首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to investigate changes in P-fractions, bio-available P (CAL-P), citric acid extractable P, acid phosphatase activity and microbial biomass C and N during incubation of mature biogenic compost (MBC), immature biogenic compost (IBC) or immature sheep manure compost (ISC) not amended with P or amended with rock phosphate (RP, 7.6% P) or triple-superphosphate (TSP, 19.5% P). Incubation was performed at 20?°C in darkness under aerobic conditions. Samples were collected for laboratory analysis at the start of incubation (D-0) and after one, six and 26?days during incubation (D-1, D-6, D-26). Addition of soluble P fertilizer (TSP) led to a threefold increase in all P fractions in comparison to compost without TSP; even a “priming effect” could be observed, promoting conversion of non-labile to labile P. Moreover, addition of TSP lowered biological activity, especially acid phosphatase activity (P-ase), due to already high concentrations of readily available P. In general, P fractions (bicarbonate extractable Pi (NaHCO3-Pi) and bicarbonate extractable Po (NaHCO3-Po) and sodium hydroxide extractable Po (NaOH-Po)) increased during incubation until day 6 at the expense of NaOH-Pi fraction, which decreased. Generally, RP-derived P showed little or no effect on P fractions during the entire incubation period and only led to slightly increased CAL-P and Citric-acid-P levels. Fertilizer effects on labile P fractions were most enhanced with ISC. IBC enhanced microbial growth and P-ase, thereby enhancing conversion of labile into moderate labile NaOH-Po.  相似文献   

2.
The management of crop residues coupled with external nutrient inputs is important for improving and conserving soil fertility and productivity. We assessed the long-term effects of three wheat residue management options (RMO) (residue burning, incorporation, and surface retention) in combination with three supplementary nutrient inputs (SNI) [control, fertilizer, and farmyard manure (FYM)] on phosphorus (P) fractions and adsorption behavior of a Vertisol under soybean–wheat system. Wheat residue incorporation and retention improved the labile inorganic P [sodium bicarbonate (NaHCO3-Pi)] by 3.2 and 5.0 mg kg?1 and the labile organic P (NaHCO3-Po) by 2.4 and 4.2 mg kg?1, respectively, as compared to residue burning. The soils under residue incorporation and retention had 38 and 26% more moderately labile organic P [sodium hydroxide (NaOH-Po)], respectively, than the soil under residue burning. The SNI either as fertilizer or FYM further enhanced NaHCO3-Pi, NaHCO3-Po, and NaOH-Po. In contrast, less labile P fractions [hydrochloric acid (HCl)-P and residual-P] remained unaffected by RMO and SNI treatments. Residue retention or incorporation decreased P adsorption over the residue burning for all the three nutrient inputs. The P-adsorption data fitted well to the Langmuir equation (R2 ranged from 0.970 to 0.994). The P-adsorption maximum (b), bonding energy constant (k), differential P-buffering capacity (DPBC), and standard P requirement (SPR) were lower with residue incorporation or surface retention than with residue burning. The SPR followed the order residue burning > incorporation > retention for RMOs and control > fertilizer > FYM for SNI treatments. The NaHCO3-Pi, NaHCO3-P0, and NaOH-Po had negative correlation with P-adsorption parameters and showed positive correlation with soybean P uptake. Wheat residue incorporation or retention plus FYM could be an effective strategy for enhancing the P fertility of Vertisols under a soybean–wheat system.  相似文献   

