共查询到20条相似文献,搜索用时 12 毫秒
1.
Incorporation of ridge and furrow method of rainfall harvesting with mulching for crop production under semiarid conditions 总被引:31,自引:0,他引:31
Xiao-Yan Li Jia-Dong Gong Qian-Zhao Gao Feng-Rui Li 《Agricultural Water Management》2001,50(3):173-183
A plastic-covered ridge and furrow rainfall harvesting (PRFRH) system combined with mulches was designed to increase water availability to crops for improving and stabilizing agricultural production in the semiarid Loess region of northwest China. The system was built by shaping the soil surface with alternate ridges and furrows along the contour. The plastic-covered ridges served as a rainfall harvesting zone and furrows as a planting zone. Some materials were also used to mulch the furrows to increase the effectiveness of the harvested water. This system can make better utilization of light rain by harvesting rainwater through the plastic-covered ridge. The field experiment (using corn as an indicator crop) showed that grain yields in the PRFRH system with mulches in 1998 and 1999 were significantly higher than the controls, with an increase of 4010–5297 kg per ha (108–143%). In most treatments, the water use efficiencies (WUE) were in excess of 2.0 kg m−3. The WUE values of corn in this system were 1.9 times greater than the controls in 1998 and 1.4 times greater than the controls in 1999. The plastic-covered ridge led to a yield increase of 3430 kg per ha (92%) in 1998 and of 1126 kg per ha (21%) in 1999 compared with the uncovered ridge. On average, the additional mulches in the furrow brought about a yield increase of 8–25%. Based on the results of this study and other researches, this technique can increase corn grain yield by 60–95% in drought and average years, 70–90% in wet years, and 20–30% in very wet years. The PRFRH system had the potential to increase crop yield and produced greater economic benefit, therefore it could be used in regions dominated by light rainfall of low intensity where crops generally fail due to water stress. 相似文献
2.
对垄作沟灌土壤水盐分布及作物产量进行了田间试验.结果表明,灌水定额为400 m3/hm2时,沟底土壤水分的垂直运动明显增大.当灌水定额增加100 m3/hm2时,土壤水分水平运动高于垂直运动.沟底土壤全盐量受灌水定额影响明显:在灌水阶段,沟底表层土壤发生脱盐现象.土壤蒸发阶段,土壤发生积盐现象.垄顶土壤含盐量相对稳定,基本不发生向下运移.重度水分亏缺(处理T1,灌溉定额为1 700 m3/hm2)垄、沟积盐量分别为1.49,1.35 kg/m2,中度水分亏缺(处理T2,灌溉定额为2 100 m3/hm2)垄沟积盐量分别为1.42,1.12 kg/m2,充分灌水(处理T3,灌溉定额为2 500 m3/hm2)垄、沟积盐量分别为1.32,0.83 kg/m2,畦灌措施使0~100 cm土壤发生脱盐现象,脱盐量为1.29 kg/m2.垄作沟灌下,制种玉米产量为2 765.1~4 619.5 kg/hm2,WUE为0.755~0.969 kg/m3.穗长(Ls)、穗粗(ds)、行粒数(NR)与作物产量呈显著正相关关系. 相似文献
3.
A. M. Abu-Awwad 《Irrigation Science》1999,18(4):191-197
The effects of supplemental irrigation, sand columns and blocked furrows on soil water distribution and barley yield were
studied on arid soils affected by surface crusts. The sand columns were 50 mm diameter, 600 mm deep, and filled with sand
of 0.375 mm mean diameter. The blocked furrows were trenches about 250 mm deep, 300 mm wide, and 6 m long established perpendicular
to the slope direction. Sand column and furrow treatments significantly increased soil water storage compared with natural
or control treatments. Soil water storage significantly increased by about 210% and 230% near the center of the sand column
and the furrow treatments, respectively, relative to the control treatment. For sand column treatments, soil water storage
decreased linearly with distance from the center of the sand column to about 2.5 m, while for the furrow treatment soil water
storage decreased logarithmically to a distance of about 1.0 m, beyond which the soil water storage was not significantly
different from the natural or control treatments. The furrow and sand column treatments significantly increased the water
application efficiency, seasonal consumptive use and barley grain and straw yields compared with natural and control treatments.
