首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
    
Background: Nitrogen deposition can cause an ecosystem‐level shift in available N (nitrogen) to P (phosphorus) availability. However, most plant N nutrition is from edaphic sources rather than deposition and in seasonally dry grassland systems, root litter is the predominant nutrient source. Aims: We were interested how litter turnover and altered nutrient recycling from dead biomass can compensate for these shifts in ecosystem stoichiometry. Methods: We studied a Mediterranean savanna amended with N or NP treatments three years prior. We measured root and plant‐available soil N:P stoichiometry in two micro‐habitats: open pasture and beneath oak canopies. 15N‐labelled root litter incubated in topsoils without litterbags was used to trace uptake of litter N by herbaceous strata roots. Results: Since fertilization, NP added sites have become relatively P enriched, resulting in lower N:P ratios in living roots than either when N was added alone or control sites. Total litter‐derived 15N uptake by roots was proportional to root ingrowth response but higher in the NP than N treatment, indicating a higher N demand when N and P were added together. We observed more 15N uptake by plants under tree canopies, indicating a tighter nutrient recycling loop in these micro‐habitats in contrast to treatment level ‘fertility' trends. Conclusions: Root stoichiometry responded to manipulated soil nutrient availability and N uptake was altered as plants attempted to compensate for nutrient availability imbalances, indicating that these ecosystem perturbations have long term effects on nutrient cycling which can propagate to whole system function. This was also related to functional community‐level adaptions between micro‐habitats with under canopy communities more able to take advantage of the litter nutrient source.  相似文献   

2.
江叶枫  叶英聪  郭熙  饶磊  孙凯  李伟峰 《土壤学报》2017,54(6):1527-1539
基于江西省2012年测土配方项目采集的16 582个耕地表层(0~20 cm)土壤样点数据,探讨省域尺度下耕地土壤氮磷生态化学计量空间变异特征及其影响因素。运用相关性分析、回归分析、方差分析和普通克里格法分析了成土母质、土壤类型、耕地利用方式、秸秆还田方式和氮肥施用量对耕地土壤氮磷生态化学计量空间变异的影响。结果表明,土壤氮磷比(N/P)在0.28~13.63之间,均值为3.38,变异系数为45.56%,呈中等程度的变异。空间分布上,高值区主要分布在海拔相对较低或鄱阳湖平原地区,低值区主要分布在九江市。成土母质、土壤类型、耕地利用方式、秸秆还田方式和氮肥施用量对江西省耕地土壤N/P空间变异影响显著(p0.01),但影响程度有所不同。氮肥施用量能影响27.2%的土壤N/P空间变异,是引起江西省耕地土壤氮磷生态化学计量空间变异的主要因素。  相似文献   

3.
    
Plants and microbes have limited stoichiometric flexibility to take up and store nitrogen (N) and phosphorus (P). Variation in the relative availability of N and P to plants and microbes may therefore affect how strongly N and P are held in terrestrial ecosystems with important implications for net primary productivity and carbon sequestration. We hypothesized that an increase in P availability in a P-poor soil would increase N uptake by plants and microbes thereby reducing N loss. We grew mixtures of the C3 grass Phalaris aquatica L. and the legume Medicago sativa L. in mesocosms with soils low in P availability and then used a novel technique by adding a 15N tracer with and without 1 g P m−2 to soil with different moisture and available N conditions, and measured the 15N recovery after 48 h in microbes, plants and soil. In contrast to our hypothesis, we found that P addition reduced 15N in microbes without water stress by 80% and also reduced total15N recovery, particularly without water stress. Water stress in combination with N addition further showed low total 15N recovery, possibly because of reduced plant uptake thereby leaving more 15N in the soil available for nitrification and denitrification. Our results suggest that P addition can result in large gaseous N loss in P-poor soils, most likely by directly stimulating nitrification and denitrification.  相似文献   