3.
 Soil P availability and efficiency of applied P may be improved through an understanding of soil P dynamics in relation to management practices in a cropping system. Our objectives in this study were to evaluate changes in plant-available (Olsen) P and in different inorganic P (Pi) and organic P (P0) fractions in soil as related to repeated additions of manure and fertilizer P under a soybean-wheat rotation. A field experiment on a Typic Haplustert was conducted from 1992 to 1995 wherein the annual treatments included four rates of fertilizer P (0, 11, 22 and 44 kg ha–1 applied to both soybean and wheat) in the absence and presence of 16 t ha–1 of manure (applied to soybean only). With regular application of fertilizer P to each crop the level of Olsen P increased significantly and linearly through the years in both manured and unmanured plots. The mean P balance required to raise Olsen P by 1 mg kg–1 was 17.9 kg ha–1 of fertilizer P in unmanured plots and 5.6 kg ha–1 of manure plus fertilizer P in manured plots. The relative sizes of labile [NaHCO3-extractable Pi (NaHCO3-Pi) and NaHCO3-extractable P0 (NaHCO3-P0)], moderately labile [NaOH-extractable Pi (NaOH-Pi) and NaOH-extractable P0 (NaOH-P0)] and stable [HCl-extractable P (HCl-P) and H2SO4/H2O2-extractable P (resisual-P)] P pools were in a 1 : 2.9 : 7.6 ratio. Application of fertilizer P and manure significantly increased NaHCO3-Pi and -P0 and NaOH-Pi, and -P0 fractions and also total P. However, HCl-P and residual-P were not affected. The changes in NaHCO3-Pi, NaOH-Pi and NaOH-P0 fractions were significantly correlated with the apparent P balance and were thought to represent biologically dynamic soil P and act as major sources and sinks of plant-available P. Received: 23 October 1997  相似文献   

4.
The effect of different treatments on the fate of applied P was investigated in a long-term field experiment started in 1972–1973 following a maize–wheat sequence. The soil samples were collected after 29 years of continuous addition of mineral fertilizers and amendments such as farmyard manure (FYM) and lime. The total P content of all the treatments increased compared to the original soil; NaOH-inorganic P (Pi) (NaOH-Pi) representing Fe and Al-bound P was the dominant Pi fraction. At the beginning of the experiment (1972–1973), the various P pools could be quantitatively ranked in the following order: residual P>NaOH-organic P (Po)>NaOH-Pi>NaHCO3-Po>NaHCO3-Pi>HCl-P>H2O-P. As a result of continued P fertilization and cropping, the order changed as follows: residual P>NaOH-Pi>NaOH-Po>NaHCO3-Pi>NaHCO3-Po>HCl-P>H2O-P. Compared to the imbalanced mineral fertilizer application, the balanced as well as integrated application of nutrients resulted in significantly lower P adsorption capacity of soils. The Olsen extractable-P fraction (plant-available P) increased from about 12 mg kg–1 soil in 1972 to about 81 mg kg–1 soil in the treatments receiving P for the last 29 years.  相似文献   

5.
Abstract

Improving phosphorus (P) fertilizer efficiency while minimizing environmental impacts requires better understanding of the dynamics of applied P in soils. This study assessed the fate of fertilizer P applied in Quebec Humaquepts. A pot experiment with five textural Humaquepts, each receiving 0 (P0), 10 (P10), 20 (P20) and 40 (P40) mg P kg?1 soil was conducted under barley (Hordeum vulgare L.)-soybean (Glycine max L.) rotations. A modified Hedley procedure was used for soil P fractionation. The clayey soils reached a plateau of dry matter at less P applied than the coarser-textured soils. Plant P uptake, soil labile inorganic P (resin-P?+?NaHCO3-Pi) and moderately labile inorganic P (NaOH-Pi) increased proportionally with P rate. The coarser-textured soils had lower contents of labile and moderately labile Pi, but a larger increase in labile Pi than the finer-textured soils after receiving P additions. The applied P was retained primarily as soil labile Pi, accounting for 43–69% of total soil recovery of applied P, compared to 20–30% recovered as moderately labile Pi, and 7–29% assumed to be sparingly soluble P (HCl-P?+?H2SO4-P). The labile Pi recovery of applied P was linearly depressed with clay content, compared to a quadratic relation for the moderately labile Pi recovery. The results suggest the importance of accounting for soil texture along with soil P adsorption capacity when assessing the efficiency of applied P, P accumulation in soils and subsequently P nutrient management.  相似文献   

