首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
不同AM菌根菌分泌的磷酸酶对根际土壤有机磷的影响   总被引:18,自引:1,他引:18  
苏友波  林春  张福锁  李晓林 《土壤》2003,35(4):334-338,343
以三叶草为材料,利用3室隔网培养方法,研究了4种AM菌根菌侵染三叶草后对根际土壤酸性和碱性磷酸酶活性以及菌丝酶活性对土壤有机P的影响。结果表明,接种AM菌根菌 (9周) 对根际土壤酸性和碱性磷酸酶活性均有增强作用,但作用强度主要取决于菌丝在土壤中的生长状况,Glomus属菌根菌在整个菌丝室 (0~6cm) 都影响土壤磷酸酶的活性,其活性在整个菌丝室中都比Gigaspora的高。同一属不同种的根际土壤磷酸酶活性差异不大。AM菌根根际土壤磷酸酶对土壤有机P的降解有很强的促进作用。  相似文献   

2.
ABSTRACT

Salinity stress alleviation through arbuscular mycorrhizal fungi (AMF) application and sodium (Na) localization in strawberry plants were investigated. A greenhouse experiment in a completely randomized design with three replications revealed AMF (Gigaspora margarita) association alleviated salinity stress (200 mM NaCl). AMF inoculated plants had greater dry weight, maintained chlorophyll content, and decreased leaves browning compared to the control under salinity stress. The Na+ concentration and Na+/K+ ratio were found lower in the following organs, young and old leaflets and petioles, main roots and lateral roots of mycorrhizal plants than the control. The scanning electron microscope and energy dispersive x-ray spectroscopy (SEM-EDX) analysis of Na in old petiole and main root tissues revealed, excess Na localized in the vascular bundle margin of old petioles and main roots of both the control and mycorrhizal plants. So, suppression of Na absorption through roots might be the mechanism of salt stress alleviation in mycorrhizal plants than to the control Na localization. The higher cellulose and lignin contents in the cell wall of mycorrhizal roots act as the apoplastic barrier which might be suppressing Na influx.  相似文献   

3.
Phosphorus (P) availability to plants is a major constraint in acid soils. A study was conducted to determine the effect of arbuscular mycorrhizal fungi (AMF) under varying inorganic P and irrigation regimes on P availability and P-use efficiency in garden pea (Pisum sativum L.) in a Himalayan acid Alfisol. The experiment comprised of 14 treatments replicated thrice in a randomized block design. The results revealed that integrated use of AM fungi and inorganic P at either of the two irrigation regimes (IW/CPE0.6 or IW/CPE1.0) enhanced the green pea pod weight, green pod productivity and agronomic efficiency of applied P to the extent of 8.4%, 7.2% and 30.7%, respectively, over non-AMF counterparts as well as “generalized recommended NPK dose and irrigations (GRD).” AMF inoculation also led to enhanced nitrogen (N), P and potassium (K) acquisition (uptake) by 16.3%, 18.2% and 6% over non-AMF counterpart treatments. Further, AMF inoculation at varying P and irrigation regimes sharply enhanced the rooting depth (21.4%), root volume (23.5%), root dry weight (14.9%), root weight density (13.7%) as well as N concentration in root nodules (3.4%) over non-AMF counterparts and GRD practice. AMF also enhanced the mycorrhizal root colonization by 3.2 folds at flowering stage in AMF inoculated pea plants. AMF-imbedded treatments did not alter the available soil nutrient status (macronutrients and micronutrients) significantly in comparison to non-AMF counterparts in pea, available P status, however, increased to the extent of 6.5% over initial status. Further, AMF imbedded plots showed a slight build-up in soil organic carbon with nominal decrease in soil bulk density. AMF inoculation in pea also led to fertilizer P economy by about 25% soil-test-based P dose. Overall, AMF holds great potential in enhancing nutrient acquisition especially P besides influencing root morphology in order to harness better crop yields vis-à-vis fertilizer P economy by about 25% soil-test-based P dose in Himalayan acid Alfisol.  相似文献   