Increasing furrow spacing increased the catchment area and consequently crop production per furrow, but decreased crop production
per unit total (cultivated and catchment) area. Decreasing sand column spacing reduced surface runoff and increased soil water
storage and consequently barley grain and straw yields. Supplemental irrigation is essential for grain production in limited
rainfall areas. Soil management is also required to overcome the problems of the soil surface crusting and the low permeability
of subsurface soil layers for maximum rainwater efficiency, and for optimal crop production with minimum supplemental irrigation
water. Where agricultural land is not limited, furrowed soil surfaces appear to be the most suitable technique for barley
grain production. Sand columns with sprinkler irrigation might be more suitable for growing barley as forage crop where agricultural
land is limited.
Received: 19 October 1998 相似文献
4.
Because of the spatial and temporal variabilities of the advance infiltration process, furrow irrigation investigations should not be limited to a single furrow irrigation event when using a modelling approach. The paper deals with the development and application of simulation of furrow irrigation practices (SOFIP), a model used to analyse furrow irrigation practices that take into account spatial and temporal variabilities of the advance infiltration process. SOFIP can be used to compare alternative furrow irrigation management strategies and find options that mitigate local deep-percolation risks while ensuring a crop yield level that is acceptable to the farmer. The model is comprised of three distinct modelling elements. The first element is RAIEOPT, a hydraulic model that predicts the advance infiltration process. Infiltration prediction in RAIEOPT depends on a soil moisture deficit parameter. PILOTE, a crop model, which is designed to simulate soil water balance and predict yield values, updates the soil moisture parameter. This parameter is an input of a parameter generator (PG), the third model component, which in turn provides RAIEOPT with the data required to simulate irrigation at the scale of an N-furrow set. The study of sources of variability and their impact on irrigation advance, based on field observations, allowed us to build a robust PG. Model applications show that irrigation practices must account for inter-furrow advance variability when optimising furrow irrigation systems. The impact of advance variability on deep percolation and crop yield losses depends on both climatic conditions and irrigation practices. 相似文献
5.
Yajun Wang Zhongkui XieSukhdev S. Malhi Cecil L. VeraYubao Zhang Zhihong Guo 《Agricultural Water Management》2011,101(1):88-92
In the northwestern Loess Plateau of China, low precipitation results in poor crop yields, with a great fluctuation from year to year. The adoption of gravel-sand mulching has shown improvements in the growth of crops such as watermelon. The ridge and furrow rainwater harvest system (RFRHS) has been shown as an easy and efficient way to collect rainwater. A field experiment was conducted from 2007 to 2009 at Gaolan, Lanzhou, Gansu, China, to measure the effects of RFRHS, plastic mulch and gravel-sand mulch combinations on soil temperature, evapotranspiration (ET), water use efficiency (WUE) and watermelon yield. There were eight treatments: (1) flat gravel-sand mulched field, (2) RFRHS with a sand mulched furrow, entire plastic mulch and the ratio 1:1 of ridge and furrow, (3) RFRHS with a sand mulched furrow, entire plastic mulch and the ratio 4:3 of ridge and furrow, (4) RFRHS with a sand mulched furrow, entire plastic mulch and the ratio 5:3 of ridge and furrow, (5) RFRHS with a sand and plastic mulched furrow, bare ridge and the ratio 4:3 of ridge and furrow, (6) RFRHS with an entire plastic mulch and the ratio 4:3 of ridge and furrow, (7) conventional ridge planting with a plastic mulched ridge, and (8) flat gravel-sand mulched field plus 23 mm supplementary irrigation. Soil temperature for RFRHS with a gravel-sand plus plastic mulched furrow was slightly lower than that of flat gravel-sand mulch. The RFRHS caused a significant increase in watermelon yield and WUE. The increase in watermelon yield and WUE was greatly influenced by the ratio of ridge and furrow when RFRHS was combined with gravel-sand mulch. Watermelon yield was highest for the 1:1 ratio, and WUE was highest for the 5:3 and 1:1 ratios of ridge:furrow, and these were significantly greater than that of flat gravel-sand mulch, without or with irrigation. The use of ridge with plastic film mulch increased the beneficial effect of RFRHS on yield. The watermelon yield and WUE for non-plastic-mulched ridge were even lower than that of flat gravel-sand mulch. In summary, the findings suggest that RFRHS with gravel-sand mulched furrow plus plastic film mulch, and 1:1 ratio of ridge:furrow, would facilitate the use of limited rainfall most efficiently in improving watermelon yield, by reducing ET and increasing WUE in this semiarid region. 相似文献
6.