6.
Organic amendments could be used as alternative to inorganic P fertilisers, but a clear understanding of the relationship among type of P amendment, microbial activity and changes in soil P fractions is required to optimise their use. Two P-deficient soils were amended with farmyard manure (FYM), poultry litter (PL) and biogenic waste compost (BWC) at 10 g?dw?kg?1 soil and incubated for 72 days. Soil samples were collected at days 0, 14, 28, 56 and 72 and analysed for microbial biomass C, N and P, 0.5 M NaHCO3 extractable P and activity of dehydrogenase and alkaline phosphomonoesterase. Soil P fractions were sequentially extracted in soil samples collected at days 0 and 72. All three amendments increased cumulative CO2 release, microbial biomass C, N and P and activity of dehydrogenase and alkaline phosphomonoesterase compared to unamended soils. The increase in microbial biomass C and N was highest with PL, whereas the greatest increase in microbial biomass P was induced with FYM. All three biomass indices showed the same temporal pattern, with the highest values on day 14 and the lowest on day 72. All amendments increased 0.5 M NaHCO3 extractable P concentrations with the smallest increase with BWC and the greatest with FYM, although more P was added with PL than with FYM. Available P concentrations decreased over time in the amended soils. Organic amendments increased the concentration of the labile P pools (resin and NaHCO3-P) and of NaOH-P, but had little effect on the concentrations of acid-soluble P pools and residual P except for increasing the concentration of organic P in the concentrated HCl pool. Resin P and NaHCO3-Pi pools decreased over time whereas NaOH-Pi and all organic P pools increased. It is concluded that organic amendments can provide P to plants and can stimulate the build-up of organic P forms in soils which may provide a long-term slow-release P source for plants and soil organisms.  相似文献   

7.
Yao  Yihan  Cao  Shanzhi  Gong  Xueliu  Singh  Bhupinder Pal  Fang  Yunying  Ge  Tida  Wang  Hailong  Li  Yongfu 《Journal of Soils and Sediments》2022,22(10):2640-2653
Purpose

Intensive long-term management practices in forest ecosystems can markedly influence soils’ physicochemical and microbial properties. However, their effects on the magnitude of nutrient pools and activities of enzymes regarding nutrient cycling in subtropical forest soils remain unclear. This study aimed to examine effects of long-term intensive management (organic mulching and chemical fertilization) on concentrations of different C, N, and P fractions and activities of enzymes involved with nutrient cycling in a subtropical Lei bamboo (Phyllostachys violascens) forest soil.

Materials and methods

Soil samples were taken from a chronosequence of Lei bamboo forests with intensive management spanning 0, 5, 10, and 15 years. Concentrations of various forms of C, N, and P, as well as activities of β-glucosidase, cellobiohydrolase, urease, protease, and acid phosphatase were measured.

Results and discussion

The results revealed that the concentrations of different classes of C (water-soluble organic C, hot-water-soluble organic C, and readily oxidizable C), N (NH4+-N, NO3?-N, and water-soluble organic N), and P [resin-inorganic P (Pi), NaHCO3-Pi, NaHCO3-organic P (Po), NaOH-Pi, NaOH-Po, HCl-Pi, and residual-P] were enhanced markedly with prolonged duration of intensive management. Furthermore, activities of β-glucosidase, cellobiohydrolase, urease, protease, and acid phosphatase were increased following a 5-year treatment, while they were markedly reduced from 5- to the 15-year treatments. The 15 years of intensive management significantly reduced microbial biomass C and N concentrations by 8.2% and 31.9%, respectively, compared to the control.

Conclusions

We concluded that long-term intensive management led to the accumulation of C, N, and P, while it negatively impacted microbial biomass and activities of enzymes involved in nutrient cycling in subtropical Lei bamboo forest soils. Consequently, a reduction in chemical fertilizers should be considered toward the long-term sustainable development of subtropical Lei bamboo forests.