4.
Soil salinity and arbuscular mycorrhizal fungi (AMF) influence the soil hydrophobicity. An experiment was performed to determine the effects of soil salinity and AMF species on soil water repellency (SWR) under wheat (Triticum aestivum L.) crop. Six AMF treatments, including four exotic species (Rhizophagus irregularis, Funneliformis mosseae and Claroideoglomus claroideum, a mix of three species), one mix native AMF species treatment and an AMF-free soil in combination with four salinity levels (1, 5, 10, and 15 dS m?1) were used. The soil repellency index (RI) increased with salinity increment ranging from 2.4 to 10.5. The mix of three exotic and native AMF treatments enhanced the RI significantly compared to AMF-free soil in all salinity levels with one exception for native treatment at 1 dS m?1. Among individual AMF species, the C. claroideum treatment at 10 dS m?1 increased the RI by 67% compared to AMF-free soil. The native AMF treatment was more efficient in root colonization, glomalin production and SWR development at 10 and 15 dS m?1, compared to exotic species. In addition to the net positive effect of salinity on SWR, the AMF influences on the RI were greatly dependent on salinity levels.  相似文献   

5.
To compare the effect of substrate-based and commercial arbuscular mycorrhizal fungi (AMF) in salt stress tolerance of Romaine lettuce a bifactorial analysis was carried out. Under non-saline conditions, only plants inoculated with formulation 1 stimulated shoot weight but not related with greater root AMF colonization. Phosphorus and potassium concentrations in leaves were improved by mycorrhizal association. Irrigation with 100 mM sodium chloride (NaCl) did not affect leaf relative water content and we observed no osmotic adjustment in leaves from non-mycorrhizal plants. However, root dry biomass and its starch content decreased, while leaf starch and root soluble sugar concentrations were enhanced. Lettuce inoculated with formulation 2 and substrate-based Glomus intraradices showed the highest root colonization percentages. Nevertheless, none of the mycorrhizal treatments induced a significant improvement on growth of lettuce subjected to salt stress. Romaine lettuce seems to be a moderately tolerant variety to salinity and therefore, the contribution of AMF was minimized.  相似文献   

6.
The impact of arbuscular mycorrhizal fungi (AMF), inorganic phosphorus (P), and irrigation regimes was studied in an okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system in an acidic Alfisol. Experimentation was carried out at Palampur, India, in a randomized bock design (RBD), replicated three times with fourteen treatments comprising AM fungi (Glomus mosseae), inorganic phosphorus (50, 75, and 100% soil-test-based recommended P dose), irrigation regimes (at 40 and 80% available water capacity), generalized recommended NPK and irrigations (GRD), and farmers’ practice. Effects of AM fungi on plant height, leaf area index (LAI), and dry-matter accumulation (DMA) were nominal at early crop growth stage, i.e., 50 DAS (days after sowing). However, at 100 DAS, AMF imbedded treatments led to higher plant height (4%), LAI (3%), and DMA (6%) in okra, whereas in pea the magnitude of increase in these parameters following AMF inoculation was 6, 5, and 8%, respectively, over non-AMF counterparts. AMF + 75% soil-test-based P dose at either of these irrigation regimes gave statistically similar yields in both okra and pea as that obtained under 100% soil-test-based P dose at either of two irrigation regimes, thus indicating an economy of about 25% in soil-test-based P dose. Regarding nutrient harvest index in okra and pea, statistically similar values were registered with most nutrients under both AMF inoculated and non-AMF counterparts. In the case of okra, P harvest index was registered less by 3% with AMF inoculation; however, its magnitude increased by 3% in pea following AMF inoculation compared to non-AMF counterparts at similar levels of P and irrigation. At completion of two cycles of okra-pea system, AMF imbedded treatments did not alter available soil nutrient status significantly in comparison to non-AMF counterparts. Overall, current study suggests that practice of AMF inoculation has great potential in enhancing growth parameters for better productivity, fertilizer-P economy, and nutrient harvest efficiency in okra-pea production system in Himalayan acidic Alfisol.  相似文献   

