共查询到20条相似文献,搜索用时 15 毫秒
1.
《Field Crops Research》2002,73(2-3):169-180
Drought frequently reduces grain yield of rainfed lowland rice. A series of experiments were conducted in drought-prone northeast Thailand to study the magnitude and consistency of yield responses of diverse, rainfed lowland rice genotypes to drought stress environments and to examine ways to identify genotypes that confer drought resistance. One hundred and twenty-eight genotypes were grown under non-stress and four different types of drought stress conditions. The relationship of genotypic variation in yield under drought conditions to genetic yield potential, flowering time and flowering delay, and to a drought response index (DRI) that removed the effect of potential yield and flowering time on yield under stress was examined.Drought stress that developed prior to flowering generally delayed the time of flowering of genotypes, and the delay in flowering was negatively associated with grain yield, fertile panicle percentage and filled grain percentage. Genotypes with a longer delay in flowering time had extracted more water during the early drought period, and as a consequence, had higher water deficits. They were consistently associated with a larger yield reduction under drought and in one experiment with a smaller DRI. Genotypes, however, responded differently to the different drought stress conditions and there was no consistency in the DRI estimates for the different genotypes across the drought stress experiments. The results indicate that with the use of irrigated-control and drought test environments, genotypes with drought resistance can be identified by using DRI or delay in flowering. However, selections will differ depending on the type of drought condition. The inconsistency of the estimates in DRI and flowering delay across different drought conditions reflects the nature of the large genotype-by-environment interactions observed for grain yield under various types of drought in rainfed lowland conditions. 相似文献
2.
《Field Crops Research》2002,73(2-3):153-168
Responses of rice genotypes to drought stress may be different when characteristics of the drought stress environments differ. The performance of 128 genotypes was examined under irrigation and four different types of drought stress, to determine genotypic consistency in yield and factors determining yields under different drought stress conditions. The different drought conditions were mild drought during grain filling, short and severe drought at flowering, prolonged severe drought during the reproductive to grain filling, and prolonged mild drought during vegetative and grain filling.Genotypic grain yield under mild stress conditions was associated with yield under irrigated conditions, indicating the importance of potential yield in environments where the yield reduction was less than 50%. However, yields under irrigated conditions differed over time and locations.Under prolonged or severe drought conditions, flowering time was an important determinant of grain yield. Earlier flowering genotypes escaped the severe stress and had higher grain yields indicating large genotype by environment (G×E) interactions which have implications for plant breeding even for mild stress. It is suggested that variations in flowering time, potential yields and drought patterns need to be considered for development of drought-resistant cultivars using specific physiological traits. 相似文献
3.
Pheng Sengxua Benjamin K. Samson Chay Bounphanousay Sisavanh Xayavong Khamsouk Douangboupha Dome Harnpichitvitaya 《Plant Production Science》2017,20(4):477-484
Genotype by environment (G×E) interactions for grain yield were investigated in 14 rice genotypes across eight rainfed lowland field environments in Lao PDR, in order to identify stable adapted cultivars for improved farmer livelihood and food security. G×E accounted for 20.3% of the total variance, with three vectors from ordination analysis accounting for 75.1% of the G×E-SS, in 6 genotype?×?6 environment groups. PCA1 indicated water-limited yield potential, PCA2 pre-flowering stress and PCA3 post-flowering stress. Genotype groups (G1–G6) differed in adaptation to these environments. G5 (VT450-2 and TSN9) were widely adapted and high-yielding. G6 (TDK11 and TDK37) were also high-yielding, topping the rankings in three environment groups, but yielded less in Phalanxay 2012 and Phalanxay 2011, where their phenology was unstable under stress. Other genotype groups showed specific adaptations, but failed to exceed yields of G5 and G6. Hence, VT450-2 and TSN9 (G5) were the preferred genotypes for rainfed lowland in southern Lao PDR, due to their high and stable grain yields. Stability in flowering time and high yield in rainfall deficit were desirable traits for improved farmer livelihood and food security. 相似文献
4.