  相似文献   

8.
In a long-term field experiment, started in 1962, the fate of P applied with different organic materials [farmyard manure (FYM), compost and sewage sludge] in comparison to mineral fertilizer was investigated. Soil samples were collected after 38 years' continuous addition of these amendments to a luvisol derived from loess and cultivated to a cereal-root crop sequence. The total P (Pt) content of all treatments increased compared with the original soil; NaOH-inorganic P (NaOH-Pi) representing Fe- and Al-bound P was the dominant inorganic fraction. At the beginning of the experiment the various P pools could be quantitatively ranked in the following order: NaOH-Pi>residual P~NaHCO3-Pi>H2O-P>HCl-P. The order changed as follows: NaOH-Pi>NaHCO3-Pi>residual P~H2O-P>HCl-P, with transformations of non-labile residual P to the labile NaHCO3-Pi pool with continued P fertilization and cropping. In addition, the content of organic P (Po) forms (NaOH-Po and NaHCO3-Po) increased. Pt delivery potential (desorbable P pool) increased between 35% and 185% compared to the P delivery potential in 1962. Compared to mineral fertilizer application, the application of organics resulted in a significantly higher, and FYM in a lower, P adsorption capacity of soils. The calcium lactate-extractable P (plant-available P) increased from 43.1 mg kg-1 soil in 1962 to 175.9 mg kg-1 soil in the treatment with 49 t compost ha-1. The increase in the citrate-dithionate Fe-O ranged between 44% and 154% in the different treatments compared to the Fe-O content in 1962. In a pot experiment with soil from the field experiment, P removal by ryegrass was in the following sequence: FYM>compost=sewage sludge>mineral fertilizer.  相似文献   

9.
Abstract

The transformation of added phosphorus (P) to soil and the effect of soil properties on P transformations were investigated for 15 acid upland soils with different physicochemical properties from Indonesia. Based on oxide-related factor scores (aluminum (Al) plus 1/2 iron (Fe) (by ammonium oxalate), crystalline Al and Fe oxides, cation exchange capacity, and clay content) obtained from previous principal component analyses, soils were divided into two groups, namely Group 1 for soils with positive factor scores and Group 2 for those with negative factor scores. The amounts of soil P in different fractions were determined by: (i) resin strip in bicarbonate form in 30 mL distilled water followed by extraction with 0.5 mol L?1 HCl (resin-P inorganic (Pi) that is readily available to plant), (ii) 0.5 mol L?1 NaHCO3 extracting Pi and P organic (Po) (P which is strongly related to P uptake by plants and microbes and bound to mineral surface or precipitated Ca-P and Mg forms), (iii) 0.1 mol L?1 NaOH extracting Pi and Po (P which is more strongly held by chemisorption to Fe and Al components of soil surface) and (iv) 1 mol L?1 HCl extracting Pi (Ca-P of low solubility). The transformation of added P (300 mg P kg?1) into other fractions was studied by the recovery of P fractions after 1, 7, 30, and 90 d incubation. After 90 d incubation, most of the added P was transformed into NaOH-Pi fraction for soils of Group 1, while for soils of Group 2, it was transformed into resin-Pi, NaHCO3-Pi and NaOH-Pi fractions in comparable amounts. The equilibrium of added P transformation was reached in 30 d incubation for soils of Group 1, while for soils of Group 2 it needed a longer time. Oxide-related factor scores were positively correlated with the rate constant (k) of P transformation and the recovery of NaOH-Pi. Additionally, not only the amount of but also the type (kaolinitic) of clay were positively correlated with the k value and P accumulation into NaOH-Pi. Soils developed from andesite and volcanic ash exhibited significantly higher NaOH-Pi than soils developed from granite, volcanic sediments and sedimentary rocks. Soil properties summarized as oxides-related factor, parent material, and clay mineralogy were concluded very important in assessing P transformation and P accumulation in acid upland soils in Indonesia.  相似文献   