7.
This study investigated the interactions between two arbuscular mycorrhizal fungi (AMF) (Glomus aggregatum and Glomus mosseae) and a P-solubilizing fungus (Mortierella sp.), with respect to their effects on growth of Kostelelzkya virginica and urease, invertase, neutral phosphatase, alkaline phosphatase, and catalase activities of rhizosphere and bulk soils at different salinity levels (i.e., 0, 100, 200, and 300 mM NaCl). Percentage of AMF colonization, Mortierella sp. populations, pH, electrical conductivity, and available P concentration in soil were also determined. Combined inoculation of AMF and Mortierella sp. increased the percentage of AMF colonization and Mortierella sp. populations under salt stress (i.e., 100, 200, and 300 mM NaCl). The dual inoculation of Mortierella sp. with AMF (G. aggregatum or G. mosseae) had significant effects on shoot and root dry weights and available P concentrations, pH values, and electrical conductivities of rhizosphere and bulk soils under salt stress. The inoculation of Mortierella sp. significantly enhanced the positive effects of AMF on some enzyme activities (i.e., neutral phosphatase, alkaline phosphatase, and catalase in bulk soil; neutral phosphatase and urease in rhizosphere soil); on the contrary, it produced negative effects on urease activities in bulk soil and invertase activities in bulk and rhizosphere soils. The results indicated that the most effective co-inoculation was the dual inoculation with Mortierella sp. and G. mosseae, which may help in alleviating the deleterious effects of salt on plants growth and soil enzyme activities.  相似文献   

8.
The effect of salinity on the efficacy of two arbuscular mycorrhizal fungi, Glomus fasciculatum and G. macrocarpum, alone and in combination was investigated on growth, development and nutrition of Acacia auriculiformis. Plants were grown under different salinity levels imposed by 0.3, 0.5 and 1.0 S m-1 solutions of 1 M NaCl. Both mycorrhizal fungi protected the host plant against the detrimental effect of salinity. The extent of AM response on growth as well as root colonization varied with fungal species, and with the level of salinity. Maximum root colonization and spore production was observed with combined inoculation, which resulted in greater plant growth at all salinity levels. AM fungal inoculated plants showed significantly higher root and shoot weights. Greater nutrient acquisition, changes in root morphology, and electrical conductivity of soil in response to AM colonization was observed, and may be possible mechanisms to protect plants from salt stress.  相似文献   

9.
Abstract

The agronomic efficiency of nitrogen (N) fixing and phosphate solubilizing microorganisms and an arbuscular mycorrhizal (AM) fungus on vigour, photosynthetic pigments, seed yield, grain protein and nutrient uptake of greengram plants, were assessed in soils, deficient in phosphorous (P). The tripartite inoculation of Glomus fasciculatum + Bradyrhizobium sp. (vigna) + Bacillus subtilis, significantly increased dry matter, chlorophyll content and nutrient uptake of greengram plants. Generally, the number of nodules formed per plant was more at flowering stage, which decreased at podfill stage of plant growth. Seed yield increased significantly by 27% due to inoculation with Bradyrhizobium sp. (vigna) + B. subtilis + G. fasciculatum, relative to the control. Grain protein ranged from 17% (P. variabile) to 28% (Bradyrhizobium sp. (vigna) + B. subtilis + G. fasciculatum) in inoculated greengram. A negative effect occurred on some of the measured parameters when P. variabile was used alone or in combination treatments. The N and P contents in measured plant parts (e.g., roots, shoots, straw and grain) differed considerably among treatments. The populations of PSM, percentage of root infection and density of the AM fungal spore improved in some of the treatments.  相似文献   