4.
为探讨臭氧胁迫和秸秆还田对大豆叶片C、P、K化学计量特征的影响,本研究采用开顶式气室法(OTCs),研究了两种还田方式(秸秆全量还田和秸秆不还田)对不同臭氧浓度(CK:O3为环境浓度,T1:O3浓度为(80±10)nmol mol^-1,T2:O3浓度为(110±10)nmol mol^-1)下大豆叶片C、P、K化学计量特征的变化。结果表明:(1)与秸秆不还田相比,秸秆还田使大豆叶片在分枝期CK处理下全P和全K含量显著降低,而C:P和C:K显著升高,T1处理下有机C和全K含量以及C:P显著降低,而P:K显著升高,T2处理下全P和全K含量显著升高;开花期CK处理和T2处理下有机C和全K含量显著上升,而CK处理下C:P显著升高,C:K和P:K显著降低,T2处理下P:K显著降低,T1处理下全K含量显著降低,C:K和P:K显著升高;结荚期臭氧浓度升高处理下有机C和全K以及C:P显著升高,而P:K显著降低;(2)与秸秆不还田相比,在生育前期低臭氧浓度下秸秆还田使土壤有机C含量显著升高,在整个生育过程中全P含量升高,全K含量无显著变化;(3)开花期,叶片有机C与土壤有机C呈显著正相关性,分枝期和开花期叶片全K与土壤全K呈显著负相关性。在臭氧浓度升高条件下,秸秆还田可提高大豆叶片和土壤有机C以及叶片全K含量,有利于生育前期叶片对P素的吸收。  相似文献   

5.
黄土高原特别是干草原地区植被演替的研究比较薄弱。当前植物生态化学计量学的研究主要集中在植物叶片方面,对根系的研究较少。选取宁夏云雾山草原植被不同封育年限的土壤和植物样品,以生态化学计量学原理为基础,测定并分析了土壤与根系的碳(C)、氮(N)、磷(P)及其生态化学计量比与相互关系。结果表明:(1)随着封育年限的增加,土壤容重逐渐减小,土壤有机碳和全氮变异性较大,全磷变异性较小,且封育初期土壤有机碳和全氮含量先降后升,至封育20、30年,保持相对平稳。0~20 cm土层土壤的碳氮比(C∶N)、碳磷比(C∶P)、氮磷比(N∶P)分别为9.04~9.63、19.62~32.27、2.14~3.37,20~40 cm土层土壤的分别为8.68~9.22、15.74~26.32、1.80~3.03。土壤有机碳与全氮、全磷之间存在极显著的正相关。(2)植物根系C、N、P含量变化范围分别为357.6~381.4 g kg-1、7.35~8.18 g kg-1、0.54~0.70 g kg-1;根系中的C元素含量随封育年限的增加逐渐升高,N、P元素含量均小于全球平均值。根系C∶N随着封育年限的增加变异性较大,C∶P、N∶P随着封育年限的增加变异性较小。(3)植物根系的C∶N∶P化学计量特征受土壤的影响调控大于其自身,且土壤磷含量对植物根系C∶N∶P生态化学计量特征影响的显著性(p0.01)大于土壤氮含量(p0.05)。此外,该地区封禁后,草地生产力易受到土壤N含量的限制。  相似文献   

6.
Microbial activity and nutrient release are known to be influenced by organic matter properties,but it is difficult to separate the effect of C/N ratio from that of C/P ratio because in most plant residues both ratios are either high or low.An incubation experimeut was conducted to investigate the effects of reducing the C/N and C/P ratios of slowly decomposable plant residues (young eucalyptus leaves,mature wheat straw,and sawdust) to those of rapidly decomposable residues (young kikuyu shoots) on soil respiration,microbial biomass,and N and P availability.The C/N and C/P ratios of the former were adjusted to 15 and 89,respectively,by adding N as (NH4)2SO4,P as KH2PO4 or both and residues were added at 10 g C kg-1 to a silt loam.Soil respiration was measured over 21 d;microbial biomass C (MBC) and available N and P were measured on days 0,7,and 21.Compared to the unamended soil,addition of kikuyu increased cumulative respiration 20-fold,MBC concentration 4 to 8-fold,and available P concentration up to 4-fold,whereas the increase in available N concentration was small and transient.Cumulative respiration and MBC concentration were low in the sawdust-amended soil and were not influenced by reducing the C/N and C/P ratios.Cumulative respiration with original wheat and eucalyptus was 30%-40% of that with kikuyu.Reducing the C/N ratio alone or both C/N and C/P ratios increased cumulative respiration and MBC concentration 2-fold compared to the original wheat and eucalyptus,whereas reducing the C/P ratio had little effect.Throughout the experiment,the available N concentration after addition of residues with reduced C/N ratio increased in the following order of eucalyptus < wheat < sawdust.By independently lowering the C/N and C/P ratios,microbial activity was more limited by C and N than P.However,lowering the C/N ratio of very slowly decomposable sawdust had no effect on soil respiration and MBC concentration,suggesting that other properties such as concentration of poorly decomposable C compounds limited decomposition.  相似文献   