10.
Piedmont lands in Bangladesh, India, Nepal, and many other Asian countries are important rice-growing soils, but most of the soils are potentially phosphorus (P) deficient because of low pH. Phosphorus fractions of rice-growing acidic piedmont soils were determined. Soil samples were amended with 100 and 200 mg P kg?1 soil, and a control soil without P amendment was maintained. The samples were analyzed for the following fractions: solution P, labile pool [sodium bicarbonate (NaHCO3) P], alkali-extracted inorganic pool [sodium hydroxide (NaOH) Pi], organic pool (NaOH Po), acidic pool [sulfuric acid (H2SO4)?hydrochloric acid (HCl) P], and residual P. About 98% of the applied P in soils was extracted by the sequential extraction employed in the present experiment. The mean total P concentration in 10 acidic Piedmont soils was 247 ppm, of which only 0.12% was in solution, 8% labile (NaHCO3), 16% NaOH-extracted inorganic, 32% resistant organic, 18% relatively recalcitrant acidic, and 25% residual. Application of P fertilizer increased mainly the labile P fraction, which would be easily available to wetland rice. Solution P was positively and significantly correlated with pHKCl (r = 0.64, P < 0.05) and negatively correlated with clay (r = ?0.77, P < 0.01). A negative and significant correlation of NaHCO3-P was observed with pHH2O (r = ?0.62, P < 0.05). Solution P showed a negative and significant relationship with NaOH-Pi (r = ?0.63, P < 0.05). A significant and negative relationship of solution P was also observed with acid P (r = ?0.78, P < 0.01) and residual P (r = ?0.82, P < 0.01). The relationship of NaHCO3-P with NaOH-Pi was positive (r = 0.70, P < 0.05) and significant. Similarly, a positive and significant relationship (r = 0.89, P < 0.01) between NaOH-Pi and acid P was observed, and acid P was positively and significantly correlated with residual P (r = 0.84, P < 0.01).  相似文献   

11.
免耕和秸秆覆盖对黑垆土磷素形态组分的影响   总被引:1,自引:0,他引:1  
[目的]探究免耕及添加秸秆条件下黑垆土土壤磷组分特征及其与AM真菌侵染的关系,了解雨养农业区农业系统磷素利用效率。[方法]在陇东黄土高原黑垆土区域,测定传统耕作、传统耕作+秸秆覆盖、免耕和免耕+秸秆覆盖4种处理小麦—玉米—大豆轮作系统中玉米阶段土壤全磷、速效磷组分及AM真菌菌根侵染率。[结果]水土保持耕作处理实施9a后,免耕和秸秆覆盖处理下0—5cm土壤磷素含量显著提高,活性磷组分H2O—Pi,NaHCO3—Pi,NaOH—Pi分别比对照提高84.6%,85.2%和56.6%;活性无机磷(H2O—Pi,NaHCO3—Pi之和)和潜在活性磷(NaOH—Pi)分别占总无机磷的11.4%和4.5%,全磷含量与磷组分、速效磷与磷组分呈显著正相关,2个免耕处理菌根侵染率分别比对照增加20.8%和16.5%。[结论]免耕和秸秆覆盖显著提高了土壤磷含量,免耕对AM真菌菌根侵染率有积极影响。  相似文献   

12.
低分子量有机酸对土壤磷活化影响的研究   总被引:14,自引:3,他引:11  
研究两种低分子量有机酸(柠檬酸和苹果酸)对土壤磷活化影响,并用修正的Hedley法测定土壤磷活化前后磷组分的变化。结果表明,低分子量有机酸能持续活化土壤磷,活化强度随低分子量有机酸浓度的增大而增强,并且柠檬酸活化土壤磷的能力强于苹果酸。低分子量有机酸能促进作物有效态无机磷组分(H2O-P和NaHCO3-Pi)的释放;同时还促进有机磷组分(NaHCO3-Po和NaOH-Po)的矿化。在低分子量有机酸浓度达到0.5 mmol/L以上时,其对土壤磷组分的活化量的顺序为:NaOH-Pi HCl-P NaHCO3-Pi H2O-P,即铁铝结合态磷 钙结合态磷 作物有效态磷。低分子量有机酸活化土壤磷的过程中伴有大量铁、铝释放,且铁或铝的释放量与磷活化量之间显著正相关(P0.05)。说明铁、铝结合态磷是低分子量有机酸活化土壤磷的主要磷源,并且其活化机制可能与铁、铝结合态磷的螯合溶解有关。  相似文献   

