首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The potato (Solanum tuberosum L.) is widely planted in the Middle Anatolian Region, especially in the Nigde-Nevsehir district where 25% of the total potato growing area is located and produces 44% of the total yield. In recent years, the farmers in the Nigde-Nevsehir district have been applying high amounts of nitrogen (N) fertilizers (sometimes more than 900 kg N ha−1) and frequent irrigation at high rates in order to get a much higher yield. This situation results in increased irrigation and fertilization costs as well as polluted ground water resources and soil. Thus, it is critical to know the water and nitrogen requirements of the crop, as well as how to improve irrigation efficiency. Field experiments were conducted in the Nigde-Nevsehir (arid) region on a Fluvents (Entisols) soil to determine water and nitrogen requirements of potato crops under sprinkler and trickle irrigation methods. Irrigation treatments were based on Class A pan evaporation and nitrogen levels were formed with different nitrogen concentrations.The highest yield, averaging 47,505 kg ha−1, was measured in sprinkler-irrigated plots at the 60 g m−3 nitrogen concentration level in the irrigation treatment with limited irrigation (480 mm). Statistically higher tuber yields were obtained at the 45 and 60 g m−3 nitrogen concentration levels in irrigation treatments with full and limited irrigation. Maximum yields were obtained with about 17% less water in the sprinkler method as compared to the trickle method (not statistically significant). On the loam and sandy loam soils, tuber yields were reduced by deficit irrigation corresponding to 70% and 74% of evapotranspiration in sprinkler and trickle irrigations, respectively. Water use of the potato crop ranged from 490 to 760 mm for sprinkler-irrigated plots and 565–830 mm for trickle-irrigated treatments. The highest water use efficiency (WUE) levels of 7.37 and 4.79 kg m−3 were obtained in sprinkle and trickle irrigated plots, respectively. There were inverse effects of irrigation and nitrogen levels on the WUE of the potato crops. Significant linear relationships were found between tuber yield and water use for both irrigation methods. Yield response factors were calculated at 1.05 for sprinkler methods and 0.68 for trickle methods. There were statistically significant linear and polynomial relationships between tuber yield and nitrogen amounts used in trickle and sprinkler-irrigated treatments, respectively. In sprinkler-irrigated treatments, the maximum tuber yield was obtained with 199 kg N ha−1. The tuber cumulative nitrogen use efficiency (NUEcu) and incremental nitrogen use efficiency (NUEin) were affected quite differently by water, nitrogen levels and years. NUEcu varied from 16 to 472 g kg−1 and NUEin varied from 75 to 1035 g kg−1 depending on the irrigation method. In both years, the NH4-N concentrations were lower than NO3-N, and thus the removed nitrogen and nitrogen losses were found to be 19–87 kg ha−1 for sprinkler methods and 25–89 kg ha−1 for trickle methods. Nitrogen losses in sprinkler methods reached 76%, which were higher than losses in trickle methods.  相似文献   

2.
In rainfed rice ecosystem, conservation of rainwater to maximum extent can reduce the supplemental irrigation water requirement of the crop and drainage need of the catchment. The results of 3 years of experimental study on the above stated aspects in diked rice fields with various weir heights (6–30 cm at an interval of 4 cm) revealed that about 56.75% and 99.5% of the rainfall can be stored in 6 and 30 cm weir height plots, respectively. Sediment losses of 347.8 kg/ha and 3.3 kg/ha have been recorded in runoff water coming out of 6 cm and 30 cm weir height plots, respectively in a cropping season. Similarly, total Kjeldahl nitrogen (TKN) loss in runoff water from rice field ranged from 4.23 kg/ha (6 cm weir height plots) to 0.17 kg/ha (26 cm weir height plots) and available potassium loss ranged from 2.20 kg/ha (6 cm weir height plots) to 0.04 kg/ha (30 cm weir height plots). Conservation of rainwater in rice fields with various weir heights could not create any significant impact on grain yield differences, leaf area index and other biometric characters. Irrigation requirement of 18 cm and above weir height plots was found to be half of the requirement of 6 cm weir height plots. Keeping in view the aspects of conserving rainwater, sediment and nutrient and minimizing irrigation requirement, 22–26 cm of dike height is considered to be suitable for rice fields of Bhubaneswar region.  相似文献   