10.
Exudates of a dark septate endophyte (DSE) identified as Dreschlera sp., a common endophyte isolated by the inner cortical cells of the grass Lolium multiflorum, were put in contact with the arbuscular mycorrhizal fungus (AMF) Gigaspora rosea. These exudates stimulated the hyphal length and the hyphal branching of the AMF. A negative effect on the extramatrical phase of the AMF was detected. This is the first report to show how exudates of DSE can affect the development of AMF. These results show that DSE could be modifying the mycorrhizal status of the plants, modulating a different symbiosis in the rhizosphere.  相似文献   

11.
We studied the effect of bacteria involved in rock phosphate (four isolates), iron phosphate (two isolates), and aluminium phosphate (two isolates) solubilization, and two phytate-mineralizing bacteria in terms of their interaction with two Glomus spp. on Pueraria phaseoloides growth and nutrition. The plant —Rhizobium sp. — mucorrhiza symbiosis system may increase in yield and nutrition in association with specific rhizosphere bacteria that solubilize calcium, iron, and aluminium phosphates. No benefit from phytate-mineralizing bacteria was found under these experimental conditions. P. phaseloides growth responses were influenced in different ways by specific combinations of the selected bacteria and arbuscular mycorrhizal fungi. Considerable stimulation of nutrient uptake was observed with fungus-bacteria combinations of Azospirillum sp. 1, Bacillus sp. 1 or Enterobacter (spp. 1 or 2) associated with G. mosseae. The fact that Bacillus sp. 1, a calcium-phosphate solubilizing isolate, positively interacted with G. mosseae and negatively with G. fasciculatum is an indication of specific functional compatibility between the biotic components integrated in the system. From our results, the interactions between bacterial groups able to solubilize specific phosphate and mycorrhizal fungi cannot be interpreted as occurring only via P solubilization mechanisms since no generalized effect was obtained. Iron-phosphate solubilizing microorganisms were more active alone than in dual associations with Glomus sp., but the aluminium-phosphate dissolving isolates positively interacted in mycorrhizal plants. Further work is needed in this area in order to elucidate the mechanisms that affect rhizosphere microorganism interactions. G. mosseae was more effective but less infective than G. fasciculatum in most of the combined treatments.  相似文献   

12.
A potculture study was conducted in soils collected from long-term fertilizer experiment (LTFE) being kept up as far the past 40 years to determine whether arbuscular mycorrhizal fungus (AMF) Rhizoglomus intraradices colonization changes the active and passive pools of carbon in a maize (Zea mays) – finger millet (Eleusine crocana)- cowpea (Vigna sinensis) cropping sequence in the Experimental Farm of the Tamil Nadu Agricultural University, Coimbatore, India. Soil samples were processed, sterilized and maize plants were grown in various fertility gradients in the absence (M-) or presence (M+) of AMF (Rhizoglomus intraradices) inoculation. The data have clearly shown that M+ soils had consistently higher active pools such as water soluble carbon, hot water soluble carbon and biomass carbon (M- 189; M + 305 mg kg?1), and passive pools such as soil organic carbon (M- 4.17; M + 4.31 mg g?1) and total glomalin. Among the fertility gradients, 100% NPK + Farm Yard Manure (FYM) with or without mycorrhizal fungal inoculation registered higher values for both active and passive pools of C but the response was more pronounced in the presence AMF inoculation. Overall, the data suggest that mycorrhizal fungal inoculation assists in effective carbon sequestration in an intensive cereal-legume cropping system.Abbreviations: AMF: Arbuscular mycorrhizal fungi; DAS: Days After Sowing; LTFE: Long-Term Fertilizer Experiment; WSC: Water soluble organic carbon; HA: Humic acid; FA: Fulvic acid; HWSC: Hot water soluble carbon  相似文献   

