共查询到20条相似文献,搜索用时 15 毫秒
1.
不同覆砂厚度对土壤水盐运移影响的实验研究 总被引:2,自引:1,他引:2
采用室内土柱模拟试验,研究了不同覆砂厚度条件下土壤潜水蒸发及蒸发后盐分(EC)分布特征,并就覆砂厚度对土壤水盐运移的影响进行了分析。结果表明:覆砂厚度对潜水蒸发的抑制率有显著效果,且抑制率随覆砂厚度的增加而升高,如当覆砂厚度1.7 cm时抑制率达到83%,当覆砂增加到3.6 cm和5.7 cm时,抑制率分别为95%和97%;土壤表层覆砂具有显著的抑盐效应,通过覆砂明显的减轻了土壤盐分向上运移和表聚,如当覆砂厚度1.7 cm时,表层盐分抑制率达到83%,当覆砂厚度为3.6 cm与5.7 cm时,盐分抑制率则分别上升到96%和97%。本试验表明,土壤表层覆砂是一种防止土壤水分蒸发,提高土壤保水能力和抑制土壤盐分表聚的有效方法,覆砂厚度达到3.6 cm是一种在新疆北疆绿洲合理覆砂厚度。 相似文献
2.
A. Egrinya Eneji S. Inanaga S. Muranaka J. Li T. Hattori P. An 《Journal of plant nutrition》2013,36(2):355-365
Field water stress is a common problem in crop production, especially in arid and semi-arid zones and it is widely hypothesized that silicon (Si) could reduce water stress in plants. We set up a greenhouse study to evaluate some silicon sources—potassium silicate (K2SiO3), calcium silicate (CaSiO3) and silica gel for growth and nutrient uptake by four grass species under adequate and deficit irrigation. The four species studied were Rhodes grass (Chloris gayana), Timothy grass (Phleum pratense), Sudan grass (Sorghum sudanense) and Tall fescue (Festuca arundinacea). For all species, the biomass yield response to applied silicon under deficit irrigation was significantly better than under adequate irrigation. The yield response of Rhodes grass across silicon sources was 205% under deficit irrigation compared with only 59% under adequate irrigation; for Sudan grass it was 49% compared with 26% and for Timothy, it was 48% compared with a mere 1%. The higher responses under deficit irrigation suggest that the plants relied more on silicon to endure drought stress. Biomass yield of individual plants also differed according to soil water levels with Timothy grass being the most sensitive to water stress as it exhibited the highest yield response (209%) to adequate irrigation. This was followed by tall fescue (122%) and Rhodes grass (97%). Sudan grass was the least affected by deficit irrigation, possibly on account of improved root mass and its natural drought tolerance. Strong associations were noted between the uptake of silicon and those of nitrogen (N) and phosphorus (P) irrespective of soil water condition, but the uptake of potassium (K) was more strongly correlated with that of Si under deficit than adequate irrigation. Improvements in plant growth following Si application could therefore be linked to enhanced uptake of major essential nutrients. 相似文献
3.
模拟酸雨淋溶下强风化土壤矿物风化计量关系研究 总被引:3,自引:2,他引:3
矿物风化计量关系对于定量土壤酸化速率至关重要。我国亚热带地区矿物风化强烈,土壤的酸敏感性高。为获取强风化土壤在矿物风化过程中元素释放特征及其化学计量关系,选取花岗岩发育的富铁土,先用EDTA-乙酸铵溶液洗脱土壤胶体上吸附的盐基离子,然后采用改进的Batch法,将洗脱盐基土壤与未洗脱盐基土壤同时进行模拟酸雨淋溶。结果表明:(1)洗脱盐基土壤与未洗脱盐基土壤的盐基离子(K~+、Na~+、Ca~(2+)和Mg~(2+))释放情况存在显著差异,洗脱盐基后土壤在淋溶中释放的盐基来源为矿物风化,释放缓慢而平稳;(2)未洗脱盐基土壤在淋溶初期,盐基的释放量较大,随着淋溶的进行,释放量迅速下降,淋溶后期的释放速率与洗脱盐基土壤接近,这说明未洗脱盐基土壤在淋溶初期释放的盐基主要来源于阳离子交换过程,后期则主要来源于风化过程;(3)洗脱盐基土壤和未洗脱盐基土壤经酸雨淋溶释放的各盐基化学计量关系(K~+∶Na~+∶Ca~(2+)∶Mg~(2+))以及盐基离子与硅的化学计量关系(BC∶Si)差异较大,由于未洗脱盐基土壤受到阳离子交换的影响,因此只有洗脱盐基土壤的矿物风化计量关系可以作为定量估算土壤酸化速率的依据。 相似文献
4.