3.
Optimizing irrigation scheduling for winter wheat in the North China Plain   总被引:1,自引:0,他引:1  
In the North China Plain (NCP), more than 70% of irrigation water resources are used for winter wheat (Triticum aestivum L.). A crucial target of groundwater conservation and sustainable crop production is to develop water-saving agriculture, particularly for winter wheat. The purpose of this study was to optimize irrigation scheduling for high wheat yield and water use efficiency (WUE). Field experiments were conducted for three growing seasons at the Wuqiao Experiment Station of China Agriculture University. Eleven, four and six irrigation treatments, consisting of frequency of irrigation (zero to four times) and timing (at raising, jointing, booting, flowering and milking stage), were employed for 1994/95, 1995/96 and 1996/97 seasons, respectively. Available water content (AWC), rain events, soil water use (SWU), evapotranspiration (ET) and grain yield were recorded, and water use efficiency (WUE) and irrigation water use efficiency (IWUE) were calculated.The results showed that after a 75-mm pre-sowing irrigation, soil water content and AWC in the root zone of a 2-m soil profile during sowing were 31.1% (or 90.7% of field capacity) and 16.1%, respectively. Rainfall events were variable and showed a limited impact on AWC. The AWC decreased significantly with the growth of wheat. At the jointing stage no water deficits occurred for all treatments, at the flowering stage water deficits were found only in the rain-fed treatment, and at harvest all treatments had moderate to severe soil water deficits. The SWU in the 2-m soil profile was negatively related to the irrigation water volume, i.e. applying 75 mm irrigation reduced SWU by 28.2 mm. Regression analyses showed that relationships between ET and grain yield or WUE could be described by quadratic functions. Grain yield and WUE reached their maximum values of 7423 kg/ha and 1.645 kg/m3 at the ET rate of 509 and 382 mm, respectively. IWUE was negatively correlated with irrigated water volume. From the above results, three irrigation schedules: (1) pre-sowing irrigation only, (2) pre-sowing irrigation + irrigation at jointing or booting stage, and (3) pre-sowing irrigation + irrigations at jointing and flowering stages were identified and recommended for practical winter wheat production in the NCP.  相似文献   

4.
Greenhouse grown tomato was used to test partial root drying (PRD), a newly developing irrigation technique to save irrigation water, in Spring- and Fall-planted fresh-market tomato (Lycopersicon esculentum L., cv. Fantastic) cultivar. The PRD practice simply requires wetting of one half of the rooting zone and leaving the other half dry, thereby utilizing reduced amount of irrigation water applied. The wetted and dry sides are interchanged in the subsequent irrigations. Six irrigation treatments were tested during the two-year work in 2000 and 2001: (1) FULL, control treatment where the full amount of irrigation water, which was measured using Class-A pan evaporation data, was applied to the roots on all sides of the plant; (2) 1PRD30, 30% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged with every irrigation; (3) 1PRD50; (4) 2PRD50, 50% deficit irrigation with PRD in which wetted and dry sides of the root zone were interchanged every and every other irrigation, respectively; (5) DI30 and (6) DI50, 30 and 50% deficit irrigations, respectively. The defined deficit levels were all in comparison to FULL irrigation. During the first year study in 2000, only three treatments (FULL, 1PRD30 and 2PRD50) were tested. Five treatments with exception of 2PRD50 were included in 2001. The FULL irrigation treatment, in Spring-planted tomato having a 153 day growth period, yielded 110.9 t ha−1. The resulting irrigation-water-use efficiency (IWUE) was 321.8 kg (ha mm)−1. The 1PRD50 treatment gave 86.6 t ha−1, which was not statistically different (P ≤ 0.05) from the FULL irrigation (the control) and had 56% higher IWUE. Although yield differences were not statistically significant in Fall-planted tomato, the highest fruit yield was again obtained under FULL irrigation treatment (205.2 t ha−1) over a growth period of 259 days after transplanting. The PRD treatments had 7–10% additional yield over the deficit irrigation receiving the same amount of water. The PRD treatments gave 10–27% higher marketable tomato yield (>60 g per fruit), compared with the DI treatments. Abscisic acid (ABA) concentrations measured in fresh leaf tissue was the highest under PRD practice relative to FULL and DI treatments. The high ABA content of fresh-leaf tissue observed in the work supports the root signalling mechanism reported earlier in plants having undergone partial root drying cycles.  相似文献   