7.
通过野外调查分析,研究了波动水文情势下,不同水分梯度带小叶章地上构件C,N,P含量动态。结果表明,各构件TC含量随时间波动变化,常年积水带大于无常年积水带;TN和TP含量,总体随水分的增加而减小,且生长季内含量逐渐下降;3种元素含量总体均为叶片含量高于茎和鞘。构件C/N常年积水和无常年积水两种情况下随水分增加呈现不同变化规律;C/P随水分的增加及生长过程的推进而增大;N/P总体随水分的增加而增大,生长季内均呈先增加后减小的波动变化。随水分的增加,小叶章质量下降;生长季初期,各水分梯度带小叶章生长均受N限制,而后期无常年积水区生长受N限制,深度积水区则受P限制。  相似文献   

8.
    
Silicon(Si) has been supplied to plants via application of calcium silicate to soil; however, high doses of calcium silicate are required because of its low solubility. Nanoparticles can reduce Si doses and be applied to seeding furrows. This study investigated the effects of liquid Si sources, i.e., highly soluble silicate(115.2 g L~(-1) Si and 60.5 g L~(-1) Na_2O) and nanosilica( 200 nm), on Si uptake by rice plants, plant lignification, plant C:N:P stoichiometry, plant physiology, and grain yield using an Oxisol under greanhouse condistions. The treatments included the application of nanosilica and soluble silicate to seeding furrows at Si doses of 0, 605, 1 210,and 2 420 g ha~(-1). Plant uptake and treatment effects were evaluated by measuring C and lignin contents, Si, N, and P accumulation,physiological characteristics, and grain yield of rice. The deposition of silica bodies and amorphous silica in the flag leaves was analyzed using scanning electron microscopy. Application of liquid Si increased Si accumulation in rice by 47.3% in relation to the control(0 g ha~(-1) Si), regardless of the Si sources used. Nanosilica application increased leaf lignin content by 112.7% when compared to that in the control. Silicon moderately affected the net C assimilation(increased by 1.83%) and transpiration rates(increased by 48.3%);however, Si influenced neither plant growth nor grain yield of rice. These results are explained by the lack of biotic or abiotic stress in rice plants during the experiment. To the best of our knowledge, in Brazilian agriculture, this is the first report on the use of nanosilica as a Si fertilizer and its effect on plant nutrition. This study provides evidence that rice plants absorb and accumulate nanoparticles;however, further studies are required to investigate the use of nanoparticles in other plant species.  相似文献   

9.
王启  李艳  王连维  向蔓菁  袁大刚  邵帅  勾琪立 《土壤》2017,49(2):358-363
选取成都东部5个不同交通环线区域(一环内、一环至二环、二环至三环、三环至绕城、绕城外)的绿地土壤为研究对象,采集0~20 cm和20~40 cm土层的土壤样品,测定其总有机碳(C)、全氮(N)、全磷(P)的含量并分析其化学计量特征。结果表明:成都东部绿地土壤C、P含量在沿\"城–郊–乡\"梯度上总体有降低趋势。各环线区域绿地土壤C、N、P含量基本随着土层的加深而降低,其中以C、P降低最为明显。绿地土壤C:P和N:P在成都东部\"城–郊–乡\"梯度下有升高趋势,但均低于国内平均水平;绿地土壤C:N在\"城–郊–乡\"梯度变化不明显。快速的城市化进程导致了C、N、P化学计量比的空间分异。  相似文献   

10.
    
Competition for nutrients between plants and microbes is an important determinant for plant growth, biodiversity and carbon cycling. Perturbations such as drought affect the availability of nitrogen (N) and phosphorus (P), and may cause shifts in uptake of N and P between plants and microbes. Competitiveness for these nutrients may depend on how flexible plants and microbes are in taking up N and P. We used a novel dual isotope labelling technique (15N and 32P) to assess short-term uptake of N and P by plants and microbes affected by drought in two different plant–soil systems. Mesocosms were extracted from two grassland sites differing in soil nutrient availability and plant species. Half of the mesocosms were subjected to drought one week prior to injection of 15N (as KNO3) and 32P (as H3PO4) tracers. Uptake rates of NO3 and P in plants and microbes were estimated based on average source pool enrichment during the labelling period and on plant and microbial recovery of 15N and 32P measured after 4 days of labelling. Overall competition for N and P was reduced with drought as less NO3 and P was taken up in plants and microbes. However, plant uptake of NO3 was more sensitive to drought than microbial NO3 uptake, while microbial P uptake was more sensitive than plant P uptake. These different sensitivities to drought by plants and microbes may decouple the N and P cycle with increased drought conditions.  相似文献   