《Communications in Soil Science and Plant Analysis》2012,43(10):1588-1598
Silicon (Si) is one of the most abundant elements in the earth's crust, although its availability may be affected by some edaphic and abiotic factors such as soil moisture and salinity. In a laboratory experiment, effects of silicon (Si), salinity, and soil moisture on changes of extractable Si, iron (Fe), and manganese (Mn) concentrations were investigated on a sandy loam calcareous soil. The experiment was arranged as a factorial completely randomized design with three replications. Two levels of Si (8 and 200 mg per kg of soil), three salinity levels [0.46 dS m?1, 8 dS m?1 as sodium chloride (NaCl), and 8 dS m?1 as four-salt combination], two soil moisture regimes (–20 kPa and waterlogged), and four incubation times (0, 7, 30, and 45 days) were applied. Salt composition consisted of sodium chloride, sodium sulfate, calcium chloride, and magnesium sulfate at a molar ratio of 4:2:2:1. Acetic acid–extractable Si, Fe, and Mn were determined after 0, 7, 30, and 45 days of incubation. Waterlogging caused significant increase in the extractable Si, Fe, and Mn. Soil salinity of 8 dS m?1, only in the form of sodium chloride, resulted in a marked decrease in extractable Si, Fe, and Mn. Silicon addition enhanced the soil Si concentration, with no effect on Fe and Mn. Equilibrium time for Si and Fe was 30 days, whereas Mn concentration reached to a constant level after 1 week of waterlogging. It was concluded that Si, Fe, and Mn fertilizers should be applied in sufficient amounts to the saline soils to prevent their deficiencies in plants. Meanwhile, overfertilization in waterlogged conditions must be avoided, because of the probability of nutrient imbalance or toxicity. 相似文献
5.
土壤矿物风化过程中释放的盐基离子(BC)与硅(Si)的比值(BC︰Si)是定量评估土壤矿物风化对土壤酸化过程缓冲作用的基础,是准确估算当前环境下土壤酸化速率的依据。本研究以云母片岩、片麻岩和安山岩3种母质发育的湿润雏形土为研究对象,测定了其土壤物理、化学和矿物学性质。通过洗脱实验除去土壤交换性盐基以消除土壤胶体吸附的交换性盐基离子对矿物风化计量关系的影响,再利用模拟酸雨淋溶实验,采用Batch方法获取3种不同母质发育土壤的盐基离子和硅的释放量,进一步估算BC︰Si值。结果表明,由于母岩不同,土壤黏粒、pH、有机质、交换性盐基(K+、Na+、Ca2+和Mg2+)、阳离子交换量(CEC)和土壤矿物含量存在差异。在模拟酸雨淋溶实验条件下,未洗脱盐基土壤的BC︰Si值为洗脱盐基土壤的3倍以上,因此只有洗脱土壤交换性盐基才能获得来自风化过程的BC︰Si值。同一母质发育土壤的腐殖质表层(Ah)BC︰Si最小,母质层(C)最大。不同母质发育土壤的BC︰Si值表现为:片麻岩>云母片岩>安山岩,土壤中斜长... 相似文献
6.
有机-无机配施对盐渍土壤水稻生长及养分利用的影响 总被引:5,自引:0,他引:5
针对滨海盐渍化土壤水稻种植过程中根系生长受盐碱胁迫,导致养分利用率低的问题。采用田间试验研究了有机肥与磷肥配施对滨海盐渍化土壤水稻不同生育期根系生长、水稻产量及养分利用率的影响。试验采用双因素设计,3个碳水平:(1)C0,无碳;(2)C1:低碳,450 kg/hm~2;(3)C2:高碳,900 kg/hm~2;3个磷水平:(1)P0:无磷;(2)P1:低磷,P_2O_5 64 kg/hm~2;(3)P2:高磷,P_2O_5 128 kg/hm~2。结果表明,在水稻成熟期,低碳低磷(T5)处理时根系总表面积显著高于高碳低磷(T7)和高碳高磷(T8)处理,分别增加25.2%和30.2%;低碳处理(T5、T6)时根系总体积显著高于高碳处理。T5处理时水稻产量、生物量显著高于其他处理,分别为10 245,9 550 kg/hm~2。结实率较高是低碳低磷(T5)处理水稻产量最高的原因。低碳低磷(T5)处理时糙米P积累量最高,显著高于T6、T7、T8处理,分别高出13.9%,27.8%,31.2%。T5处理的磷肥贡献率和农学效率显著高于其他施磷肥处理。磷肥偏生产力表现为低磷投入显著高于高磷投入。综上所述,与单独施用无机肥相比,有机肥与磷肥配施能够显著促进滨海盐渍化土壤水稻根系生长,提高水稻产量及磷肥农学效率,其中低碳低磷(T5,C 450 kg/hm~2+P_2O_5 64 kg/hm~2)处理最有利于盐渍化土壤水稻根系生长。 相似文献
7.
