首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We investigated the hypothesis that manipulating water out-flow of a plant through the shoot environment (potential transpiration, ET0) in a glasshouse could modulate the effect of salinity/osmotic potential in the root environment upon yield of tomatoes. Contrasting root-zone salinity treatments were combined with two climate treatments — a reference (high transpiration, HET0) and a “depressed” transpiration (low transpiration, LET0). The salinity treatments, characterised by their electrical conductivity (EC) were 6.5, 8 and 9.5 dS m−1, were always coupled with a reference treatment of EC=2 dS m−1. In another experiment, concentrated nutrients (Nutrients) and nutrients with sodium chloride (NaCl) at the same EC of 9 dS m−1 were compared.Marketable fresh-yield production efficiency decreased by 5.1% for each dS m−1 in excess of 2 dS m−1. The number of harvested fruits was not affected; yield loss resulted from reduced fruit weight (3.8% per dS m−1) and an increased fraction of unmarketable harvest. At the LET0 treatments, yield loss was only 3.4% per dS m−1 in accordance with the reduction in fruit weight. Low transpiration did increase fruit fresh yield by 8% in both NaCl and Nutrients treatments at an EC=9 dS m−1. Neither EC nor ET0 affected individual fruit dry weight. Accordingly, fruit dry matter content was significantly higher at high EC than in the reference (4% per each EC unit in excess of 2 dS m−1) and responded to ET0 to a minor extent. Control of the shoot environment in a greenhouse to manipulate the fresh weight of the product may mitigate the effects of poor quality irrigation water without affecting product quality.  相似文献   

2.
《Scientia Horticulturae》2005,105(2):197-211
CO2 concentration was monitored during three 15-day subculturing cycles in vessels containing actively proliferating plum cultures of Prunus cerasifera, clone Mr.S. 2/5. The effects of two photosynthetic photon flux density regimes: 50 ± 5 μmol m−2 s−1 and 210 ± 5 μmol m−2 s−1 were compared. Three distinct phases in the CO2 trend were distinguished during each culturing cycle of both light treatments. In the first, occurring at the beginning of the culture cycle, the amount of CO2 emitted by the cultures during dark periods was greater than that assimilated during the light periods. In the second phase, the opposite trend was detected, while in the third, the range of CO2 day–night fluctuations increased or remained stable according to the number of explants per vessel. The treatment with 210 ± 5 μmol m−2 s−1 did not modify the CO2 phase trend but induced more pronounced fluctuations in day–night CO2 concentration. Under this light treatment, cultures reached CO2 compensation point for a period as long as 48% of the total number of light hours, while under 50 ± 5 μmol m−2 s−1, it was only 8%. The different range in CO2 day–night fluctuations monitored throughout a subculturing cycle, appeared to be mainly induced by changes in culture growth dynamics.  相似文献   

3.
《Scientia Horticulturae》2003,98(2):113-119
Leafy vegetables accumulate higher amount of heavy metals like nickel (Ni) due to their more leafy vegetative growth. Therefore, a screenhouse experiment was conducted using an alkaline sandy loam soil equilibrated with graded levels of Ni (0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250 and 300 mg kg−1 soil) to assess the Ni accumulation pattern and its influence on growth and micronutrient distribution in fenugreek plants. Green as well as the dry matter yields of fenugreek increased slightly up to 20 g Ni kg−1 soil but decreased significantly with the application ≥40 mg Ni kg−1 soil. Crops showed characteristic toxicity symptoms of interveinal chlorosis in pots receiving ≥40 mg Ni kg−1 soil. While the total content of Ni in the plant tissues increased consistently with increasing rates of applied Ni, the roots accumulated much higher amount of this element compared to the shoot. The content of Fe in plants showed an increase whereas that of Cu and Zn experienced a decrease with the rise in the applied Ni.  相似文献   