11.
湿地退化条件下土壤碳氮磷储量与生态化学计量变化特征   总被引:2,自引:1,他引:2  
为了研究湿地退化过程中土壤碳氮磷储量与生态化学计量变化,明确碳氮汇功能的变化和土壤碳、氮、磷的平衡关系,采用实地采样调查、室内分析与数理统计法,研究了若尔盖自然湿地保护区内未退化湿地沼泽(MA)、沼泽化草甸(MM)、草甸(ME)3种不同退化程度湿地的典型样地在碳氮磷含量、储量以及生态化学计量的变化特征。结果表明,草甸化沼泽土与草甸土全剖面总有机碳、全氮含量较沼泽土分别降低了29.55%,6.52%和67.53%,40.04%,碳氮储量分别降低了67.49%,60.10%和85.14%,54.47%;3种土壤全磷剖面含量大小顺序为MMMEMA,其储量高低顺序是MEMAMM。随着土层深度的增加,沼泽土的总有机碳、全氮含量明显升高,全磷含量与草甸化沼泽土、草甸土的总有机碳、全氮、全磷含量均呈现降低趋势;3种土壤碳氮磷储量40—100cm土层高于0—40cm土层。沼泽土、草甸化沼泽土、草甸土3种不同类型土壤C/N分别为40.38,31.70,23.26,C/P分别为409.52,247.46,113.07,N/P分别为10.43,7.90,5.02,土壤C/N、C/P、N/P均随湿地退化而减小,较高的C/P与N/P14揭示氮磷元素均是影响植物生长的限制性因素,且受氮素限制高于磷素。因此,若尔盖湿地退化导致土壤碳氮含量与储量降低,碳氮汇功能减弱,尤其是碳汇。  相似文献   

12.
    
In forest soils where a large fraction of total phosphorus (P) is in organic forms, soil micro-organisms play a major role in the P cycle and plant availability since they mediate organic P transformations. However, the correct assessment of organic P mineralization is usually a challenging task because mineralized P is rapidly sorbed and most mineralization fluxes are very weak. The objectives of the present work were to quantify in five forest Spodosols at soil depths of 0-15 cm net mineralization of total organic P and the resulting increase in plant available inorganic P and to verify whether net or gross P mineralization could be estimated using the C or N mineralization rates. Net mineralization of total organic P was derived from the net changes in microbial P and gross mineralization of P in dead soil organic matter. We studied very low P-sorbing soils enabling us to use lower extractants to assess the change in total inorganic P as a result of gross mineralization of P in dead soil organic matter. In addition, to enable detection of gross mineralization of P in dead soil organic matter, a long-term incubation (517 days) experiment was carried out. At the beginning of the experiment, total P contents of the soils were very low (19-51 μg g−1) and were essentially present as organic P (17-44 μg g−1, 85-91%) or microbial P (6-14 μg g−1; 24-39%). Conversely, the initial contents of inorganic P were low (2-7 μg g−1; 9-15%). The net changes in the pool size of microbial P during the 517 days of incubation (4-8 μg g−1) and the amounts of P resulting from gross mineralization of dead soil organic matter (0.001-0.018 μg g−1 day−1; 0.4-9.5 μg g−1 for the entire incubation period) were considerable compared to the initial amounts of organic P and also when compared to the initial diffusive iP fraction (<0.3 μg g−1). Diffusive iP corresponds to the phosphate ions that can be transferred from the solid constituents to the soil solution under a gradient of concentration. Net mineralization of organic P induced an important increase in iP in soil solution (0.6-10 μg g−1; 600-5000% increase) and lower increases in diffusive iP fractions (0.3-5 μg g−1; 300-2000% increase), soil solid constituents having an extremely low reactivity relative to iP. Therefore, soil micro-organisms and organic P transformations play a major role in the bioavailability of P in these forest soils. In our study, the dead soil organic matter was defined as a recalcitrant organic fraction. Probably because gross mineralization of P from this recalcitrant organic fraction was mainly driven by the micro-organisms’ needs for energy, the rates of gross mineralization of C, N and P in the recalcitrant organic fraction were similar. Indirect estimation of gross mineralization of P in dead soil organic matter using the gross C mineralization rate seems thus an alternative method for the studied soils. However, additional studies are needed to verify this alternative method in other soils. No relationships were found between microbial P release and microbial C and N releases.  相似文献   