《Field Crops Research》2007,102(1):9-21
We evaluated the genotypic differences in grain yield of 14 rice (Oryza sativa L.) genotypes with different phenology under four growing conditions: transplanting (TP) or direct-seeding (DS) in a toposequentially lower (with favorable water conditions) or upper (drought at around flowering stage) field at Ubon Ratchathani, northeastern Thailand. Thirteen of the genotypes – five early-maturing, four intermediate, and four late – had been bred for rainfed lowlands in northern and northeastern Thailand. IR24, a semi-dwarf, high-yielding, and early-maturing genotype bred for irrigated lowlands, was included for comparison. Genotypic differences in grain yield were significant in a combined analysis of all 4 growing conditions, and both high sink size (spikelet number per area) and high ripened grain percentage were associated with high yield. IR24 did not out-yield the rainfed-lowland genotypes, and its yield was particularly low in DS, owing to poor shoot dry matter production and low spikelet number per panicle. In the lower field, the interaction between cultivation method and genotype was also significant. In the lower field, late maturity was more strongly related to high shoot dry weight at maturity in TP than in DS; some of the early- to intermediate-maturing genotypes in DS produced shoot dry weights at maturity that were comparable to those of the late-maturing genotypes. High shoot dry matter production and large spikelet number per panicle were associated with high grain yield in DS genotypes in the lower field, whereas in TP genotypes with large numbers of panicles were required for high grain yield. Although the field location–genotype interaction and the field location–cultivation method–genotype interaction were not significant, regression analysis showed that late-maturing genotypes yielded less than earlier maturing genotypes, owing to the smaller ripened grain percentage resulting from late-season drought, in the upper field but not in the lower field. The presence of a trade-off between number of ripened grains and grain size in the lower field indicated the possibility of increasing the yield in rainfed-lowland genotypes by increasing assimilation capacity during grain filling. Phenology is important in the development of higher-yielding genotypes for different cultivation methods and different toposequential positions. 相似文献
5.
《中国水稻研究通报》1999,(3)
Glabrous rice is characterized by its smoothand hairness leaves and husks,mainly dis- tributed in America,Africa,and Yunnan andGuizhou provinces of China.It has the charac- teristics of strong stem,high endurance tolodging,good compatibility,high grain quali-ty,and high yield,and is propitious to themachanized harvest.The Glabrous rice hasbeen proved to be plant population of superior- ity,which could be used as germplasm re- 相似文献
7.
Weedy rice is a great threat to rice production in Sri Lanka. Selective herbicides to manage weedy rice in conventional rice cultivars are not available in Sri Lanka. In the absence of appropriate chemical control measures, cultural approaches may help to achieve effective control of weedy rice. A study was conducted in two consecutive seasons in farmers' fields at three sites (Atalla, Samanthurai, and Girithale villages) in Sri Lanka to evaluate the effect of different establishment methods (farmers' practice, random broadcast, row seeding, seedling broadcast, and transplanted rice) on weedy rice infestation and rice yield. The farmers' practice had a higher number of weedy rice panicles (60–80 m−2) than the random broadcast (39–48 panicles m−2), seedling broadcast (3–15 panicles m−2), and transplanted rice (1.3–3.0 panicles m−2) methods. The use of clean rice seeds in the random broadcast method reduced weedy rice seed production by 29–41% compared with the farmers' practice (0.6–2.0 t ha−1). Compared with the farmers' practice, the seedling broadcast method reduced weedy rice seed production by 71–87% and transplanted rice by 95–98%; and increased rice yield by 27–49% (7.5–9.1 t ha−1). At all three sites, the farmers' practice resulted in the lowest grain yield (5.1–6.7 t ha−1). Compared with the farmers' practice, the random broadcast and row seeding methods increased rice yield by up to 21% and 31%, respectively. The findings suggest that the use of clean rice seeds, the use of a row-seeded crop, and the adoption of different rice planting methods may help to suppress the spread of weedy rice. 相似文献
8.
《中国水稻研究通报》1999,(4)
By crossing homologuos triploid plants derivedfrom twin-seedlings with diploid plants,manykinds of aneuploid were produced as expectedbecause the abnormal chromosome pairing oc- curred in triploid itself and F_1.In the mean- time,we also obtained a few normal developeddiploid F_1 plants.The self progeny(F_2)showed agronomic stability,checked withSSLP and RFLP markers.It was found thatthe F_1 was non-segregated hybrid.In thisstudy,the triploid served as male parent andthe diploid indica rice variety R725 served as 相似文献
9.
10.
11.