4.
《Scientia Horticulturae》2005,105(3):343-358
The influence of arsenic and Cucumber mosaic virus (CMV), applied separately and simultaneously on young tomato plants was studied. The plants were cultivated in containers under glasshouse conditions. Four main variants were arranged. The first one was without additional As pollution of soil, named as a control, and the other three variants, with As added at 25, 50 and 100 mg kg−1 to dry soil respectively. Half of the plants in each experimental container were inoculated with CMV and the rest uninoculated. A clear response in plant behavior under the conditions of biotic and abiotic stress was estimated. Both arsenic and virus infection had a negative effect on tomato plants by limiting the growth of their roots and above growth parts. The changes in roots were more significant than of stems. Virus infection was a stronger stress factor than arsenic applied at levels of 25 and 50 mg kg−1. The effect of each stress factor applied separately was enhanced in cases of their simultaneous application. The strongest negative effect was manifested in the infected plants, treated with excess arsenic of 100 mg kg−1. It was established that the infection, caused by CMV in tomatoes, was affected by the presence of arsenic in the soil and concentration of the latter. Doses of 25 and 50 mg kg−1 were favorable for infection development, while the dose of 100 mg kg−1 was an inhibitor.Virus infection induced stronger specific peroxidase activity (SPOA) than As treatment. The combination of both stress factors reduced the positive peroxidase response caused by virus infection. Arsenic at rate 50 and 100 mg kg−1, virus infection and the combination of both stress factors at 25 mg kg−1 reduced chlorophyll a, chlorophyll b and carotenoid content The virus infection in cases of the higher arsenic doses reduced the As effect. There was an interaction between the two effects of biotic and abiotic stress. When arsenic and virus infection were applied simultaneously, they caused modification of the effect of each stress on the plants, when applied separately.  相似文献   

5.
《Scientia Horticulturae》2005,106(1):70-75
The objective of this study was the comparison of the effect of two Mn sources (MnSO4·H2O, MnEDTA) which were applied at various concentrations (0, 200, 400, 800, and 1200 mg Mn l−1) to the leaves of ‘Washington navel’ orange trees in order to correct Mn deficiency.One hundred and seventy days after the foliar application of Mn solutions, the mean Mn concentrations in the leaves treated with MnSO4·H2O (200, 400, 800 or 1200 mg Mn l−1) or MnEDTA (400, 800 or 1200 mg Mn l−1) were significantly higher than those of the control leaves. Manganese sulfate (MnSO4·H2O) was more effective than MnEDTA regarding the improvement of the leaf Mn concentrations of the trees, when applied at equal Mn concentrations. Finally, the leaf Mn concentrations were in the sufficiency range (>25 mg kg−1 d.w.), only after the application of 800 or 1200 mg Mn l−1 as MnSO4·H2O.  相似文献   

6.
《Scientia Horticulturae》2005,106(3):330-340
In this study, effects of ammonium sulphate (AS) and urea fertilizers on NO3 and NO2 accumulation, N, P, K, Ca, Mg, Fe, Cu, Zn, Mn contents and some yield criteria in spinach were investigated. Increments in nitrogen doses of AS and urea from 0 (control) to 150 kg N level ha−1 increased NO3, NO2, total N contents and yield of spinach significantly, but usually decreased P, Zn and Mn contents. NO3 contents of spinach in 120 and 150 kg N ha−1 of urea applications were higher than that of AS applications, while the NO3 contents of spinach in the lower application doses of AS were higher than that of urea applications. Increasing phosphorus availability in the higher doses of AS applications due to possibility of decreasing soil pH might be decrease NO3 accumulation in spinach by assimilating NO3 in protein form. NO3 and NO2 contents also gave the significant negative relationships with yield and P content in spinach. Decreasing micronutrient contents in spinach at the higher nitrogen doses might be due to dilution effect by increasing the plant biomass.  相似文献   

7.
Urban parks form the largest proportion of public green spaces contributing to both physical and mental well-being of people living in urban areas. CO2 sequestration capability of the vegetation developing in parks of four historical residences (Villa Pamphjli, Villa Ada Savoia, Villa Borghese and Villa Torlonia) in Rome and its economic value were analyzed. Villa Pamphjli and Villa Ada Savoia having a larger vegetation extension (165.04 ha and 134.33 ha, respectively), also had a larger total yearly CO2 sequestration per hectare (CS) (780 MgCO2 ha−1 year−1 and 998 MgCO2 ha−1 year−1, respectively) than Villa Borghese (664 MgCO2 ha−1 year−1) and Villa Torlonia (755 MgCO2 ha−1 year−1), which had a lower vegetation extension (56.72 ha and 9.70 ha, respectively). CS was significantly correlated with leaf area index (LAI). The calculated CS for the four parks (3197 MgCO2 ha−1 year−1), corresponding to 3.6% of the total greenhouse gas emissions of Rome for 2010, resulted in an annual economic value of $ 23537 /ha.  相似文献   

