.89) and ETc/ETp ( R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management. 相似文献
17.
土壤水热分布状况是作物优质高产的关键环境条件之一,基于土壤水、热运动基本方程,结合地表滴灌水分运动特点,建立了地表滴灌水、热运移数学模型,利用HYDRUS-2D软件对构建的数学模型进行了数值求解,并对数值模拟得到的土壤水热值与田间实测数值进行了对比验证。结果表明, 所构建的数学模型对地表滴灌条件下的土壤水分运动和土壤温度变化及分布的动态变化具有较好的模拟效果;当土壤、气象以及灌水资料等可知时,利用该数学模型可以较准确地预测地表滴灌条件下水热耦合迁移与分布规律,模型可用来适时监测和调控地表滴灌条件下作物生长所需的土壤水、热环境条件。此外,数值模拟值和实测结果都显示,地表滴灌条件下上层土壤的水分和温度值较下层土壤易受到土壤蒸发和大气温度剧烈波动的影响。 相似文献
18.
Drip irrigation is the most effective and reliable method for reclaimed water irrigation. The water usually contains a lot of suspended particles, metal salt ions, organisms and microbial communities, which will enhance the possibility of emitter clogging or more complex clogging mechanism. Emitter clogging has become one of the key problems to the application and popularization of the drip irrigation technology. In this paper, we selected four kinds of pressure-compensating emitters and four kinds of non-pressure-compensating emitters, and executed the experiment of drip irrigation with on-site reclaimed water treated with cyclic activated sludge system (CASS). The emitter discharge ratio variation (Dra), coefficient of uniformity (CU) and clogging rate distribution were analyzed to evaluate the emitter clogging characteristics after eliminating the effect of temperature and pressure on the emitter outflow by data correction. The results showed that Dra and CU varied in three periods as system operation. The beginning of experiment was the fluctuated balance period, Dra and CU recurrent fluctuated in 5 %, and the emitters clogged at some spots after the system run 36–48 h. Then the two parameters varied linearly in 60–108 h, tuning into the initiate linear period, as the non-pressure-compensating emitters got an obvious linear change than the pressure-compensating ones with the gradient changed from ?0.094 to 0.042 and ?0.073 to 0.047, respectively. Some of the emitters have a significant difference on these two parameters at this stage. After the restarting in the second year, Dra and CU decreased sharply. The maximum decrement was, respectively, 9.6 and 10.7 %. Then they varied in line with a greater slope degree as all emitters reached the significant level, the gradient ranges were ?0.176 to 0.115 and ?0.216 to 0.117, respectively. This stage was called the accelerated linear period. Seriously clogged and completely clogged emitters appeared, and both Dra and CU dropped down to 38.7 and 41.5 %. Various degrees of clogged emitters often emerged in the end part of lateral at first then propelled to the head gradually, the completely clogged emitters in the end accounted for more than 73.0 % when the system run 540 h. Comprehensively considered, the pressure-compensating emitters and cusp-shaped saw-tooth non-pressure-compensating emitters with short flow path are recommended in reclaimed water drip irrigation. These researches are aimed to provide references explaining the emitter clogging mechanism of reclaimed water drip irrigation as well as its technological application and popularization. 相似文献
19.
Saline water has been included as an important substitutable resource for fresh water in agricultural irrigation in many fresh water scarce regions. In order to make good use of saline water for agricultural irrigation in North China, a semi-humid area, a 3-year field experiment was carried out to study the possibility of using saline water for supplement irrigation of cucumber. Saline water was applied via mulched drip irrigation. The average electrical conductivity of irrigation water ( ECiw) was 1.1, 2.2, 2.9, 3.5 and 4.2 dS/m in 2003 and 2004, and 1.1, 2.2, 3.5, 4.2 and 4.9 dS/m in 2005. Throughout cucumber-growing season, the soil matric potential at 0.2 m depth immediately under drip emitter was kept higher than −20 kPa and saline water was applied after cucumber seedling stage. The experimental results revealed that cucumber fruit number per plant and yield decreased by 5.7% per unit increase in ECiw. The maximum yield loss was around 25% for ECiw of 4.9 dS/m, compared with 1.1 dS/m. Cucumber seasonal accumulative water use decreased linearly over the range of 1.5-6.9% per unit increase in ECiw. As to the average root zone ECe (electrical conductivity of saturated paste extract), cucumber yield and water use decreased by 10.8 and 10.3% for each unit of ECe increase in the root zone (within 40 cm away from emitter and 40 cm depths), respectively. After 3 years irrigation with saline water, there was no obvious tendency for ECe to increase in the soil profile of 0-90 cm depths. So in North China, or similar semi-humid area, when there is no enough fresh water for irrigation, saline water up to 4.9 dS/m can be used to irrigate field culture cucumbers at the expense of some yield loss. 相似文献
20.
The response of forage sorghum [ Sorghum bicolor (L.) Moench] to three irrigation treatments in a semiarid environment was studied in the field for two seasons. Treatments
were light frequent, moderate less frequent, and heavy infrequent irrigation, where irriga-tion water at 8 mm day –1 was delivered every 7, 10, and 13 days, respectively. These irrigation regimes meant heavier water inputs with increasing
irrigation frequency. Plant heights and leaf area indices of forage sorghum were higher in the frequently watered plots than
in plots where irrigation water was delivered less frequently. Averaged over the two seasons, maximum dry matter (DM) yields
were 16.3, 11.8, and 10.5 tonnes ha –1 for frequent, intermediate, and infrequent irrigation regimes, respectively. Light, frequent irrigation resulted in a significantly
higher water use efficiency (WUE) compared to the other two regimes, thus increasing the return from irrigation. These results
suggest that in such semiarid environments, DM yields and WUE of forage sorghum could be increased by combining light irrigation
with a short interval.
Received: 6 February 1997 相似文献
|