Tariq M Ali G Hadi F Ahmad S Ali N Shah AA 《Pakistan journal of biological sciences: PJBS》2008,11(2):255-259
The objective of the present study was to develop an effective protocol for optimum callus induction and complete plant regeneration for four varieties of rice (Oryza sativa L.) i.e., Super Basmati, Basmati-370, Basmati-371 and Fakhre Malakand. Calli were induced from mature seed scutelum. The Murashige and Skoog (MS) and Chu's N6 media containing hormone 2, 4-D (2, 4-Dichlorophenoxy acetic acid) in different concentrations were used for callus induction. Fakhre Malakand produced maximum calli on N6 media containing 3 mg L(-1) 2,4-D. while other three varieties showed maximum callus induction on N6 media containing 2.5 mg L(-1) 2,4-D. N6 media was found better than MS media for callus induction. For complete plant regeneration the calli of two varieties i.e., Basmati-370 and Basmati-371 were plated on N6 media containing different concentrations of NAA (1-Naphthalene acetic acid) and BAP (6-benzyl aminopurine). The maximum regeneration frequency (%) was observed on N6 media containing NAA 1 mg L(-1) and BAP 2.5 mg L(-1). It took 27-30 days for the callus to regenerate into a complete plant. Basmati-370 produced 4-7 plantlets per callus whereas Basmati-371 produced 4-8 plantlets per callus with regeneration frequencies of 61 and 69%, respectively. 相似文献
12.
Developing more competitive rice cultivars could help improve weed management and reduce dependency on herbicides. To achieve this goal, an understanding of key traits related to competitiveness is critical. Experiments were conducted at Gelemen and Bafra districts of Samsun province in Turkey between 2008 and 2009 to measure the competitiveness of rice cultivars against Echinochloa crus-galli, a problematic weed in rice fields. Five rice cultivars (Osmancık, Kızılırmak, Karadeniz, Koral and Neğiş) and five E. crus-galli densities (0, 5, 10, 20, and 30 plants m−2) were used. Koral produced significantly more tillers than the other cultivars irrespective of E. crus-galli densities and reduced E. crus-galli tiller production by about 29.5% at Gelemen and 15.8% at Bafra at the highest weed density. E. crus-galli interference reduced rice height and there was a density dependent relationship. Koral was the most competitive cultivar; it maintained high biomass accumulation in early growth stages and suffered smaller reductions in plant height in the presence of E. crus-galli, compared to the other cultivars. In the absence of weed competition, Koral and Neğiş produced the highest yields at both locations. Stepwise regression analyses of the combined data from both years showed tillering capacity, early growth crop biomass, and plant height were critical traits related to competitiveness. These traits should be considered by plant breeders in their efforts to develop rice cultivars with enhanced competitiveness against weeds. Development of such cultivars could substantially reduce herbicide and labor inputs for rice production. 相似文献
13.
14.
Tomoyuki Katsube-Tanaka Nadar Khan Satoru Yamaguchi Takeshi Yamaguchi Shuichi Iida 《Plant Production Science》2016,19(3):401-410
Multigenic glutelins and monogenic globulin are major storage proteins accumulating in vacuole-derived protein body (PB-II) of rice (Oryza sativa L.) seeds. Because their interplay in PB-II formation was scarcely known, the effect of globulin-less mutation on glutelin accumulation was investigated. In globulin-less mutants, no phenotypic defect was found in seed and plant growth, while PB-II was deformed and apparent glutelin composition was changed, producing new glutelin α polypeptides X1–X5. 2D-PAGE of different combinations of globulin-less and glutelin subunit mutations suggested that the X1/X2, X3, and X4/X5 were derived from glutelin GluB1/GluB2/GluB4, GluA3, and GluA1/GluA2 subunits, respectively. Western blot with glutelin GluB4 subunit-specific and its variable region discriminable antibodies indicated at least in part the new spots X1/X2 are partially degraded products of GluB4 α polypeptides by the removal of 2–39 residues from C-terminus. Time course experiments with maturing seeds indicated the partial degradation of GluB4 occurred earlier (from 7 days after flowering) and higher than that of GluA1/GluA2. Considering the above results together with the fact that globulin accumulates at the periphery of PB-II and its absence produces deformed PB-II, globulin protects glutelins from proteinase digestion and thereby facilitates stable glutelin accumulation. 相似文献
15.