8.
《Scientia Horticulturae》2002,95(4):285-295
Multiple shoots were produced from node explants of lime (Citrus aurantifolia (Christm.) Swing) on MS medium supplemented with 6-benzylaminopurine (BAP), 6-furfurylaminopurine (kinetin) and α-naphthaleneacetic acid (NAA). The highest number of shoots, nine shoots per node, were produced on a medium containing 2 mg l−1 BAP (8.8 μM), 1 mg l−1 kinetin (4.6 μM) and 1 mg l−1 NAA (5.4 μM). Depending on the concentration of BAP and kinetin, NAA either inhibited, stimulated or did not affect shoot multiplication, which also depended on the cytokinin level. Maximum shoot length was obtained from treatments containing 0.5 mg l−1 BAP (2.2 μM) combined with 1 mg l−1 kinetin (4.6 μM) and 0.5 mg l−1 NAA (2.7 μM). The largest leaves of resultant shoots were produced on a medium containing 0.5 mg l−1 each of kinetin (2.3 μM) and NAA (2.7 μM). Transferring in vitro shoots to rooting media containing indole-3-butyric acid (IBA) and NAA produced complete plantlets. The highest rooting percentage was obtained on a medium containing either 1 mg l−1 NAA (5.4 μM) alone or 0.5 mg l−1 NAA (2.7 μM) combined with 2 mg l−1 IBA (9.6 μM), whereas the highest number of roots were produced on a treatment containing both 2 mg l−1 NAA (10.8 μM) and 2 mg l−1 IBA (9.6 μM). Roots elongated most on treatments containing 0.5 mg l−1 of either NAA (2.7 μM) or IBA (2.4 μM). Shoot growth associated with the rooting phase was the highest in response to 2 mg l−1 IBA (9.6 μM) or 0.5 mg l−1 NAA (2.7 μM). Plantlets that survived acclimatization, 82%, exhibited normal growth in soil under greenhouse conditions.  相似文献   

9.
《Scientia Horticulturae》2005,104(1):11-24
Leaf CO2 assimilation rate, stomatal conductance (gs), internal CO2 concentration (Ci), chlorophyll (a + b) content, specific leaf weight (SLW) and stomatal density were measured during the season, under field conditions, for five major Greek olive cultivars, ‘Koroneiki’, ‘Megaritiki’, ‘Konservolia’, ‘Lianolia Kerkiras’, and ‘Kalamon’, with different morphological and agronomic characteristics and diverse genetic background. Measurements were taken from current-season and 1-year-old leaves, and from fruiting and vegetative shoots, throughout the season, from March to November in years 2001 and 2002. CO2 assimilation rates showed a substantial seasonal variation, similar in all cultivars, with higher values during spring and autumn and lower values during summer and late autumn. Stomatal conductance (gs) followed similar trends to leaf CO2 assimilation rates, increasing from March to July, following by a decrease during August and increasing again in autumn. ‘Koroneiki’ had the highest leaf CO2 assimilation rate and gs values (21 μmol m−2 s−1 and 0.45 mol m−2 s−1, respectively) while ‘Lianolia Kerkiras’ and ‘Kalamon’ showed the lowest leaf CO2 assimilation rate and gs values (13–14 μmol m−2 s−1 and 0.22 mol m−2 s−1, respectively). One-year-old leaves had significantly higher leaf CO2 assimilation rate than current-season leaves from April to June, for all cultivars. From August and then, leaf CO2 assimilation rate in current-season leaves was higher than in 1-year-old leaves. There were no significant differences in leaf CO2 assimilation rate between fruiting and vegetative shoots. Total chlorophyll (a + b) content increased with leaf age in current-season leaves. In 1-year-old leaves chlorophyll content increased in spring, then started to decrease and increased slightly again late in the season. Chlorophyll content was higher in 1-year-old leaves than in current-season leaves throughout the season. Total specific leaf weight (SLW) increased throughout the season for all cultivars. Stomatal density in lower leaf surface was lowest for ‘Koroneiki’ (399 mm−2) and highest for ‘Megaritiki’ (550 mm−2). Our results showed differences in leaf CO2 assimilation rate among the five different olive cultivars, with a diverse genetic background, ranging from 12 to 21 μmol m−2 s−1. From the five cultivars examined, ‘Koroneiki’, a drought resistant cultivar, performed better and was able to maintain higher leaf CO2 assimilation rate, even under high air vapor pressure deficit. All cultivars had a pronounced seasonal variation in leaf CO2 assimilation rate, affected by date of the year, depending on ambient conditions. The high temperatures and high air vapor pressure deficit occurring during summer caused a reduction in leaf CO2 assimilation rate in all cultivars. Leaf CO2 assimilation rate was also affected by leaf age for all cultivars, with old leaves having significantly higher leaf CO2 assimilation rate than young leaves early in the season.  相似文献   