5.
A field experiment was conducted in 1995 and 1996 to examine the effects of different irrigation methods on yields and Phytophthora root rot disease of chile plants (Capsicum annum New Mexico `6–4'). Three irrigation methods, daily drip, 3-day drip, and alternate row furrow irrigation, were applied to plots infested with P. capsici and uninfested plots. For both years, the drip irrigation (either daily or 3-day) created higher marketable green chile yields than the alternate row furrow irrigation (p < 0.05), and the yields between the daily and 3-day drip irrigation were statistically similar. The effect of irrigation on marketable combined yields was similar to that on green chile yields. In 1995, root rot disease incidence in the infested plots was significantly higher under alternate row furrow irrigation than for daily and 3-day drip irrigation. There was no disease development in the uninfested plots regardless of the irrigation method. The disease decreased green chile yield by 55% (p < 0.1), and combined yield (green + red chile) by 36% (p < 0.1) in 1995 compared to that in uninfested plots in alternate row furrow irrigation. In 1996, however, no disease occurred in any treatment. The results suggested that drip irrigation increases chile yield through providing either favorable soil moisture conditions or unfavorable conditions for Phytophthora propagation.  相似文献   

6.
The Central Anatolian Plateau of Turkey is a typical cool highland rainfed wheat area with an annual rainfall of 300–500 mm. Due to suboptimal seasonal rainfall amounts and distribution, wheat yields in the region are low and fluctuate substantially over seasons. Delayed sowing due to late rainfall affects early crop establishment before winter frost and causes substantial reduction in yield. A 4-year field study (1998/1999 to 2001/2002) was carried out at Ankara Research Institute of Rural Services to assess the impact of early sowing with supplemental irrigation (SI) and management options during other dry spells on the productivity of a bread wheat cultivar, “Bezostia”. Treatments included early sowing with 50 mm irrigation and normal sowing with no irrigation as main plots. Four spring (SI) levels occupied the sub-plots. These are rainfed (no-irrigation), full irrigation to sature crop water requirements and two deficit irrigation levels of 1/3 and 2/3 at the full irrigation treatments.Results showed that early establishment of the crop, using 50 mm of irrigation water at sowing, increased grain yield by over 65% and adding about 2.0 t/ha to the average rainfed yield of 3.2 t/ha. Early sowing with SI allowed early crop emergence and development of good stand before being subjected to the winter frost. As a result, the crop used rainwater more efficiently. Additional supplemental irrigation in the spring also increased yield significantly. Grain yields of 5120, 5170 and 5350 kg/ha were obtained by applying 1/3, 2/3 and full SI, respectively. The mean productivity of irrigation water given at sowing was 3.70 kg/m3 with maximum value of 4.5 kg/m3. Water productivity of 1/3, 2/3 and full SI were 2.39, 1.46 and 1.27 kg/m3, respectively, compared to rainwater productivity of 0.96 kg/m3.  相似文献   