13.
为了探究不同生态治理措施对土壤碳(C)、氮(N)、磷(P)含量及其化学计量特征的影响,为黄土丘陵区的生态治理与植被恢复提供科学依据,以黄土丘陵区典型小流域王茂沟为例,通过野外采样与室内分析相结合的方法,对研究区坡耕地、林地、草地、灌木地及梯田等5个样地0—100cm土壤样品的C、N、P及其化学计量比进行了分析研究。结果表明:(1)坡耕地经过生态治理转变为林地、草地、灌木地及梯田等生态用地,土壤C、N含量分别提高了1.27,1.18,1.24,1.14倍及1.64,1.64,1.76,1.57倍;土壤C和N呈极显著的正相关关系;在0—100cm土层,林地、草地、灌木地及梯田的土壤C、N分布规律一致,均随土壤深度增加而减小,且在0—20cm土层出现了富集现象,而土壤P含量分布比较均匀;(2)坡耕地C∶N均值显著大于其他样地(P0.05),在0—20cm土层,土壤C∶P与N∶P表现为林地、草地、灌木地及梯田显著高于坡耕地(P0.05);土壤C∶N随着土层深度的变化不显著,C∶P与N∶P随土层加深呈减小的趋势;(3)土壤C、N、P化学计量比的分布主要由土壤C、N决定;土壤C∶P、N∶P与土壤中铵态氮、粘粒、砂粒、水稳性大团聚体含量之间的相关性均通过了显著性检验(P0.05)。土壤C、N、P及其化学计量比不仅受生态治理和土层深度的影响,还与土壤理化性质相关,土壤C∶N、C∶P、N∶P可以指示土壤的肥力状况。  相似文献   

14.
氮、磷肥对杉木幼苗生物量及养分分配的影响   总被引:5,自引:1,他引:4       下载免费PDF全文
采用盆栽试验,研究了不同氮、 磷肥对杉木(Cunninghamia lanceolata)幼苗生物量及养分分配的影响。结果表明,供磷可促进杉木幼苗植株和各器官生物量的增加,并影响叶、 茎、 根生物量的分配比例,氮、 磷处理幼苗叶生物量占全株生物量的45% 以上, 施氮反而降低杉木叶、 茎、 根的生物量; 施氮显著增加根和叶的氮含量,而显著降低根和叶的磷含量,对茎的氮、 磷含量没有明显影响; 施磷显著降低叶、 茎、 根的氮含量,叶、 茎、 根的磷含量随供磷水平的增加而逐渐增加。氮磷配施显著影响叶、 茎、 根的氮、 磷含量和氮、 磷累积量。叶片是主要的氮、 磷养分存储器官。氮(或磷)水平的增加可降低杉木幼苗的磷(或氮)利用效率,提高氮(或磷)的利用效率; 氮、 磷肥显著影响杉木幼苗叶、 茎、 根的N/P比。研究结果说明,氮、 磷肥增加了杉木幼苗各器官生物量和氮、 磷含量,影响了幼苗的养分分配和营养平衡。  相似文献   

15.
三峡水库成库初期氮、磷分布特征   总被引:16,自引:0,他引:16  
三峡库区及其上游区是我国水土流失的重要地区。2003年6~12月三峡水库成库后,在三峡水库设置6个水平监测断面和2个垂直断面,每月对营养盐(NH3-N,NO2-N,NO3-N,TN,TP)进行浓度监测。结果表明,6个测点表层水NH3-N,NO2-N、NO3-N,TN,TP含量均值分别为0.11mg/L,0.019mg/L,1.28mg/L,1.62mg/L,0.13mg/L。沿水流方向TN浓度逐渐增高,TP浓度逐渐降低。在同一位置垂直方向按3个不同水深(表层、0.6倍水深和0.8倍水深)设置测点。连续7个月测试结果表明,营养盐在垂直方向上差异不明显。总磷浓度变化与流量变化有很大关系,总磷浓度最大值均出现在丰水期,最小值为枯水期。  相似文献   