10.
《Scientia Horticulturae》2005,103(3):289-303
In a 2-year field study, strawberry cvs. ‘Elsanta’ and ‘Korona’ were exposed to three different levels of NaCl salinity supplied as aqueous solutions characterised by electrical conductivities of 0.3 dS/m, 2.6 dS/m, and 5.1 dS/m. Salinity in the rhizosphere reduced plant growth by up to 44% in ‘Korona’ and 90% in ‘Elsanta’. A rather distinct cultivar difference represented the reduction in leaf area per plant of 85% in the second year of experiment in ‘Elsanta’ compared to 29% in ‘Korona’. Strawberry can be regarded as a Na+ excluder, because Na+ content of both strawberry cultivars remained below 3 mg g−1 dry mass at all salinity levels. Cl content increased considerably, up to 70 mg g−1 dry mass in ‘Korona’ and 80 mg g−1 dry mass in ‘Elsanta’ plants. ‘Korona’ retained most of its Cl in roots and crowns, whereas in ‘Elsanta’ the maximum was detected in petioles. ‘Korona’ was able to accumulate up to 33% higher Cl content in the roots than ‘Elsanta’. Macronutrient deficiency due to NaCl salinity was not observed and in comparison to ‘Elsanta’, higher Cl content in roots of ‘Korona’ did not coincide with an impairment of macronutrient uptake. Salinity stress reduced fruit yield by up to 27% in ‘Korona’ and 64% in ‘Elsanta’. Fruit quality, characterised as taste, aroma, and texture by a consumer-type panel, decreased by more than 24% in ‘Elsanta’, but in ‘Korona’ differences were insignificant. Total soluble solids (Brix) and the ratio Brix/TA (TA, titratable acid) decreased significantly by about 20% in ‘Korona’ and 35% in ‘Elsanta’. To summarise, the ability of ‘Korona’ to retain Cl in the root system more effectively than ‘Elsanta’ resulted not only in a 41% lower leaf Cl content at the highest salinity level and a better growth under NaCl stress, but also in a relatively higher fruit yield and fruit quality.  相似文献   

11.
《Scientia Horticulturae》2005,107(1):90-96
Somatic embryogenic cell suspension cultures of four ginger cultivars were established. Somatic embryogenic calli were induced from ginger shoot tips on MS agar medium supplemented with 1.0 mg l−1 2,4-D and 0.2 mg l−1 Kn, which contained only half concentration of NH4NO3. Rapid-growing and well-dispersed suspension cultures were established by subculturing this kind of callus in the same liquid MSN medium. The suspension cultures (about 1–2 mm in diameter) were placed on the MSN agar medium for callus proliferation. Thereafter embryogenic callus (1.5 cm2) was transferred to solid media (MS + 0.2 mg l−1 2,4-D + 5.0 mg l−1 BA + 3% sucrose + 0.7% agar). Somatic embryos produced shoots and roots, and shoots developed into complete plantlets on solid MS medium supplemented with 3.0 mg l−1 BA and 0.1 mg l−1 NAA. The relationship between the DW of suspension cultures and pH changes in medium is also discussed. The suspension cultures still kept their vitalities after subculture for 8 months.  相似文献   