7.
The present investigation was undertaken to evaluate the effect of various levels of water and N application through drip irrigation on seed cotton yield and water use efficiency (WUE). In this experiment three levels of water (Epan 0.4, 0.3, and 0.2) and three levels of N (100, 75, and 50% of recommended N, 75 kg/ha) through drip were compared with check-basin method of irrigation under two methods of planting (normal sowing, NS; paired sowing, PS). The results revealed that when the same quantity of irrigation water and N was applied through drip irrigation system, it increased the seed cotton yield to 2144 from 1624 kg/ha (an increase of 32%) under check-basin method of irrigation. When the quantity of water through drip was reduced to 75%, the increase in seed cotton yield was 12%; however, when water was reduced to 50%, it resulted 2% lower yield than check-basin. The decrease in N through fertigation resulted in reduction in seed cotton yield at all the levels of water supply, but the magnitude of reduction was the highest at highest level of water supply. In paired sowing (PS), 20% higher seed cotton yield was obtained as compared with check-basin method under NS along with 50% saving of water. In paired sowing the sacrifice of 9% seed cotton yield as compared with NS resulted in saving of 50% water as well as the cost of laterals because there was one lateral for two paired rows. The WUE increased by 26% (22.1 from 17.6 kg/ha cm) in drip irrigation system when same quantity of water and N fertilizer was applied as compared with check-basin. WUE was not affected with quantity of water but decrease in rate of N caused a decrease in WUE at all the quantities of water applied. In general, WUE was higher in PS as compared with NS. The agronomic efficiency of nitrogen increased from 21.65 to 28.59 kg of seed cotton per kg of N applied when same quantity of water and N was applied through drip irrigation as compared with check-basin. However, decrease in quantity of water applied resulted in a decrease in agronomic efficiency of N but reverse was true for rates of N applied. When the same quantity of water and N was applied under both the methods of planting, PS produced 22% higher seed cotton yield and along with reduced cost owing to half the number of laterals required.  相似文献   

8.
A 3-year project compared the operation of a subsurface drip irrigation (SDI) and a furrow irrigation system in the presence of shallow saline ground water. We evaluated five types of drip irrigation tubing installed at a depth of 0.4 m with lateral spacings of 1.6 and 2 m on 2.4 ha plots of both cotton and tomato. Approximately 40% of the cotton water requirement and 10% of the tomato water requirement were obtained from shallow (<2 m) saline (5 dS/m) ground water. Yields of the drip-irrigated cotton improved during the 3-year study, while that of the furrow-irrigated cotton remained constant. Tomato yields were greater under drip than under furrow in both the years in which tomatoes were grown. Salt accumulation in the soil profile was managed through rainfall and pre-plant irrigation. Both drip tape and hard hose drip tubing are suitable for use in our subsurface drip system. Maximum shallow ground water use for cotton was obtained when the crop was irrigated only after a leaf water potential (LWP) of −1.4 MPa was reached. Drip irrigation was controlled automatically with a maximum application frequency of twice daily. Furrow irrigation was controlled by the calendar.  相似文献   

9.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

10.
Effects on water use, green bean yield, irrigation water-use efficiency (IWUE), water-use efficiency (WUE), plant dry weight and crop water relationship were investigated for two-drip irrigation techniques and four irrigation water levels in the Mediterranean region of Turkey. The treatments were conventional (SDI) and alternating subsurface drip irrigation (SPRD). At each irrigation event, half of the volume of water applied to the SDI was applied to one side of the crop, representing the partial rootzone-drying treatment. All treatments received 295 mm of irrigation during crop establishment, prior to beginning the different irrigation regimes. Differing irrigation amounts corresponded to four crop-pan coefficients (Kcp1 = 0.6, Kcp2 = 0.8, Kcp3 = 1.0 and Kcp4 = 1.2), appropriate to pan data. Total water applied to the SDI and SPRD treatments ranged from 366 to 437 mm and from 331 to 366 mm, respectively, depending on Kcp values, with water uptake varying from 396 to 470 mm and 364 to 409 mm, respectively. While differences of green bean yield and dry plant weights were not significantly affected by the SDI and SPRD irrigation techniques, the overall irrigation water saving was found to be 16% for the SPRD irrigation treatment compared with the SDI treatment. SPRD irrigation techniques increased IWUE, WUE, and slopes of yield water relationships. Increase in slopes of the yield–irrigation water and yield–water-use function of SPRD according to the equivalent slopes of the SDI were 215.8 and 151.4%, respectively. SPRD increased the green bean yield response factor (ky) with value of 128.4% according to the equivalent slopes of the SDI. In conclusion, irrigation scheduling based on a 0.8 crop-pan coefficient is recommended for conventional SDI, with 1.0 being more appropriate for partial rootzone-drying practice.  相似文献   