《Agricultural Water Management》2006,79(3):280-292
Soil moisture availability is the main limiting factor for growing second crops in rainfed rice fallows of eastern India. Only rainfed rice is grown with traditional practices during the rainy season (June–October) with large areas (13 m ha−1) remaining fallow during the subsequent dry season (November–March) inspite of annual rainfall of the order 1000–2000 mm. In this study an attempt was made to improve productivity of rainfed rice during rainy season and to grow second crops in rice fallow during dry (winter) season with supplemental irrigation from harvested rainwater. Rice was grown as first crop with improved as well as traditional farmers’ management practices to compare the productivity between these two treatments. Study revealed that 87.1–95.6% higher yield of rice was obtained with improved management over farmers’ practices. Five crops viz., maize, groundnut, sunflower, wheat and potato were grown in rice fallow during dry (winter) season with two, three and four supplemental irrigations and improved management. Sufficient amount of excess rainwater (runoff) was available (381 mm at 75% probability level) to store and recycle for supplementary irrigation to second crops grown after rice. Study revealed that supplemental irrigation had significant effect (P < 0.001) on grain yield of dry season crops and with two irrigation mean yields of 1845, 785, 905, 1420, 8050 kg ha−1 were obtained with maize (grain), groundnut, sunflower, wheat and potato (tuber), respectively. With four irrigations 214, 89, 78, 81, 54% yield was enhanced over two irrigations in respective five crops. Water use efficiency (WUE) of 13.8, 3.35, 3.39, 5.85 and 28.7 kg ha−1 was obtained in maize, groundnut, sunflower, wheat, potato (tuber), respectively with four irrigations. The different plant growth parameters like maximum above ground biomass, leaf area index and root length were also recorded with different levels of supplemental irrigation. The study amply revealed that there was scope to improve productivity of rainfed rice during rainy season and to grow another profitable crops during winter/dry season in rice fallow with supplemental irrigation from harvested rainwater of rainy season. 相似文献
7.
Behrouz Mostafazadeh-Fard Roghayeh Kavei-Deylami Sayed-Hossain Saghaian-Nejad Ahmad Jalalian 《Irrigation and Drainage Systems》2009,23(4):181-190
Meandering furrow irrigation (Gholam-gardeshi irrigation) is a modified form of furrow irrigation, which has being used in
Iran, but to date, there is no study about the erosion of this method of irrigation. To measure the erosion of meandering
furrow irrigation and to compare the results with standard furrow irrigation, two experimental fields with different soil
textures and furrow inflow rates were used. The experiment utilized a randomized factorial design with three replications
for each treatment. In both methods, the developed second order polynomial equation for the erosion, and advance equation
were able to predict the field data with coefficients of determination of more than 0.94. The results showed that the velocity
of advance, tail water runoff and erosion are significantly lower for meandering furrow irrigation as compared to standard
furrow irrigation. As the furrow inflow rates increased, erosion and runoff in both irrigation methods increased significantly. 相似文献
8.
宽垄沟灌土壤水分累积入渗特性试验研究及模拟 总被引:1,自引:0,他引:1
为了探究宽垄沟灌土壤水分累积入渗变化特性,在大田试验的基础上,利用HYDRUS-2D软件模拟并结合理论分析和数值模拟的方法,重点研究了单宽入沟流量为0.5 L/(s·m),灌水15 min后,宽垄沟灌不同沟宽(40,50,60 cm)与沟深(20,25,30 cm)对宽垄沟灌土壤累积入渗量随时间变化的影响.结果表明:沟... 相似文献
9.