Arvind Kumar Satish Verulkar Shalabh Dixit Bhagirath Chauhan Jerome Bernier Ramaiah Venuprasad Dule Zhao M.N. Shrivastava 《Field Crops Research》2009
Fifteen experiments testing seven sets of genotypes under irrigated non-stress and drought stress situations were conducted from 2004 to 2006 with the objective to study the effect of different severity levels of drought on tolerant and susceptible advanced breeding lines, current varieties, and traditional and improved donors, and to study the effect of selection for high early vigor on yield. With the onset of drought, a yield reduction due to a decrease in biomass was observed in both susceptible and tolerant lines. However, after an initial reduction in yield, tolerant lines were able to sustain a yield loss more effectively than susceptible lines by better maintenance of biomass and higher harvest index. Under intermittent drought stress, genotypes with the ability to maintain higher biomass, reflected in terms of high early vigor recorded 3 wk after transplanting, recorded higher grain yield than genotypes with low early vigor. Lines with high early vigor yielded higher under both irrigated non-stress and intermittent drought stress situations. Under intermittent stress, plants with high vigor, low vigor, or random plants with high or low vigor coming from tolerant × susceptible crosses yielded higher than did the plants with the same vigor coming from susceptible × susceptible crosses. Under both irrigated non-stress and intermittent drought stress situations, early vigor showed significant genetic correlation with grain yield and could be included as an efficient selection criterion to improve yield in the lowlands. 相似文献
16.
Hidekazu Kobayashi 《Plant Production Science》2013,16(2):227-241
ABSTRACT
Endoreduplication is the phenomenon by which cells increase their ploidy. Endoreduplication is initiated by the transition from the mitotic cell cycle to the endocycle, in which DNA replication occurs without a subsequent chromosome separation and cytokinesis, and is enhanced by endocycle reiteration. This process appears to play an important role in endosperm development, but the characteristics of endoreduplication in the endosperm of rice (Oryza sativa) remain unclear. To elucidate the features and variations of endoreduplication in rice endosperm, endoreduplication progression in the developing endosperm was compared among 10 cultivars based on flow cytometry and fluorescence microscopy. The flow cytometric analysis detected significant differences among 10 cultivars in the following three parameters: mean ploidy of all nuclei, the proportion of nuclei ≥6C (%E, an estimate of the initiation of the endocycle), and the mean ploidy of nuclei ≥6C (E6P, an estimate of the reiteration of the endocycle). However, no significant correlation between %E and E6P was observed, suggesting that the initiation and reiteration of the endocycle are independently regulated. Fluorescence microscopy revealed that the ploidy of the nuclei was higher in the intermediate region than in the central and peripheral regions of the endosperm. Cells with a higher ploidy were larger in the developing endosperm. Furthermore, the mean ploidy in the developing endosperm was significantly correlated with the mean cell size in the mature endosperm. These results indicate that endoreduplication progression in the endosperm differed significantly among the 10 rice cultivars and such differences may influence endosperm cell size. 相似文献
17.
Chao Wu Kehui Cui Qiuqian Hu Wencheng Wang Lixiao Nie Jianliang Huang Shaobing Peng 《作物学报(英文版)》2019,(3):335-349
With global warming, rice plants may be subjected to heat stress more regularly during the heatsensitive flowering stage, causing spikelet sterility and grain yield loss.Stigma exsertion is considered to increase pollen reception and promote female reproductive success.The aim of this study was to investigate the role of stigma exsertion on spikelet fertility at high temperatures.Five rice cultivars(Liangyoupeijiu, Shanyou 63, Huanghuazhan, Nagina 22, and IR64) with differing degrees of stigma exsertion were cultivated and exposed to high temperature at anthesis.Heat-tolerant cultivars did not always show a high percentage of spikelets with exserted stigmas, and vice versa.Irrespective of the presence of more pollen grains on exserted stigmas, spikelets with exserted stigmas did not show greater spikelet fertility than spikelets with fewer exserted stigmas or hidden stigmas under heat stress.GA3 application augmented the percentage of spikelets with exserted stigmas;however, it did not increase spikelet fertility under heat stress.Spikelet fertility of whole panicles was negatively correlated with the percentage of spikelets with exserted stigmas, but positively with that with hidden stigmas.Viability of the hidden stigmas was less reduced than that of exserted stigmas under heat stress, suggesting that hidden stigmas have an advantage in maintaining viability.Heat stress delayed anther dehiscence and reduced the viabilities of both exserted stigmas and pollens, thereby causing low spikelet fertility.Together, these results suggest that high spikelet fertility does not depend on stigma exsertion and that enclosed stigma generally contributes to higher spikelet fertility and heat tolerance under high-temperature conditions during flowering in rice. 相似文献
18.
Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: Heritability and QTL effects 总被引:1,自引:0,他引:1
Drought tolerance is an important rainfed rice breeding objective, but because the heritability (H) of yield under drought stress is thought to be low, secondary physiological traits are considered better targets for selection than yield under stress per se. This assumption has rarely been tested, and there are no reports on H for yield under drought stress from experiments repeated over seasons in rainfed lowland rice. To assess the potential for improving yield under drought stress via direct selection, and to identify associated quantitative trait loci (QTL), doubled haploid lines with a narrow range of flowering dates, derived from the population CT9993-5-10-1-M/IR62266-42-6-2, were screened under full irrigation and severe drought stress induced by draining the paddy before flowering in 2000–2002 at Raipur, India. Drought stress reduced mean yield by 80%. H was similar in stress and non-stress trials, as was the relative magnitude of the genotype and genotype × year variances. The genetic correlation between yield in stress and non-stress conditions was 0.8, indicating that about 64% of the genetic variation for yield under stress was accounted for by differences in yield potential also expressed in irrigated environments. These results indicate that direct selection for yield under drought stress can produce yield gains under stress without reducing yield potential. There was no secondary trait for which selection resulted in greater predicted response in yield under stress than direct selection for stress yield per se. A QTL was detected on chromosome 1 near sd1 that explained 32% of the genetic variation for yield under stress, but only 4% under non-stress. Its effect was consistent across years. This QTL accounted for much of the variation in drought yield not accounted for by variation in yield potential. 相似文献
19.
High temperature (HT) and drought stress (WS) severely affect rice quality by altering the starch structure in rice. The morphological and physicochemical properties of starches isolated from two rice varieties grown under three stress treatment (HT, WS and WS + HT) during the grain filling stage were investigated. The results showed that WS increased amylose content (AC%) and the proportion of large starch granules (LSG) and made the surface of the starch granule smooth and flat. As a result, a lower relative crystallinity, surface order, swelling power, setback viscosity and gelatinization enthalpy were caused. HT decreased AC% and milled rice rate, but increased chalky rice rate, the number of LSG and the large air space and pits on the surface of the starch granules. As a result, a higher relative crystallinity, surface order, swelling power, setback viscosity and gelatinization enthalpy were caused. Similar results were observed under the treatment of WS + HT, indicating that there is a mild antagonistic effect on rice starch when the HT and WS occur simultaneously. 相似文献
20.
《Field Crops Research》1998,59(1):31-41
The critical nitrogen concentration of a plant can be defined as the minimum nitrogen concentration required for maximum growth rate at any time. It has been suggested that the relationship between the critical N concentration and dry matter per unit ground area for a wide range of crops is the same and is independent of climatic zone. Results presented in this paper support the concept of a critical N-dilution curve for yield of rice (Oryza sativa L.), which may be independent of climatic zone. The similarity between the nitrogen dilution curves for temperate and tropical environments indicates that there is no intrinsic difference in the ratio of carbon-to-nitrogen capture in those environments even though the final aboveground biomasses differed. Both the rate and duration of resource capture are probably limiting yields in tropical environments. In order to break through the current ceiling-yield barrier of approximately 10 t grain ha−1 in the tropics, superior germplasm must be lodging resistant and capable of acquiring 144 kg N ha−1 (N0.5) in the first 35 days following transplanting. An examination of the rates of nitrogen acquisition indicated that more emphasis must be placed on providing sufficient nitrogen during the early stage of crop growth if higher yields are to be obtained. The time course of nitrogen accumulation by the aboveground biomass was calculated for weights greater than 1 t ha−1; at weights less than this there were insufficient data to make calculations. At weights of aboveground biomass greater than 1 t ha−1, the rate of nitrogen acquisition per unit ground area declined. The decline probably reflected a lowering in crop demand for soil nitrogen caused by the internal cycling of nitrogen from aging to young developing tissues; roots' age may also play a part in the decline. The estimated rate of demand for nitrogen by the panicle exceeded the rate at which the aboveground biomass acquired it, emphasizing the importance of having a large `reservoir' of nitrogen in vegetative tissues. Such a reservoir would ensure that the nitrogen demand of the panicle could be met without causing the photosynthetic capacity of the crop to prematurely lose its ability to meet the carbohydrate demand of the panicle. 相似文献