11.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

12.
The drained and irrigated marshes in south-west Spain are formed on soils of alluvial origin from the ancient Guadalquivir river estuary. The most important characteristics of these soils are the high clay content (about 70%), high salinity, and a shallow, extremely saline, water table. The reclaimed area near Lebrija, called Sector B-XII (about 15,000 ha), has been under cultivation since 1978. Some years, however, water supply for irrigation is limited due to drought periods. The objective of this work was to evaluate the effects of irrigation with high and moderately saline waters on soil properties and growth and yield of cotton and sugar beet crops. The experiments were carried out during 1997 and 1998 in a farm plot of 12.5 ha (250 m×500 m) in which a drainage system had been installed, consisting of cylindrical ceramic sections (0.3 m long) forming pipes 250 m long, buried at a depth of 1 m and spaced at intervals of 10 m. These drains discharge into a collecting channel perpendicular to the drains. Two subplots of 0.5 ha (20 m×250 m) each were selected. In 1997 cotton was growing in both subplots, and irrigation was applied by furrows. One subplot (A) was irrigated with fresh water (0.9 dS m−1) during the whole season, while in the other subplot (B) one of the irrigations (at flowering stage) was with water of high salinity (22.7 dS m−1). During 1998 both subplots were cropped with sugar beet. Subplot A was irrigated with fresh water (1.7 dS m−1) during the whole season, while in subplot B two of the irrigations were with moderately saline water (5.9–7.0 dS m−1). Several measurement sites were established in each subplot. Water content profile, tensiometric profile, water table level, drainage water flow, soil salinity, and crop development and yield were monitored. The results showed that after the irrigation with high saline water (subplot B) in 1997 (cotton), the soil salinity increased. This increase was more noticeable in the top layer (0–0.3 m depth). In contrast, for the same dates, the soil of subplot A showed no changes. After five irrigations with fresh water, the salinity of the soil in the subplot B reached values similar to those before the application of saline water. In 1998 (sugar beet) the application of moderately saline water in subplot B also increased soil salinity, but this increase was lower than in 1997. The irrigation with high saline water affected crop development. Cotton growth was reduced in comparison with that in the subplot irrigated only with fresh water. Despite this negative effect on crop development, the crop yield was the same as in the subplot A. Sugar beet development did not show differences between subplots, but yield was higher in subplot B than in subplot A.  相似文献   

13.
Water conservation strategies for center pivot and furrow irrigation in the Central Platte Valley of Nebraska were evaluated using computer simulation. Irrigation requirements, grain yield, return flow and net depletion (gross irrigation minus return flow) of groundwater were simulated for a period of 29 years for Hord and Wood River silt loam soils. Grain yields were simulated for a typical corn variety for non-limiting water supplies (maximum attainable yield), for two levels of deficit irrigation (irrigation limited to certain growing periods), and for dryland conditions. Additional simulations were performed for a short-season corn, grain sorghum, and soybeans. The impacts of tillage practices on water conservation were also investigated.Center pivot irrigation on the Hord silt loam required 75–125 mm/year less water application than furrow irrigation. For the Wood River silt loam, water applications were the same for both irrigation systems. Applied water depths were reduced by an additional 75–125 mm using deficit irrigation with only a small reduction in yield. Return flow to the groundwater was small for well-managed pivots but high for some furrow irrigation systems based on the assumption that all deep percolation returns to the aquifer in the Central Platte Valley. Net depletion (gross irrigation minus return flow) of the groundwater for a center pivot with LEPA was 50 mm (17%) less than a center pivot with impact sprinklers. Ridge till had a net depletion 50 mm (25%) less than conventional tillage (double disk, plant) for furrow systems.  相似文献   