Effects of rainfall harvesting and mulching technologies on water use efficiency and crop yield in the semi-arid Loess Plateau, China 总被引:7,自引:0,他引:7
In semi-arid areas, crop growth is greatly limited by water. Amount of available water in soil can be increased by surface mulching and other soil management practices. Field experiments were conducted in 2005 and 2006 at Gaolan, Gansu, China, to determine the influence of ridge and furrow rainfall harvesting system (RFRHS), surface mulching and supplementary irrigation (SI) in various combinations on rainwater harvesting, amount of moisture in soil, water use efficiency (WUE), biomass yield of sweet sorghum (Sorghum bicolour L.) and seed yield of maize (Zea mays L.). In conventional fields without RFRHS, gravel-sand mulching produced higher biomass yield than plastic-mulching or straw-mulching. In plastic-mulched fields, an increasing amount of supplemental irrigation was needed to improve crop yield. There was no effect of RFRHS without plastic-covered ridge on rainwater harvesting when natural precipitation was less than 5 mm per event. This was due to little runoff of rainwater from frequent low precipitation showers, and most of the harvested rainwater gathered at the soil surface is lost to evaporation. In the RFRHS, crop yield and WUE were higher with plastic-covered ridges than bare ridges, and also higher with gravel-sand-mulched furrows than bare furrows in most cases, or straw-mulched furrows in some cases. This was most likely due to decreased evaporation with plastic or gravel-sand mulch. In the RFRHS with plastic-covered ridges and gravel-sand-mulched furrows, application of 30 mm supplemental irrigation produced the highest yield and WUE for sweet sorghum and maize in most cases. In conclusion, the findings suggested the integrated use of RFRHS, mulching and supplementary irrigation to improve rainwater availability for high sustainable crop yield. However, the high additional costs of supplemental irrigation and construction of RFRHS for rainwater harvesting need to be considered before using these practices on a commercial scale. 相似文献
10.
《Agricultural Water Management》2001,46(3):253-266
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress. 相似文献
11.
《Agricultural Systems》2005,83(3):231-250
Food insecurity affects a large portion of the population in sub-Saharan Africa (SSA). To meet future food requirements current rainfed farming systems need to upgrade yield output. One way is to improve water and fertiliser management in crop production. But adaptation among farmers will depend on perceived risk reduction of harvest failure as well as economic benefit for the household. Here, we present risk analysis and economical benefit estimates of a water harvesting (WH) system for supplemental irrigation (SI). Focus of the analysis is on reducing investment risk to improve self-sufficiency in staple food production. The analysis is based on data from two on-farm experimental sites with SI for cereals in currently practised smallholder farming system in semi-arid Burkina Faso and Kenya, respectively. The WH system enables for both SI of staple crop (sorghum and maize) and a fully irrigated off-season cash crop (tomatoes). Different investment scenarios are presented in a matrix of four reservoir sealants combined with three labour opportunity costs. It is shown that the WH system is labour intensive but risk-reducing investment at the two locations. The current cultivation practices do not attain food self-sufficiency in farm households. WH with SI resulted in a net profit of 151–626 USD year−1 ha−1 for the Burkina case and 109–477 USD year−1 ha−1 for the Kenya case depending on labour opportunity cost, compared to −83 to 15 USD year−1 ha−1 for the Burkina case and 40–130 USD year−1 ha−1 for the Kenyan case for current farming practices. Opportunity cost represents 0–66% of the investment cost in an SI system depending on type of sealant. The most economical strategy under local labour conditions was obtained using thin plastic sheeting as reservoir sealant. This resulted in a net profit of 390 and 73 USD year−1 ha−1 for the Burkina Faso and Kenyan respective site after household consumption was deducted. The analysis suggests a strong mutual dependence between investment in WH for SI and input of fertiliser. The WH system is only economically viable if combined with improved soil fertility management, but the investment in fertiliser inputs may only be viable in the long term when combined with SI. 相似文献
12.
Summary A field study to determine the efficiency of preplant irrigating with furrow irrigation and the effects of tillage and fall or spring application of preplant irrigation on this efficiency was conducted during 1983, 1984, and 1985 at the Texas Agricultural Experiment Station, North Plains Research Field at Etter, Texas on a Sherm, silty clay loam soil. Sorghum residue from the previous crop was shredded, gravimetric soil samples were taken, and five tillage treatments were imposed in the fall. The tillage treatments consisted of various combinations of disking, chiselling, moldboard plowing, and disk bedding. A preplant irrigation was applied in the fall to half of each tillage plot and in the spring to the other half of each plot. Soil samples were taken from each plot one month after the spring preplant irrigation. Sorghum (Sorghum bicolor L. cv. NC 178) was planted and irrigated similarly on all plots during the growing season. On the average, 237 mm of water were required to irrigate the tillage treatments during fall preplant irrigation and 466 mm were required during spring preplant irrigation. The additional water requirement in the spring was associated with increased water uptake by non-wheel-track furrows. Treatments with chiselling required larger water application during spring preplant irrigation. All treatments had similar soil water contents at planting time. Neither timing of preplant irrigation nor type of tillage had any effect on sorghum grain yield. Therefore, fall preplant irrigation was considerably more efficient than spring preplant irrigation. Averaged over the three years do study and five tillage treatments storage efficiency was 26% for fall application and 17% for springtime.Contribution of the Texas Agricultural Experiment Station, Paper No. 21724 相似文献
13.