16.
Leaching of nutrients, particularly in sandy soil with low nutrient and water holding capacity (WHC), is a major threat to marine and fresh water pollution. Addition of clay soil to sandy soil could be an option to increase water and nutrient holding capacity of sandy soils, but the effect of clay soil addition may depend on the form in which the clay soil is added and the addition rate. Clay soil was added to sandy soil at rate of 10 or 20% (w/w) finely ground (<2 mm) or 2 and 5 mm peds with and without nitrogen (N) and phosphorus (P) fertilizer equivalent to 60 kg N ha?1 and 15 kg P ha?1. The clay sand mixture for each treatment was weighed (30 g) in cores with nylon mesh at the bottom. The soils were incubated at 80% WHC for 7 weeks. To obtain leachate, 20 mL reverse osmosis (RO) water was added every week to each core. Leachate was analysed for inorganic N, P, and pH. Soil was analyzed for N, P, and pH before and after the leaching. Clay addition significantly reduced the leaching of N and P compared to sandy soil alone, with greatest reduction by finely ground clay soil and least with 5 mm peds. Compared to sandy soil alone, 83% more N was retained in clay-amended soil and P retention was doubled. This study showed that addition of finely ground clay soil can substantially reduce N and P leaching and thereby increase fertilizer retention compared to sandy soil alone.  相似文献   

17.
中国湿地土壤碳氮磷生态化学计量学特征研究   总被引:27,自引:0,他引:27       下载免费PDF全文
明确区域及全球湿地土壤中是否存在类似“Redfield比值(Redfield ratio)”的碳氮磷(C∶N∶P)比例,是认识湿地生态系统中元素循环,构建湿地物质循环模型的基础。本文基于《中国沼泽志》中有详细土壤理化性质记录的119块沼泽湿地数据,利用数理统计方法,分析了区域尺度上湿地土壤中碳C∶N∶P生态化学计量学特征及分布格局,并探讨了其可能的影响因素。结果表明,中国湿地土壤中C∶N、C∶P和N∶P(摩尔比)平均为18.22、245.22和13.60,高于中国及世界土壤中C∶N、C∶P和N∶P的平均值,C∶N∶P比例平均值为245∶13.6∶1。碳、氮、磷三者之间并不具备显著的两两相关性,说明中国湿地土壤中不存在类似于“Redfield比值”的C∶N∶P比例。相比于N元素,湿地生态系统更多受到P供应的限制。不同湿地类型或不同盐度情况下湿地土壤中C∶N、C∶P和N∶P存在显著性差异,而植被类型对土壤中C∶N、C∶P和N∶P影响不大。相关性分析表明,海拔高度、温度(年平均气温、1月平均气温、7月平均气温、活动积温)及p H是决定湿地土壤中C∶N、C∶P和N∶P的主要因素。考虑到海拔与C∶P及N∶P之间极显著的相关关系,海拔这一非地带性因子是决定湿地土壤C∶N∶P计量学特征的主要因素。  相似文献   

18.
不同氮、磷用量对杂种小麦旗叶光合特性的影响   总被引:20,自引:7,他引:20  
在大田条件下研究了不同氮、磷用量对杂种小麦旗叶光合特性的影响。结果表明,在施N122.5~337.5kg/hm2,P2O590~270kg/hm2范围内,随肥料用量增加杂种小麦旗叶净光合速率(Pn)、叶绿素(Chl)含量、可溶蛋白(Pro)含量、气孔导度(gs)和叶肉导度(gm)均升高,光合功能期延长,叶源量增加。母本(C6-38)与杂种F1表现相同趋势,而父本(Py85-1)在中肥和高肥处理下各指标的表现与杂种小麦相反。在旗叶整个老化过程中,杂种小麦与双亲本均值相比的净光合速率和光合功能期的平均优势均随氮、磷用量的增加而增大,且各施肥水平下均以老化后期大于前、中期。  相似文献   

19.
不同氮肥配施方法下稻草还田短期效应研究   总被引:4,自引:0,他引:4  
为探索适宜稻草还田量及配合稻草还田的N、P肥施用方法,通过盆栽试验,采用树脂法和传统化学法相结合,研究了不同N肥配施方法下稻草还田对土壤N、P养分及水稻生长的短期影响。结果表明:稻草还田短期内可降低土壤氨氮浓度,提高土壤有效磷浓度,抑制水稻生长;稻草还田的这3种效应都随稻草水平的增加而加强,但不同N肥配施下无差异。稻草还田后易引起水稻铁中毒,因此稻草还田量不宜过多;稻草还田后除需多施N、P肥外,还需通过排水等措施以解决其铁毒效应。  相似文献   

20.
为了阐明种植年限对茉莉花园土壤碳(C)、氮(N)、磷(P)及其生态化学计量特征的影响,以福州市种植年限约为3(J-3),10(J-10),15(J-15),30(J-30),>40(J-40)年的茉莉花园为研究对象,对土壤C、N、P与生态化学计量比及其影响因子进行了测定与分析.结果 表明:(1)与J-3相比,随着种植年...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号