14.
Different irrigation scheduling methods and amounts of water ranging from deficit to excessive amounts were used in cotton (Gossypium hirsutum L.) irrigation studies from 1988 to 1999, at Lubbock, TX. Irrigation scheduling treatments based on canopy temperature (Tc) were emphasized in each year. Surface drip irrigation and recommended production practices for the area were used. The objective was to use the 12-year database to estimate the effect of irrigation and growing season temperature on cotton yield. Yields in the irrigation studies were then compared with those for the northwest Texas production region. An irrigation input of 58 cm or total water application of 74 cm was estimated to produce maximum lint yield. Sources of the total water supply for the maximum yielding treatments for each year averaged 74% from irrigation and 26% from rain. Lint yield response to irrigation up to the point of maximum yield was approximated as 11.4 kg ha−1 cm−1 of irrigation between the limits of 5 and 54 cm with lint yields ranging from 855 to 1630 kg ha−1. The intra-year maximum lint yield treatments were not limited by water input, and their inter-year range of 300 kg ha−1 was not correlated with the quantity of irrigation. The maximum lint yields were linearly related to monthly and seasonal heat units (HU) with significant regressions for July (P=0.15), August (P=0.07), and from May to September (P=0.01). The fluctuation of maximum yearly lint yields and the response to HU in the irrigation studies were similar to the average yields in the surrounding production region. The rate of lint yield increase with HU was slightly higher in the irrigation studies than in the surrounding production area and was attributed to minimal water stress. Managing irrigation based on real-time measurements of Tc produced maximum cotton yields without applying excessive irrigation.  相似文献   

15.
Water value as agriculture production may be overlooked, though it is an important factor to rational water allocations within a region. An analysis of cotton (Upland and Pima) lint yield, lint yield-consumptive use ratio (LY:ETc), water-use efficiency (WUE) and lint price for Arizona (AZ) and California (CA) during 1988–1999 is considered as part of an attempt to determine lint water value, or benefit. It included determination of means and variability of cotton lint production, LY:ETc ratios and associated irrigation water values (IWVs) and compared these numbers with published estimates of WUE, forage hay water values and municipal water costs. Available rainfall, reference evapotranspiration (ETo), lint yields and price data for counties in both states were used. Consumptive use was estimated using a four-stage crop coefficient function verified by literature values or County Advisor experience. As with dry matter production, cotton lint yields in interior valley regions of CA were weakly correlated with ETc and averaged 1.33 Mg/ha (Upland) and 1.08 Mg/ha (Pima). Cotton lint yields in desert regions of AZ and CA were not correlated with ETc. The greatest LY:ETc ratios (1.9–2.1 kg/ha-mm) were in the San Joaquin valley of CA, were similar to that from WUE type studies and resulted in gross IWVs (∼3400–3800 US$/ha-m), with relatively moderate variability at a net irrigation water requirement (IWR) of approximately 720 mm. While this IWV is 2.5 times greater than water delivery prices below the California Delta, it is less than average municipal water costs of ∼4200 US$/ha-m for Los Angeles, San Francisco and Pheonix while the overall AZ/CA average cotton lint IWV is considerably less. However, cotton lint IWV is two to three times greater than that obtained for alfalfa and sudangrass hay crops in all regions.  相似文献   