12.
《Scientia Horticulturae》2002,95(3):239-249
Microcuttings (shoots each with two leaves) of Limonium ‘Misty Blue’ were cultivated in vitro for 28 days under photoautotrophic (sucrose-free culture medium; CO2 and photosynthetic photon flux (PPF) enriched conditions), photomixotrophic (medium with 30 g l−1 sucrose; CO2 and PPF enriched conditions) and heterotrophic (medium with 30 g l−1 sucrose; CO2 non-enriched conditions) methods. Several growth variables were measured during and at the end of cultivation: shoot fresh and dry weight, percentage of shoot dry matter, root fresh weight, number of leaves, leaf area, chlorophyll and sugar content of leaves, stomatal density and size, net photosynthetic rate (NPR) and percent survival of plantlets ex vitro. Plantlets grown in photoautotrophic and photomixotrophic methods had more leaves, high chlorophyll and sugar contents, high NPR, and showed high percent survival. However, these plantlets possessed less number of stomata per square millimeter. In contrast, the plantlets grown by the heterotrophic method showed decreased values of these growth variables except for the number of stomata per square millimeter. These results indicate that CO2 enrichment for plantlets in vitro at a relatively high PPF would promote photosynthesis and hence growth of chlorophyllous explants/plantlets in vitro. The resulting plantlets were acclimatized better and sooner on ex vitro transplantation.  相似文献   

13.
《Scientia Horticulturae》2001,89(2):115-128
The possible application of some less commonly used in vitro growth regulating compounds is outlined. A number of treatments were applied to determine the best way of inducing in vitro shoot proliferation and rooting on a modified Driver–Kuniyuki [HortScience 19 (1984) 507] basal medium of lemon (Citrus limon (L.) Burm, f. cv. Interdonato) seedlings. 6-Benzyladenine (BA) alone (1, 2 and 4 mg l−1) and in combination with either orange juice (10%, v/v), silver nitrate (3 mg l−1), gibberellic acid (GA3) (0.1 mg l−1 at the establishment stage and 0.5 mg l−1 at all combinations during the proliferation stage) or abscisic acid (ABA) (0.2 mg l−1 only at the establishment stage) were used to stimulate shoot formation during the establishment and the proliferation stage. The combination of BA with ABA gave a high rate of shoot formation, while GA3 and silver nitrate enhanced shoot elongation. When these shoots were transferred to the rooting stage, the effect of application of two different auxins (indole-3-butyric acid (IBA) and α-napthaleneacetic acid) was examined, as well as different methods of application (auxin added to the basal medium and auxin application by dipping the base of the explant in auxin solution). Dipping the base of the explants in a 50% ethanol solution of IBA at 1000 mg l−1 for 5 s resulted in 80% rooting with subsequent 90% survival of these explants, during acclimatization under mist.  相似文献   

14.
《Scientia Horticulturae》2005,104(3):275-292
Forty-one herbaceous species were grown under short-days (8 h photoperiod, ambient irradiance averaged 12–13.2 and 6.4–8.3 mol m−2 day−1 for Experiments I and II, respectively) with or without supplemental high-pressure sodium lighting (+50, 100, or 150 μmol m−2 s−1); or under long-days delivered using natural day lengths and irradiance with night interruption lighting (2200–0200 h at 2 μmol m−2 s−1 from incandescent lamps) or under ambient daylight plus supplemental irradiance during the day and as a day extension to 18 h (0800–0200 h) with supplemental high pressure sodium lighting (+50, 100, or 150 μmol m−2 s−1) to identify the impact of photoperiod and irradiance on flowering of each species. Days to first open flower, leaf number below first flower, and mean dry weight gain per day (MDWG) were measured when the first flower opened. Twenty-seven species were photoperiodic with examples of five photoperiodic response groups represented: obligate short-day (2), facultative short-day (5), obligate long-day (16), facultative long-day (4); 13 were day neutral (no photoperiod response in flowering). One species, Salvia sclarea L., did not flower. A facultative irradiance response was observed with 10 species; 28 species were irradiance indifferent; 2 had delayed flowering as irradiance increased. Photoperiod affected MDWG of 30 species. Increasing irradiance affected MDWG with 14 species. Photoperiod interacted with irradiance to affect MDWG of 11 species. Cobaea scandens had the greatest MDWG (0.40 g day−1) while Amaranthus hybridus had the least MDWG (0.01 g day−1) across photoperiod and irradiance levels.  相似文献   