耕作对旱区坡耕地土壤碳素转化及冬小麦产量的影响 总被引:5,自引:0,他引:5
利用长期定位试验(1999开始保护性耕作,2004年采样测定),在豫西旱区坡耕地上进行了不同耕作对土壤有机碳、微生物态碳及水分利用效率的影响研究。结果表明:深松覆盖和免耕覆盖处理的耕层有机碳增加较明显,以深松覆盖有机碳含量最高为6.79gkg-1,比传统耕作高13.82%,其次是免耕,较传统高11.58%,而少耕却较传统降低了1.38%,随着土层的加深,土壤有机碳含量降低,0~60cm有机碳平均值,深松和免耕较传统分别增加了14.08%、5.41%,少耕较传统减少1.12%。土壤微生物碳对耕作敏感,其含量免耕>深松>传统>少耕,分别为206.87mgkg-1、138.43mgkg-1、115.42mgkg-1和112.57mgkg-1,较传统增加79.3%、19.9%和-2.5%。土壤有机碳和土壤微生物态碳都有坡下富集现象。少耕、免耕、深松和传统的SMBC/SOC的值分别为1.91%、3.11%、2.04%和1.93%,免耕和深松对培肥地力、改善环境有好的应用前景;同时免耕覆盖与深松覆盖可提高产量,增产分别达10.22%与9.26%;可提高水分利用效率。 相似文献
8.
Rama T. Rashad Mohamed R. El-Zanaty Rania A. El-Bialy 《Communications in Soil Science and Plant Analysis》2020,51(11):1443-1456
ABSTRACT This work aims to study the status of silicon (Si) as a plant nutrient in the soil of Bahtim long-term field experiment in Egypt under the effect of crop rotations system and continuous fertilization. The experiment has been set up since 1912 based on two main factors: (1) crop rotations: mono-cropping (MC), two-year rotation (2Y-R), and three-year rotation (3Y-R), and (2) Fertilization: mineral nitrogen N, phosphorus P, potassium K, and organic farmyard manure FYM. Available N, P, K, and Si in soil were estimated. Productivity of soil was evaluated using Berseem (Trifolium alexndrinum L.) cultivated and harvested in 2019. The plant-available Si (PAS) in soil decreased significantly compared to the control C in case of MC by 70.26%, 2Y-R by 85.09%, and 3Y-R by 92.65% in the direction of N > NP > NPK. Mineral fertilization decreased the PAS significantly by 12.84% N, 29.52% NP, 78.45% NPK compared to the control C in the order of MC > 2Y-R > 3Y-R. Berseem yield (t ha?1) increased significantly compared with the control C following the order C < N < NP < NPK. The most significant increase in the yield was recorded for the NPK treatments by 224.04%, and 200% in case of MC, 2Y-R, 3Y-R, respectively. 相似文献
9.
天然沸石和石灰混用对酸性黄红壤改良及增产效应的研究 总被引:7,自引:0,他引:7
安徽南部地区处在高温高湿的条件下 ,土壤母质强烈风化 ,盐基损失严重 ,阳离子交换量仅为 8~ 10cmdkg- 1土 ,土壤酸性或强酸性 ,pH为 4.3~ 5.4。研究结果表明 :施用石灰 ,土壤pH提高两个单位 ,土壤活性铝含量降低 1/ 3— 2 /3 ,沸石和石灰配合施用可以显著提高土壤速效养分含量 ,促进作物生长 ,增加作物产量。 相似文献
10.