Farming practices, including tillage, cover cropping and residue management can have profound effects on the efficiency of irrigation practices. The effects of three field management practices (FMPs) standard tillage and winter-fallow (ST), standard tillage and winter-cover crop (STCC), and no-till and winter-fallow (NT) and two field lengths (122 and 366 m) on runoff and export of dissolved organic carbon (DOC) were investigated in a furrow-irrigated cropping system over two years. The residue cover was 40, 32 and 11% in 2007, and 58, 61 and 11% in 2008 for STCC, NT and ST, respectively. Furrow irrigation experiments were conducted prior to crop planting following the cover crop. The inflow was kept constant across all treatments, and infiltration and runoff were estimated using a volume balance model (VBM). The DOC concentration tended to increase with increasing field length, but did not differ among the FMPs. A threefold increase in field length increased infiltration by 40%, and decreased runoff by 60-90% and DOC export by 65-83%. In both years, infiltration was highest in STCC. In NT, infiltration was lowest in 2007, which was likely due to soil sealing, and intermediate among the three FMPs in 2008 perhaps due to the increase in residue cover in the second year. The DOC budget analysis showed that fields and FMPs acted as DOC sinks exporting less DOC than was applied in the irrigation water. The results suggest that longer furrows and STCC were greater DOC sinks compared to ST and shorter field practices. The VBM, as applied in this study to estimate infiltration and runoff, could be used to predict optimal field length to minimize runoff and promote DOC adsorption to soil within the constraints of water quality and availability and soil conditions. 相似文献
14.
Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa 总被引:1,自引:0,他引:1
In the dry areas, water, not land, is the most limiting resource for improved agricultural production. Maximizing water productivity, and not yield per unit of land, is therefore a better strategy for dry farming systems. Under such conditions, more efficient water management techniques must be adopted. Supplemental irrigation (SI) is a highly efficient practice with great potential for increasing agricultural production and improving livelihoods in the dry rainfed areas. In the drier environments, most of the rainwater is lost by evaporation; therefore the rainwater productivity is extremely low. Water harvesting can improve agriculture by directing and concentrating rainwater through runoff to the plants and other beneficial uses. It was found that over 50% of lost water can be recovered at a very little cost. However, socioeconomic and environmental benefits of this practice are far more important than increasing agricultural water productivity. This paper highlights the major research findings regarding improving water productivity in the dry rainfed region of West Asia and North Africa. It shows that substantial and sustainable improvements in water productivity can only be achieved through integrated farm resources management. On-farm water-productive techniques if coupled with improved irrigation management options, better crop selection and appropriate cultural practices, improved genetic make-up, and timely socioeconomic interventions will help to achieve this objective. Conventional water management guidelines should be revised to ensure maximum water productivity instead of land productivity. 相似文献
15.
16.
The study was conducted to evaluate surge irrigation against continuous irrigation in terms of irrigation and water use efficiencies
to produce onion. It was carried out at Mekelle Agricultural Research Center, Ethiopia on 70 m long and 0.6 m center–center
spacing furrows of 0.26% average slope on a clay soil. The treatments consisted of factorial combination of two discharges
(Q
1 = 1 l/s and Q
2 = 2 l/s) and three-cycle ratios (CR1 = 1/3, CR2 = 1/2, and C = 1 for continuous irrigation). Surge flow treatments advanced faster than the respective continuous flow treatments with
surge flow treatment SF21 being the fastest. The best value of application efficiency (60%) was achieved for SF11 and the least (46%) for CF2. The maximum (87%) and minimum (68%) values of distribution uniformity were obtained for cycle ratios CR1 and C, respectively. Storage efficiency was highest (89%) for CF2 and lowest (78%) for SF12. Onion yield was significantly affected (p < 0.05) by the interaction effect, the highest (14,400 kg/ha) and the lowest (13,363 kg/ha) yields were obtained for SF11 and SF21, respectively. The maximum irrigation water use efficiency (2.27 kg/m3) was observed for SF11 and the minimum (1.68 kg/m3) for CF2. Surge irrigation was found to be a promising irrigation practice for onion production in the study area as it saves water,
reduces irrigation period, and increases the crop yield. 相似文献
17.