13.
Most previous studies have limited the assessments of soil phosphorus (P) status within the plow layer. This study was to assess the impacts of crop sequences and nutrient sources on P status of a Labarre silty clay (Humic Cryaquept) profile in a frigid continental climate. Soil of the 0- to 15-, 15- to 30-, 30- to 60-, and 60- to 90-cm layers was sampled from a split-plot experiment comprising a barley (Hordeum vulgare L.) monoculture and a 3-year barley-forage rotation as main plots, and receiving mineral fertilizers (MIN) or liquid dairy manure (LDM) as subplots. A modified Hedley sequential fractionation was used to characterize soil P status. Labile P pools were more affected than stable ones by the investigated treatments. After 10 years, the MIN resulted in larger resin-P and NaHCO3-Pi, and lower NaHCO3-Po and NaOH-Po pools than the LDM in the top 30 cm of soil. The rotation resulted in larger labile Pi and Po pools than the monoculture in the 30- to 60-cm layer. The rotation associated with LDM produced the largest total labile P pool, whereas the LDM resulted in an about 20% higher degree of soil P saturation as expressed by the Pox/(Feox + Alox) molar ratio than the MIN in the 0- to 30-cm layer. Our observations stressed that the impacts of crop sequences and nutrient sources on soil labile P extended deeper into the profile than the disturbance caused by primary tillage.  相似文献   

14.
Termite activities are known to significantly influence small-scale soil properties in tropical savannas. The lateral and vertical extent of the alterations to the nest's surrounding, and particularly resulting impacts on diagnostic soil horizons remain largely unresolved until today. We examined the effects of mound-building termites on soil genesis and constitutive chemical soil properties in and below their nests. Two transects to a soil depth of 100 cm were dug below three younger mounds of Cornitermes silvestrii (the primary nest builder), three older mounds in which C. silvestrii had died out and which were secondarily colonized mainly by Nasutitermes kemneri, and three reference sites in the Brazilian Cerrado. The samples were characterized by standard procedures for soil classification; in addition, phosphorus extractions were conducted on selected samples using NaHCO3 for labile P forms, and concentrated HCl for stable P forms. This data set was then used to build calibration models for the prediction of labile and stable inorganic (Pi) and organic (Po) P forms, as well as for contents of organic carbon (OC), for the remaining samples applying mid-infrared spectroscopy in combination with partial least squares regression (MIRS-PLSR). We can show that the termite influence on the soil was sufficiently large to change diagnostic characteristics of the soils under termite mounds. The MIRS-PLSR predictions were suitable for quantifying organic carbon and most of the labile and stable phosphorus fractions. They showed an enrichment of OC, NaHCO3-Po and NaHCO3-Pi contents in nests inhabited by primary and secondary termites by factors of 1.6–2.0 and 1.4–1.5, respectively. The soils surrounding the nests had higher contents of OC and NaHCO3-P under both nest types vertically down to 30 cm below the lower nest border, and OC and NaHCO3-Pi contents were elevated at minimum to a lateral distance of 60 cm away from the nest border. As the pattern of HClconc-Pi, which comprised 95% of total P, showed no variations, we conclude that the higher NaHCO3-Pi amount was formed in termite nests by changing the availability of the more stable HClconc-Pi. In contrast to the contents, the OC and NaHCO3-P stocks below the mounds inhabited by primary termites were comparable to those inhabited by secondary ones, because the bulk density of the secondarily inhabited nests was elevated. This was due to a transport of clay-rich material from the subsurface argic horizons into the nests. Here, the secondary termites even reverted the lessivation observed in the reference soils and under mounds inhabited by primary termites, thus causing the soil types to change from Alisols and Acrisols to the properties of Umbrisols.  相似文献   