13.
This study evaluated the response of pea (Pisum sativum cv. Trapper) to arbuscular mycorrhizal fungi (AMF) and Rhizobium leguminosarum bv. viceae strains varying in their effectiveness on pea. Plants were inoculated with the AMF species Glomus clarum NT4 or G. mosseae NT6 and/or ten Rhizobium strains, and grown for 90 days in soil containing indigenous AMF and rhizobia. The effectiveness of the Rhizobium strains on the growth (P <0.046; r =0.64) and N nutrition (P <0.04; r =0.65) of 6-week-old pea grown under gnotobiotic conditions was correlated with the growth and N nutrition of 90-day-old pea grown in natural soil for all strains except LX48. The growth and yield response of pea to co-inoculation with AMF and Rhizobium strains depended on the particular AMF-Rhizobium strain combination. In some cases, the yield and N nutrition of pea inoculated with a superior Rhizobium strain was significantly (P <0.05) enhanced by an apparently compatible AMF species compared to the Rhizobium treatment. On the other hand, an apparently incompatible AMF species significantly (P <0.05) reduced the performance of an effective Rhizobium strain. In general, treatments with effective Rhizobium strains or co-inoculation treatments with effective Rhizobium strains and a compatible AMF species produced the best results. Changes in total shoot dry matter production was significantly (P <0.05) correlated with the total shoot N (P <0.0001; r =0.95) and P content (P <0.0001; r =0.87), indicating that this response was mediated by enhanced N and P nutrition. Growth, yield and nutrition of pea were not related to AMF colonization of roots. Our results suggest that careful co-selection of AMF species and Rhizobium strains can enhance pea yield and nutrition.  相似文献   

14.
Field experimentation was conducted at Palampur, India during 2011–2012 in an acid Alfisol to quantify the influence of integrated use of arbuscular mycorrhizal fungi (AMF), Rhizobium and inorganic nitrogen (N) and phosphorus (P) on growth, productivity, profitability, and nutrient use efficiencies in garden pea (Pisum sativum L.). The experiment was laid out in randomized block design (RBD) replicated thrice comprising 13 treatments involving AMF (Glomus mosseae), Rhizobium (R. leguminosarum), and inorganic N and P fertilizers. The results revealed that dual inoculation of pea seed with AMF and Rhizobium enhanced the plant height, leaf area index, and dry matter accumulation significantly by 19.4 and 13.1, 10.7 and 10.7, and 16.6 and 16.7%, respectively at 60 and 120 days after sowing (DAS). Similarly, dual inoculation exhibited significant respective increases of 9.5 and 14.6% in absolute and crop growth rates over generalized recommended NP potassium (K) dose (GRD) during 60–120 DAS. The dual inoculation led to significant respective increases of 1.0 and 2.2, 1.06 and 1.74, 0.21 and 1.5, and 1.05 and 1.60 folds in partial factor productivity, crop recovery efficiency, physiological efficiency, and % recovery of applied N and P, respectively over GRD. The magnitude of increase in pea productivity, net returns, and boron to carbon (B:C) ratio following dual inoculation was to the tune of 20, 54.4, and 104.1%, respectively over GRD. Dual inoculation also exhibited significant increases of 19.4 and 53.1% in production and monetary efficiencies of pea over GRD. Overall, dual inoculation of AMF and Rhizobium with 75% soil-test-based N and P dose in pea has great potential in enhancing pea productivity, profitability, and nutrient use efficiency besides saving about 25% fertilizer N and P without impairing pea productivity in Himalayan acid Alfisol.  相似文献   

15.
The effect of pre-inoculation with arbuscular mycorrhizal fungi (AMF) on post-transplant growth of peach seedlings in replant and non-replant soils was studied for two successive seasons. Seedlings raised in sterile media and pre-inoculated with soil-based Gigaspora margarita inoculum were transplanted in replant and non-replant field soils alongside non-inoculated controls. Pre-inoculated seedlings transplanted in non-replant soils showed greater initial growth in the first year. Plant height, and lateral shoot length and number was highest in non-replant soils irrespective of mycorrhizal pre-inoculation. Similarly, biomass yield was significantly higher in seedlings in non-replant soils, though there were no significant differences in shoot/root ratios, and in tissue mineral content between and within treatments. Seedling infection by indigenous AMF was high in both replant and non-replant soils, and even non-inoculated seedlings recorded high infection levels after the first season. Generally, mycorrhizal activity was lower, and spore populations higher in replant soils, while the opposite was true in non-replant soils. It seems that soil sickness has a negative impact on plant metabolism and limits the capacity of the plant host to support the mycorrhizal symbiosis.  相似文献   