《Communications in Soil Science and Plant Analysis》2012,43(13-14):2057-2067
Abstract The general concept that low‐water‐soluble phosphorus (P) fertilizers should be more agronomically effective when applied to acidic soils was developed based on sources containing mainly calcium (Ca)‐P compounds, but it may not hold true for sources with different chemical composition. To obtain information related to this issue, two important iron (Fe)–potassium (K)–P compounds present in superphosphates [Fe3KH8(PO4)6 · 6H2O, H8, and Fe3KH14(PO4)8 · 4H2O, H14] were prepared and characterized. These P sources were used to provide 30 and 60 mg P kg?1 as neutral ammonium citrate (NAC)+H2O‐soluble P. Reagent‐grade monocalcium phosphate (MCP) was used as a standard P source with high water solubility with an additional rate of 120 mg P kg?1 included. Also, mixtures of both Fe‐K‐P compounds and MCP were prepared to provide 0, 25, 50, 75, and 100% of the total P as MCP. All sources were applied to a clayey loamy acid soil (pH 5.3) classified as Rhodic Kanhapludult. The soil was incubated at two rates (0 and 10 g kg?1) of lime, which resulted in pH 5.4 and 6.8. Upland rice was cultivated to maturity. The H14 compound confirmed to be a highly effective source of P for the rice plants at both soil pH, as opposed to the H8, which was poorly effective when applied alone. When mixed with water‐soluble P (WSP), the H8 was able to provide P to the plants with the maximum yield of upland rice reached with 54.8 and 80.5% of WSP for pH 5.4 and 6.8, respectively. The high agronomic performance of the H14 compound clearly indicates that this low‐water‐soluble P source cannot be deemed as ineffective at high soil pH. 相似文献
11.
Spatial pattern and heterogeneity of soil properties in sand dunes under grazing and restoration in Horqin Sandy Land, Northern China 总被引:2,自引:0,他引:2
Xiaoan Zuo Halin Zhao Xueyong Zhao Tonghui Zhang Yirui Guo Shaokun Wang Sam Drake 《Soil & Tillage Research》2008,99(2):202-212
Applying a combination of classical and geostatistical methods, we identified soil properties and their spatial variation in a 5-year grazed sand dune (GSD5) and a 20-year recovered sand dune (RSD20) in Horqin Sandy Land, northern China. The paper assesses the effect of grazing, topography and vegetation restoration on spatial heterogeneity of soil properties. The results showed that soil organic carbon, total nitrogen, very fine sand (0.1–0.05 mm) content and their coefficients of variation were lower in GSD5 than in RSD20, while soil water contents (0–20 cm and 20–40 cm depths) were higher in GSD5 than in RSD20. Geostatistical analysis revealed that the spatial structured variance accounted for the largest proportion of total sample variance in soil properties at the measured scale under grazing and restoration. The spatial autocorrelation ranges were 66.30 m for soil organic carbon and 50.80 m for total nitrogen in GSD5 less than those in RSD20 (70.00 m and 76.10 m, respectively), while the spatial autocorrelation ranges of soil particle size fractions and soil water contents in RSD20 were less than those in GSD5. Kriging-interpolated maps also showed that the heterogeneity of soil organic carbon and total nitrogen and their degree of patch fragmentation were higher in GSD5 than in RSD20. These results suggested that continuous grazing resulted in an increase in spatial variability of soil nutrient and a decrease in spatial variability of soil particle size fractions and soil water content. Soil organic carbon and total nitrogen of sand dunes are associated closely with soil particle size fractions, relative height of sampling site and vegetation cover. Spatial patterns of soil properties are most strongly related to grazing, topography and plant-induced heterogeneity in sand dune ecosystems prone to wind erosion. 相似文献
12.
Ahmad Bybordi 《Communications in Soil Science and Plant Analysis》2016,47(7):832-850
The effect of soil applied zeolite, foliar application of selenium and silicon on the agronomic and physiologic traits of canola grown under salt stress conditions was investigated in two-year field experiment during 2012 and 2013. The experimental design was randomized complete blocks, arranged in factorial with 27 treatments forming combinations of zeolite (0, 5 and 10 ton ha?1), selenium (0, 2 and 4 g liter?1) and silicon (0, 2 and 4 g liter?1) and three replicates. The results indicated that zeolite improved plant growth in terms of plant height and increased yield and yield components of canola. In addition, biological yield, harvest index and oil percentage increased due to zeolite application. Zeolite could decrease respiration, malondialdehyde and proline in salt-stressed plants. Soluble sugars and potassium content increased in response to zeolite application while sodium content significantly decreased. Selenium led to an increase in plant height, silique number, seed number in silique, biological yield, harvest index and oil percentage, while respiration, malondialdehyde, proline and sodium decreased on account of selenium application. Similarly, silicon had a significant effect on growth and agronomic traits and increased them. Silicon promoted chlorophyll synthesis while preventing malondialdehyde, proline and sodium accumulation in plant tissues. Catalase and superoxide dismutase activities were suppressed by using silicon on plants. Interaction between zeolite and selenium was significant on leaf relative water content, photosynthesis, chlorophyll content and activity of antioxidant enzymes. In addition, seed weight, seed yield, photosynthesis and soluble sugar content were affected by selenium and silicon application. 相似文献
13.