16.
Furrow irrigation events conducted under usual farmer management were analysed to determine the irrigation application efficiencies being attained, and the magnitude of the irrigation contribution to deep drainage under surface irrigated cotton in Queensland. Application efficiencies were shown to vary widely from 17 to 100% and on average were a low 48%. Losses to deep drainage were substantial, averaging 42.5 mm per irrigation. This has the potential for significant environmental harm and also represents an annual loss of up to 2500 m3/ha (2.5 Ml/ha) of water that could be beneficially used to grow more cotton. Simulations of each event using the simulation model SIRMOD illustrated simple ‘recipe’ strategies that would lead to gains in efficiency and reductions in the deep drainage losses. Additional simulations of selected events showed that further significant improvements in performance can be achieved by the application of more advanced irrigation management practices, involving in-field evaluation and optimisation of the flow rate and irrigation time to suit the individual soil conditions and furrow characteristics. Application efficiencies in the range 85–95% are achievable in all but the most adverse conditions. The dependency between deep drainage and irrigation management was demonstrated, confirming that substantial reductions in deep drainage are possible by ensuring that irrigation applications do not exceed the soil moisture deficit.  相似文献   

17.
In general, cotton is irrigated by surface methods in Turkey although sprinkler and drip irrigation have been suggested as a means of supplying most types of crops with frequent and uniform applications of water, adaptable over a wide range of topographic and soil conditions. Recently, sprinkler irrigation systems have been introduced for cotton as a result of increased pressure to develop new irrigation technology suited to limited water supply as well as to specific topographic and soil conditions. In this study, the effects of three different irrigation methods (furrow, sprinkler and drip) on seed-cotton yield, shedding ratio and certain yield components are presented. The research was carried out in The Southeastern Anatolia Region (GAP) of Turkey from 1991 to 1994. The maximum cotton yields were 4380, 3630 and 3380 kg/ha for drip, furrow and sprinkler irrigation, respectively. Drip irrigation produced 21% more seed-cotton than the furrow method and 30% more than the sprinkler method. Water use efficiencies (WUE) proved to be 4.87, 3.87 and 2.36 kg/ha/mm for drip, furrow and sprinkler, respectively. Shedding ratios ranged from 50.8 to 59.0% (furrow), 52.9 to 64.8% (sprinkler), 50.8 to 56.8% (drip), depending on the amount of water applied. The shedding ratio for sprinkler irrigation was significantly higher than that of either furrow (P=0.10) or drip irrigation (P=0.05), resulting in lower seed-cotton yield for sprinkler irrigation. For all methods, a quadratic relationship was found between the amount of water applied and shedding ratios, with the least shedding occurring between 1000 and 1500 mm of water. Both limited and over-irrigation increased the shedding ratio for all methods. Accordingly, a lower boll number per plant and a lower seed-cotton yield were obtained from sprinkler-irrigated cotton; a significantly decreasing linear relationship between the shedding ratio and the total cotton yield and boll number per plant.  相似文献   

18.
The aim of this study carried out in Van, Turkey was to determine the most suitable irrigation frequencies and quantities in summer squash (Cucurbita pepo L. cv. Sakız) grown under field conditions. Irrigation quantities were based on pan evaporation (Epan) from a screened class-A pan. Irrigation treatments consisted of two irrigation intervals (I1: 5 days; I2: 10 days), and three pan coefficients (Kcp1: 0.45; Kcp2: 0.65 and Kcp3: 0.85). Plants were adequately watered from seed sowing to first fruit emergence, then, scheduled irrigations were initiated at 5- and 10-day intervals.Irrigation quantities applied to the treatments varied from 279 to 475 mm; seasonal plant water consumption or evapotranspiration (Et) of irrigation treatments varied from 336 to 539 mm; and the summer squash yield varied from 22.4 to 44.7 t ha−1. The highest total yield was obtained from I1Kcp3 treatment. However, Kcp2 treatments had the earliest yield. Treatments irrigated with higher amount of water generally gave lower irrigation water use efficiency (IWUE) values than others. Et/Epan ratios of treatments ranged from 0.12 to 1.16. Moreover, irrigation treatments had significant effects (P<0.01) on yield and there were significant positive linear relations among irrigation water, plant water consumption, fruit traits and yield.In conclusion, Kcp3 treatment with 5-day irrigation interval is recommended for summer squash grown under field conditions in order to get higher summer squash yield. However, if the irrigation water is scarce, it will be suitable to irrigate summer squash frequently using Kcp1 values.  相似文献   