16.
This study focused on the application of native strains of arbuscular mycorrhizal fungi (AMF) and Sinorhizobium in effective crop production during reclamation of coal‐mine spoil banks. Two greenhouse experiments were conducted in spoil‐bank clay with a low dose of organic amendment to determine whether the microbial inoculation improves growth and utility qualities of two cultivars of Linum usitatissimum L. (oil and fiber flax). Inoculation with two native AMF isolates (Glomus mosseae, G. intraradices, and their mixture) significantly increased growth and shoot phosphorus (P) concentration of both flax cultivars. Inoculated fiber flax plants produced fivefold more fibers than the uninoculated ones. In oil flax, mycorrhizal inoculation significantly but quantitatively to a minor degree decreased the concentration of nonsaturated fatty acids in the seed oil. A mixture of five native Sinorhizobium sp. strains supported growth and P uptake of oil flax only in the absence of AMF. However, these beneficial effects of the bacteria were significantly lower as compared to AMF. No synergic action of Sinorhizobium strains and AMF was observed, and their interactions were often even antagonistic. Inoculation with AMF significantly decreased population density of Sinorhizobium in the soil. These results suggest that a careful selection of suitable bacterial strains is necessary to provide effective AMF combinations and maximize flax‐growth support.  相似文献   

17.
The aim of this study was to assess the comparative efficacy of three arbuscular mycorrhizal fungi (AMF) combined with cultivar specific Bradyrhizobium japonicum (CSBJ) in soybean under greenhouse conditions. Soybean seeds of four cultivars namely JS 335, JS 71-05, NRC 2 and NRC 7 were inoculated with three AM fungi (Glomus intraradices, Acaulospora tuberculata and Gigaspora gigantea) and CSBJ isolates, individually or in combination, and were grown in pots using autoclaved alluvial soil of a non-legume cultivated field of Ajmer (Rajasthan). Assessment of the data on nodulation, plant growth and seed yield revealed that amongst the single inoculations of three AMF, G. intraradices produced the largest increases in the parameters studied followed by A. tuberculata and G. gigantea indicating that plant acted selectively on AMF symbiosis. The dual inoculation with AMF + CSBJ further improved these parameters demonstrating synergism between the two microsymbionts. Among all the dual treatments, G. intraradices + B. japonicum brought about the largest increases in the studied characteristics particularly in seed weight per plant that increased up to 115.19%, which suggested that a strong selective synergistic relationship existed between AMF and B. japonicum. The cv. JS 335 exhibited maximum positive response towards inoculation. The variations in efficacy of different treatments with different soybean cultivars indicate the specificity of the inoculation response. These results provide a basis for selection of an appropriate combination of specific AMF and Bradyrhizobium which could further be utilized for verifying the symbiotic effectiveness and competitive ability of microsymbionts under field conditions of Ajmer region.  相似文献   