14.
15.
针对科尔沁沙地土壤动物调查过程中出现的问题,比较了不同土地利用类型样地调查大型和中小型土壤动物样方与土样的有效性,分析了土层深度垂直变化下调查大型和中小型土壤动物样方和土样的有效性差异,同时分析了季节变化对调查大型和中小型土壤动物样方和土样有效性的影响。试验表明,沙地生境中,大型土壤动物取样样地应选择草地生境,中小型土壤动物应选择农田或林地生境;垂直空间上,调查大型土壤动物的土壤深度为0~20 cm,而中小型土壤动物为0~15 cm;季节选择上,在3个季节各采样1次,土壤动物调查有效性较高。另外,大型土壤动物采取平板手拣法采集,中小型土壤动物采用较大环刀(直径≥30 cm)分离效果较好。 相似文献
16.
Dinesh Jinger Shiva Dhar Anchal Dass V. K. Sharma Livleen Shukla Manoj Parihar 《Communications in Soil Science and Plant Analysis》2020,51(16):2147-2162
ABSTRACT The experiments were conducted to evaluate the effects of silicon (Si) and phosphorus (P) application on crop productivity, grain quality, water-use efficiency (WUE), and soil enzyme activity in aerobic rice (AR) at Indian Agricultural Research Institute, New Delhi, India. Four levels each of Si (0, 40, 80, and 120 kg Si ha–1) and P (0, 30, 60, and 90 kg P2O5 ha–1) were tested in a factorial randomized block design (FRBD) replicated thrice. The growth, yield and quality of AR were enhanced with increasing Si and P application rates and a similar trend was observed for WUE and soil enzyme activity. The highest grain yield of AR was recorded with 120 kg Si and 90 kg P2O5 ha–1 followed by 80 kg Si and 60 kg P2O5 ha–1 and the lowest in control. The grain, straw yield and water productivity increased by 10–40%, 5–30%, and 10.2–39%, respectively in different treatments over control. Though, all studied parameters showed increment with increasing dose of Si and P; however 60 kg P2O5 and 80 kg Si ha–1 were statistically superior to their other respective doses. In conclusion, supplementation of Si and P fertilizers substantially increased the AR productivity in Trans-Gangetic plains of India (Figure 1). 相似文献
17.
In the humid Pampas of Argentina soybean is cultivated in different soil types, which were changed from conventional- to zero tillage systems in the last decade. Little is known about the response of soybean roots to these different soil physical environments. Pasture, and conventionally- and zero-tilled field lots cropped to soybean (R1 and R2 ontogenic stages) were sampled in February–March 2001 in a sandy clay loam and two silty clay loam Mollisols, and in a clayey Vertisol. In the 0–0.05 m layer of conventionally- and zero-tilled lots soil organic carbon represented 53–72% of that in pasture lots, and showed an incipient recovery after 4–11 years of continuous zero tillage. Soil aggregate stability was 10.1–46.8% lower in conventionally-tilled than in pasture lots, and recovered completely in zero-tilled lots. Soil relative compaction ranged 60.8–83.6%, which was below the threshold limit for crop yields (>90%). In change, soil porosity >50 μm ranged 0.91–5.09% soil volume, well below the minimum critical limit for root aeration and elongation (>10%, v/v). The threshold of soil resistance (about 2–3 MPa) was only over passed in an induced plough pan in the conventionally-tilled Bragado soil (5.9 MPa), and in the conventionally- and zero-tilled Ramallo soils (3.7–4.2 MPa, respectively). However, neither the low macroporosity nor the high soil resistances impeded soybean roots growth in any site. According to a fitted polynomial function, root abundance was negatively related to clay content in the subsoil (R2 = 0.84, P < 0.001). Soybean roots were only abundant in the subsoil of the sandy clay loam Mollisol, which had <350 g kg−1 clay. Results show that subsoil properties, and not tillage systems, were the primary effect of root growth of soybean. 相似文献
18.