19.
This research was conducted during the spring seasons of 2000 and 2002 in Hatay province located in the East Mediterranean Region of Turkey. The research investigated the effects of two drip irrigation methods and four different water stress levels on potato yield and yield components. The surface drip (SD) and subsurface drip (SSD) irrigation methods were used. The levels were full irrigation (I100), 66% of full irrigation (I66), 33% of full irrigation (I33) and un-irrigated (I0) treatments. Five and three irrigation were applied in 2000 and 2002 early potato growing seasons, respectively. Total irrigation amount changed from 102 to 302 mm and from 88 to 268 mm in 2000 and 2002, respectively. Seasonal evapotranspiration changed between 226 and 473 mm and 166 and 391 mm in 2000 and 2002, respectively. SD and SSD irrigation methods did not result in a significant difference on yield. However, SD method has more advantages than SSD method, which has difficulties in replacement and higher system cost. Irrigation levels resulted in significant difference in both years on yield and its components. Water stress significantly affected the yield and yield parameters of early potato production. Water deficiency more than 33% of the irrigation requirement could not be suggested.Water use efficiency (WUE) of SD irrigation methods had generally higher values than SSD irrigation methods. Treatment I33 gave maximum irrigation water use efficiency (IWUE) for both years. SSD irrigation method did not provide significant advantage on yield and WUE, compared to SD irrigation in early potato production under experimental conditions. Therefore, the SD irrigation method would be recommended in early potato production under Mediterranean conditions.  相似文献   

20.
A 2-year experiment was conducted at Tal Amara Research Station in the Bekaa Valley of Lebanon to determine water use and lint yield response to the length of irrigation season of drip irrigated cotton (Gossypium hirsutum L.). Crop evapotranspiration (ETcrop) and reference evapotranspiration (ETrye-grass) were directly measured at weekly basis during the 2001 growing period using crop and rye-grass drainage lysimeters. Crop coefficients (Kc) in the different growth stages were calculated as ETcrop/ETrye-grass. Then, the calculated Kc values were used in the 2002 growing period to estimate evapotranspiration of cotton using the FAO method by multiplying the calculated Kc values by ETrye-grass measured in 2002. The length of irrigation season was determined by terminating irrigation permanently at first open boll (S1), at early boll loading (S2), and at mid boll loading (S3). The three treatments were compared to a well-watered control (C) throughout the growing period. Lint yield was defined as a function of components including plant height at harvest, number of bolls per plant, and percentage of opened bolls per plant.Lysimeter-measured crop evapotranspiration (ETcrop) totaled 642 mm in 2001 for a total growing period of 134 days, while when estimated with the FAO method in 2002 it averaged 669 mm for a total growing period of 141 days from sowing to mature bolls. Average Kc values varied from 0.58 at initial growth stages (sowing to squaring), to 1.10 at mid growth stages (first bloom to first open boll), and 0.83 at late growth stages (early boll loading to mature bolls).Results showed that cotton lint yields were reduced as irrigation amounts increased. Average across years, the S1 treatment produced the highest yield of 639 kg ha−1 from total irrigations of 549 mm, compared to the S2 and S3 treatments, which yielded 577 and 547 kg ha−1 from total irrigations of 633 and 692 mm, respectively, while the control resulted in 457 kg ha−1 of lint yield from 738 mm of irrigation water. Water use efficiency (WUE) was found to be higher in S1 treatment and averaged 1.3 kg ha−1 mm−1, followed by S2 (1.1 kg ha−1 mm−1), and S3 (1.0 kg ha−1 mm−1), while in the control WUE was 0.80 kg ha−1 mm−1. Lint yield was negatively correlated with plant height and the number of bolls per plant and positively correlated with the percentage of opened bolls. This study suggests that terminating irrigation at first open boll stage has been found to provide the highest cotton yield with maximum WUE under the semi-arid conditions of the Bekaa Valley of Lebanon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号