15.
This paper analyses the response of vegetative growth of greenhouse tomato to both root-zone salinity and shoot-environment (potential transpiration), with the purpose of explaining the observed lack of effect on dry matter yield. A reference salinity (EC) of 2 dS m−1 was compared in three experiments with, respectively, 6.5, 8 and 9.5 dS m−1. Another experiment investigated specific effects of sodium chloride, by comparing two high-EC treatments (both 9 dS m−1), one with a high concentration of nutrients and one with addition of sodium chloride to a normal nutrient solution. The shoot-environment was either a “normal” climate regime or the same regime but with depressed potential transpiration, mainly by adaptation of the humidity set point. There was no detectable effect of the potential transpiration treatment, neither of the sodium chloride. Salinity effects on vegetative growth only showed up at EC exceeding 6.5 dS m−1. The most evident EC effect was a reduction of leaf expansion; individual leaf area was reduced by 8% per dS m−1 exceeding 6.5. This was partly compensated by a slight increase (2% per unit EC) in the number of leaves, which explains why cumulative plant leaf area decreased by about 7% per unit EC in excess of 6.5 dS m−1. Therefore, leaf area index (LAI) at the highest EC was reduced by some 20% compared to the LAI at an EC of 2 dS m−1. It is estimated that this would cause a reduction of less than 8% in light interception, and thus in dry matter produced. Indeed, differences observed in dry weight between the EC treatments were never significant.  相似文献   

16.
《Scientia Horticulturae》2005,104(3):325-337
The influence of 24 h mean air temperature (18.3, 20.6, 23.9 and 25.8 °C) and photosynthetic photon flux (PPF; 0.6, 2.1, 3.7 and 4.7 mol m−2 d−1) on the growth cycles of vegetative growth in Ilex × meserveae (‘Blue Princess’ S.Y. Hu) was investigated. Plants propagated from top cuttings were grown in greenhouse compartments. The number of unfolded leaves was recorded continuously throughout the experiment. A modified sine function was fitted to collected data and the values for the amplitude and frequency of the growth curves were analysed. The sine function was tested as a method to evaluate the influence of climate on periodically flushing species. Both amplitude and frequency were significantly influenced by air temperature and PPF. The highest frequency of flushing was found at 23.9 °C and 3.7 mol m−2 d−1. The function resulted generally in a good fit to collected data with R2 values above 0.9. Growth curves of all individual plants were categorised with respect to their growth pattern as poor synchronisation within the treatments did not allow analysis of the mean values of the growth curves.  相似文献   

17.
《Scientia Horticulturae》2005,106(2):203-212
Cultivation of roses in various soil-less media was studied with the aim to identify the optimum soil condition for rose production. Madelon roses grafted on rootstock of Rosa indica var. major were transplanted to polyethylene bags containing zeolite and perlite (at ratios of 25z:75p, 50z:50p, 75z:25p and 100z:0p, v/v) in a climate-controlled greenhouse. Net photosynthesis (Anet), stomatal conductance (gs) and water use efficiency (WUE) of roses were followed for 5 months. Flower production and quality were recorded in three flowering flushes during a 5-month period. Analysis of variance of repeated measurements showed that even though the overall Anet did not differ among treatments (average 18.7 μmol m−2 s−1), trends in Anet seasonality for roses in 25z:75p substrate differed significantly from those in 50z:50p, 75z:25p or 100z:0p. Stomatal conductance did not show any significant seasonality or trends in response to substrate mixtures, averaging 0.89 mol m−2 s−1. Water use efficiency was significantly lower for roses in 25z:75p than in 100z:0p mixtures (1.8 ± 0.15 and 2.0 ± 0.13 μmol m−2 s−1 CO2/mmol m−2 s−1 H2O, respectively). Cumulative production of rose plants did not differ among substrate mixtures. Productivity significantly differed among flower stem classes. Stem class I (>70 cm) and class V (≤30 cm) exhibited the least production, contributing to only 7.6 and 3.7% of the total production, respectively. The highest productivity was observed in classes III (51–60 cm) and IV (31–50 cm), contributing to the bulk of productivity (68.4%). Class II contributed a 20.3% of the production. Results showed that zeolite and perlite acted as inert materials. Zeolite did not exert any positive effect on productivity, in contrast to what has been reported in literature recently. Use of perlite resulted in a little improvement in photosynthesis, however this improvement was not reflected by a significant increase in production.  相似文献   