不同有机物料对连作大豆土壤养分及团聚体组成的影响 总被引:3,自引:0,他引:3
为探究不同有机物料对连作大豆土壤养分和团聚体组成的影响,采用大田试验方法,研究了在连作7年条件下,腐熟鸡粪(JF)、玉米秸秆(JG)和木耳菌渣(JZ)三种不同类型有机物料对连作大豆土壤养分、产量、团聚体组成和稳定性的影响。结果表明:与CK相比有机物料能有效提高连作大豆土壤养分含量,显著影响土壤团聚体组成,0.25~2 mm粒级团聚体含量明显增加。畜禽粪便类的鸡粪(JF)对碱解氮的提高作用最明显,较CK提高13.85%;天然类的秸秆(JG)对速效磷含量提高作用显著,较CK提高4.13%;JF对提高速效钾含量效果最好,较CK提高8.97%;JG对提高有机质含量效果最好,较CK提高7.28%。半腐解类的菌渣(JZ)较CK相比土壤养分含量也有明显的提高,但不如JF和JG效果明显。有机物料能提高连作大豆产量,JF效果显著。所有有机物料对改善土壤团聚体组成,增加0.25 mm水稳性团聚体含量效果均比较显著,对土壤水稳性团聚体平均重量直径以及土壤团聚体的稳定性指数有显著提高作用。 相似文献
19.
有机肥替代部分化肥对滨海盐碱地土壤改良和小麦产量的影响 总被引:6,自引:4,他引:6
合理利用有机肥资源,将有机肥替代部分化肥是实现减肥目标的重要技术途径之一。特别对于盐碱化土壤,有机肥替代部分化肥既能减少化肥的使用又能改善土壤的理化性质,促进作物产量的提高。本文以滨海盐碱地为研究对象,2014—2016年连续两年在滨州市无棣县渤海粮仓试验基地通过大田试验,研究了不施肥(CK)、普通化肥(CCF)、有机肥替代低量化肥(LOM)、有机肥替代中量化肥(MOM)、有机肥替代高量化肥(HOM)5种施肥模式对盐碱地土壤改良和小麦产量的影响。结果表明:与CK相比,CCF处理对盐碱地土壤盐分的影响不大,而有机肥替代部分化肥处理显著降低了土壤水溶性盐总量和pH,特别是在小麦开花期,MOM和HOM处理明显改善了土壤盐碱化,显著降低了土壤中水溶性钠和交换性钠的比例,使ESP和SAR值减小,其中以HOM处理对滨海盐碱土的土壤盐分改良效果最佳;与CK相比,各施肥处理的土壤养分含量均有提高,有机肥替代处理与CCF相比,对土壤全氮和有效磷的含量影响不明显,而HOM处理的速效钾含量显著高于其他处理,在一定程度上抑制了Na的毒害,有机肥替代处理还显著提高了土壤有机质的含量,改善了土壤环境;从CK到HOM,小麦产量依次递增,与CCF相比,有机肥替代处理LOM、MOM、HOM分别增产7.5%、18.8%、26.4%。综上,有机肥替代部分化肥,达到了减肥的目的,并对滨海盐碱地有明显的改良效果,提高了小麦产量。且在3个有机肥替代部分化肥的施肥处理中,以HOM施肥处理对滨海盐碱地的改良效果最优,获得的小麦产量最高。 相似文献
20.
ABSTRACT A pot experiment was implemented to study effects of sulfur (S) fertilization on soybean root and leaf traits and soil microbial activity in 2004 and 2005. In this experiment, three different treatments were established: 0 mg· kg? 1(CK), 30 mg· kg? 1(A), and 60 mg· kg? 1(B). The results showed that an application of elemental sulfur significantly increased the number of soybean side roots by 8.6% to 33.2% and dry weight by 6.6% to 34.3%, increased the root nodules number by 2.7% to 35.9%, and dry weight by 13.0% to 75.7%, increased chlorophyll content in leaves by 0.4 to 3.9 unit, and increased soybean yield per plant by 7.3% to 12.8%, compared with the control. The application of elemental sulfur also increased the amount of soil microorganism (bacterium, fungi and actinomycete), activity of catalase, urease, neutral phosphatase, and polyphenoloxidase in the same growth stage significantly. The above results showed sulfur supply could promote the growth of soybean, increase the yield, and enhance soil microbial activity. Thirty mg· kg? 1 was the suitable rate of sulfur for achieving the highest yield. 相似文献