18.
Alfalfa (Medicago sativa L.) is cultivated in arid and semi-arid regions where salinity is one of the main limiting factors for its production. Thus, this experiment was conducted to evaluate the efficacy of arbuscular mycorrhizal fungus (AMF), Glomus mosseae, alfalfa rhizobia Sinorhizobium meliloti (R) seed inoculation in the development of salinity tolerance of different alfalfa cultivars (Rehnani, Pioneer and Bami) under a variety of salinity levels. The results revealed that under non-stress condition, root mycorrhizal infection, nodulation (the number and weight of nodules per plant), potassium (K), calcium (Ca), phosphorus (P), zinc (Zn), copper (Cu) and magnesium (Mg) contents of the root and shoot, the value of the K/Na ratio, protein [calculated from the nitrogen (N) content] and proline contents of the shoot and the alfalfa yield were found to be the highest while Na contents of the root and shoot were seen to be the lowest when seeds were double inoculated followed by mycorrhizae, rhizobium and control treatments, respectively. Similarly, under salinity condition, the greatest amounts of mycorrhizal infection, nodulation, root and shoot P contents, the value of K/Na ratio, the shoot proline content and the root Ca content were enhanced with the least amount of leaf Na content related to the cases of seeds which were double inoculated, followed by mycorrhizae, rhizobium and control treatments respectively. The results suggested that inoculation of alfalfa seed with AMF or R, especially double inoculation, causes a considerable increase in alfalfa yield under both saline and non-saline conditions by increasing colonization, nodulation and nutrient uptake.  相似文献   

19.
Salt stress has become a major menace to plant growth and productivity. The main goal of this study was to investigate the effect of inoculation with the arbuscular mycorrhizal fungi (AMF; Rhizophagus intraradices) in combination or not with plant growth‐promoting rhizobacteria (PGPR; Pseudomonas sp. (Ps) and Bacillus subtilis) on the establishment and growth of Sulla coronaria plants under saline conditions. Pot experiments were conducted in a greenhouse and S. coronaria seedlings were stressed with NaCl (100 mM) for 4 weeks. Plant biomass, mineral nutrition of shoots and activities of rhizosphere soil enzymes were assessed. Salt stress significantly reduced plant growth while increasing sodium accumulation and electrolyte leakage from leaves. However, inoculation with AMF, whether alone or combined with the PGPR Pseudomonas sp. alleviated the salt‐induced reduction of dry weight. Inoculation with only AMF increased shoot nutrient concentrations resulting in higher K+: Na+, Ca2+: Na+, and Ca2+: Mg2+ ratios compared to the non‐inoculated plants under saline conditions. The co‐inoculation with AMF and Pseudomonas sp. under saline conditions lowered shoot sodium accumulation, electrolyte leakage and malondialdehyde (MDA) levels compared to non‐inoculated plants and plants inoculated only with AMF. The findings strongly suggest that inoculation with AMF alone or co‐inoculation with AMF and Pseudomonas sp. can alleviate salt stress of plants likely through mitigation of NaCl‐induced ionic imbalance, thereby improving the nutrient profile.  相似文献   

20.
The aim of this work was to study the early influence of conventional tillage (CT) and no-tillage (NT) on arbuscular mycorrhizal fungal (AMF) propagules. A short 2-year-course crop rotation, i.e. trial consisting of a succession of wheat and oat, was studied in a typic Chilean Ultisol from the second to fourth year after the beginning of the experiment. Measurements included mycorrhizal characteristics and some soil properties in order to explain their influence on AMF propagules. Soil samples were taken yearly in autumn (fallow period) and in early spring (flowering). Significant differences in AMF hyphal length were observed between NT and CT in the first year, but such differences disappeared thereafter. No differences in metabolically active hyphae were obtained with wheat or oat under the two tillage systems. Mycorrhizal root colonization was always higher under NT than under CT. The number of AMF spores was also higher under NT than under CT, ranging from 158 to 641 spores per 100 cm3. Twenty-two AMF species including eight Glomus spp., six Acaulospora spp., four Scutellospora spp., one Archaeospora sp., one Diversispora sp., one Entrophospora sp. and one Pacispora sp. were observed in both agro-ecosystems. Higher spore number of Acaulospora spp. was found under wheat than under oat and under CT than under NT, whilst more spores of Scutellospora spp. were observed under NT than under CT. From all mycorrhizal characteristics, spore number could be visualized as an early and useful indicator of the effect of tillage systems on mycorrhizal propagules in short-term experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号