18.
《Scientia Horticulturae》2004,101(3):243-253
Experiments to test the effectiveness of prohexadione–Ca as a growth inhibitor in apple trees have been carried out for 3 years in the Middle Ebro Valley (Spain). Also, effects on fruit quality and flower initiation were evaluated. The application of 100–400 mg l−1 of prohexadione–Ca between 12 and 30 days after full bloom (DAFB) to ‘Smoothee Golden Delicious’/M9 apple trees resulted in the inhibition of shoot growth, the effect increasing with concentration, and a greater inhibition was obtained when the trees were first sprayed 12–20 DAFB. A second spray was usually needed to avoid a regrowth of the shoots. The effectiveness of the second application was related to the concentration applied and the date of the first spray. The relative increase in trunk-cross-sectional area was not affected by the growth inhibitor. No negative effects on yield and fruit quality were found except for a reduction of soluble solid content. Flower initiation in the following year was not affected. Concentrations of 100–200 mg l−1 applied shortly after full bloom should be recommended, bearing in mind that a second application might be necessary 6–8 weeks later.  相似文献   

19.
《Scientia Horticulturae》2002,95(3):251-260
A number of experiments were conducted to identify suitable procedure for in vitro shoot multiplication of Persian walnut (Juglans regia L.). Three different nutrient media (DKW, MS and WPM) and three different gelling agents (Phytagel, Difco Bacto agar and a mixture of Phytagel and Difco Bacto agar) were studied in the first experiment. Driver and Kuniyuki walnut (DKW) medium solidified with 2.2 g l−1 Phytagel was found optimum. Performance of explants was better on DKW medium than on MS and WPM. The DKW and MS media were not significantly different from each other, but both of them were significantly better than WPM, which was a very poor medium for this species. Phytagel alone was significantly better than Difco Bacto agar or Phytagel combined with Difco Bacto agar. In another experiment different concentrations of BA were studied. Medium containing 1.0 mg l−1 BA and 0.01 mg l−1 IBA was the best, although medium containing 0.6 and 0.8 mg l−1 BA were also successful, and utilisation of 0.4 mg l−1 BA and 0.01 mg l−1 IBA was optimum for shoot elongation. Application of different kinds of auxins (IAA, IBA and NAA at 0.01 or 0.1 mg l−1) with 1.0 mg l−1 BA were also studied. Media containing IBA were significantly better than media containing IAA for shoot fresh weight, but neither of them was significantly different from media containing NAA. Application of 0.01 mg l−1 or 0.1 mg l−1 auxin, with 1.0 mg l−1 BA, was not significantly different for shoot multiplication of Persian walnut. The morphology of shoots on media containing 0.01 mg l−1 IBA was the best.  相似文献   

20.
《Scientia Horticulturae》2005,104(3):237-247
In order to initiate cell and embryo suspensions, embryogenic calluses derived on NN solid medium with 2,4-D and BA from petioles of in vitro grown plants of three interspecific grapevine hybrids were cultured in three versions of liquid NN medium: (1) without growth regulators, (2) 0.1 mg l−1 IAA and (3) 0.5 mg l−1 BA. Cell and embryo suspensions were incubated two and three times in these versions of liquid media in various combinations. Incubating suspensions two times in hormone-free media and/or with 0.1 mg l−1 IAA led to formation of globular embryos in the three cultivars studied and small numbers of heart-stage embryos in ‘Podarok Magaracha’ and ‘Intervitis Magaracha’. Numerous heart-stage embryos developed in ‘Intervitis Magaracha’ and ‘Podarok Magaracha’ when the suspensions had been initiated in medium with 0.5 mg l−1 BA, and in ‘Bianca’ this was achieved after two incubations in the above medium. Torpedo-stage embryos were formed after subculturing heart-stage embryo suspensions in medium with 0.1 mg l−1 IAA in all study cultivars. If only small numbers of embryos of a certain developmental heart- or torpedo- stage were formed, such cell and embryo suspensions need to be repeatedly subcultured in liquid medium with specific growth regulators to enable this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号