Stability of crop coefficients under different climate and irrigation management practices 总被引:1,自引:1,他引:1
Summary The effects to climate and management practices on crop water requirement coefficients were studied for a soybean crop growing on a sandy soil using a mechanistic model that computes evaporation and transpiration in response to soil, crop, and climatic factors. It was found that seasonal errors could the as high as 190 mm when crop coefficients developed under one set of conditions were used under different climate and management conditions. The largest error in ET occurred when vapor pressure was reduced from 26 mb to 14 mb; next in importance were site differences in wind speed, radiation, irrigation interval, temperature and planting date. Correction factors needed to adjust crop coefficients to those site specific conditions ranged from 0.73 to 1.30 depending on the time of season and climate or management variable that was changed. When the overall crop coefficient was divided into a plant specific and a soil specific coefficients, the plant coefficient was relatively stable compared to soil coefficients. The results of this study can help establish a practical range of conditions over which crop coefficients developed at one site can be used to compute the appropriate values for sites where measurements have not been made.Approved for publication as Florida Agricultural Experiment Station Journal Series No. 9514. This research was partially supported by the US AID project, International Benchmark Sites Network for Agrotechnology Transfer, No. DAN-4054-c-00-2071-00 相似文献
18.
J. Mohan Reddy 《Irrigation Science》1994,15(2-3):123-136
The design problem of furrow irrigation systems considering runoff and drainage water quality was formulated as an optimization problem, with maximization of net benefits as the objective. A power advance function with an empirically derived relationship between the furrow irrigation design variables and relative crop yield were used in the formulation. The generalized geometric programming technique was used to solve for the optimal values for the design variables that maximized the net benefits from a furrow irrigation system. The optimal efficiency for which the system must be designed under a given set of soil, crop, and economic conditions is not known in advance. In the design, the application efficiency was not specified a priori. It was an output from the optimal design. The analysis suggested that it might not be economical to design surface irrigation systems to achieve a high application efficiency that is specified a priori. In the absence of environmental degradation problems from irrigation, it may sometimes be profitable to design surface irrigation systems to operate at less than the standard application efficiency (55%–90%) that is routinely used in the design. Formulation of the design problem as an optimization problem would yield the optimal application efficiency that would maximize the net benefits to the farmer under any given set of conditions. 相似文献
19.
《Agricultural Water Management》1987,12(4):305-310
Two surface irrigation methods on three crop fields (border irrigated alfalfa and small grain and furrow-irrigated potatoes) in southeast Idaho were tested to determine their effects on the parameters of the Kostiakov equation. A double-ring infiltrometer was used to measure the water intake rate of soil for the border irrigated fields. The furrow-irrigated fields were tested by both double-ring infiltrometer and inflow-outflow methods. The border-irrigated fields showed higher values of the intercept of the Kostiakov equation than the furrow-irrigated fields for a given soil. This means that the border-irrigated fields have a higher initial intake rate than that of the furrow-irrigated fields. The intercepts obtained by the inflow-outflow method were lower than that by the double-ring infiltrometer but the exponents were statistically not different. 相似文献
20.
不同灌溉技术条件对冬小麦生产的影响 总被引:3,自引:0,他引:3
为了研究并得到3种不同灌溉技术(滴灌、喷灌、漫灌)对冬小麦产量及其构成的影响,在中国农业大学吴桥实验站设计了滴灌、喷灌、漫灌的大田试验.3种灌溉技术条件下,其灌溉总量相同,漫灌和喷灌采用浇底墒水加浇两水,滴灌采用浇底墒水加浇四水的方式;从冬小麦整个生长期内的作物高度、叶面积指数、籽粒重等指标,考察不同灌溉技术对冬小麦生产及其构成的影响.结果表明:滴灌条件下,表层含水量下降速度最小,整个生长期,含水量高于喷灌和漫灌;滴灌处理的叶面积指数最高,其次是喷灌;在成熟期,滴灌条件下,作物高度比漫灌高12%,比喷灌高5%;滴灌和喷灌的条件下产量分别比漫灌高8.63%,7.75%;滴灌、喷灌、漫灌的籽粒千粒重分别为43.36,42.17和41.17 g,滴灌和喷灌籽粒重明显高于漫灌,且生物量分别比漫灌提高了6.9%,3%.这说明3种灌溉技术中,滴灌技术最有利于实现节水保墒、小麦增产,其次是喷灌. 相似文献