15.
Information concerning sources and sinks of available P in soil is needed to improve soil P management and protect water quality. This study, conducted from 1989 to 1998 on a Sultan silt loam soil (Aquantic Xerochrept), determined the annual P removal rate by corn (Zea mays L.) and P transformation as affected by P rate and winter cover cropping. Treatments included two P rates (0 and 44 kg P ha–1) applied to corn at planting each year. All cover crops received 19.6 kg P ha–1 at seeding each fall. Also included was a control without any cover crop and with no P addition. Corn yield and P uptake were affected by P fertilizer additions, but not by cover crops. A fairly constant amount of P was supplied from indigenous soil P when no external P was added. When the amount of P added exceeded that removed by corn, the excess P was converted mainly to NaOH-extractable inorganic P (NaOH-Pi). When the amount of P applied was below that removed by corn, indigenous soil NaOH-Pi acted as a source of available P for the plant. With no reduction of organic P (Po) extractable by NaOH or NaHCO3, the contribution from Po to the available P pool appeared limited. The role of NaOH-Pi in P availability in the soil was substantiated by its significant correlation with labile NH4Cl-extractable P (NH4Cl-P; r2 =0.60, P <0.001) or NaHCO3-Pi (r2 =0.81, P <0.001) pools. The NaOH-Pi for the soil reflected the changes in soil P resulting from past fertilizer P input and P removal by the crops.Scientific Paper Number 0005-34  相似文献   

16.
Abstract

Poor soil structure is the main cause of soil degradation; however, biochar the solid carbon-rich production of pyrolysis biomass could improve the soil structure. Biochar from the feed stock sawdust (SD) and corn cobs (CC) was pyrolyzed at 450?°C. Wheat was grown as a test crop and treatments were control, NPK, SDB1% (sawdust biochar), CCB1% (corn cobs biochar), SDB0.5%+CCB0.5%, SDB1%?+?½ NPK, CCB1%?+?½ NPK. The higher growth, higher grain and dry matter yield were displayed by biochar?+?NPK. The lowest pH, the higher organic matter, available P and available K were observed in SDB0.5%+CCB0.5%. However, the highest total N (1.43?g kg?1) was by NPK treatment. The biochar increased plant available water contents, water contents at field capacity and permanent wilting point, soil porosity and decreased bulk density. The highest stable aggregates were in SDB0.5%+CCB0.5%. Biochar application was found as a useful practice for soil sustainability  相似文献   

17.
Poultry manure (PM) contains a large proportion of phosphorus (P) in mineral-associated forms that may not be readily available for plant uptake. In addition, PM application influences both chemical and biotic processes, and can affect the lability of native soil P. To investigate the effects of PM on soil P availability, we grew ryegrass (Lolium perenne) in greenhouse pots amended with poultry manure. Biomass was harvested at 4, 8, and 16 weeks following PM application, with soil separated into rhizosphere and bulk fractions. Soil was sequentially extracted by H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl, and inorganic P (Pi) and enzymatically hydrolyzable organic P (Poe) were quantitated. Root P concentrations were 37% higher and total P uptake 59% higher with PM application than Control. At week 16, there was 30% more labile-Pi (H2O- plus NaHCO3-Pi) in the rhizosphere with PM than in Control. Phosphodiesterase activity increased with PM application. Furthermore, acid phosphomonoesterase, alkaline phosphomonoesterase, and phosphodiesterase activities were all higher in the rhizosphere than in bulk soil at week 16 with PM, indicating that increased labile-Pi was due primarily to stimulation of soil phosphatases to mineralize NaOH-Poe. Soil pH increased with PM application and plant growth, and may have promoted P availability by decreasing sorption of Al- and Fe-associated inorganic and organic phosphates. These results demonstrate that whereas PM application may initially increase NaOH and HCl-Pi, these fractions can be readily changed into labile-P and do not necessarily accumulate as stable or recalcitrant P in soil.  相似文献   

18.
Recent studies have shown both increased (positive priming) and decreased (negative priming) mineralisation of native soil organic carbon (SOC) with biochar addition. However, there is only limited understanding of biochar priming effects and its C mineralisation in contrasting soils at different temperatures, particularly over a longer period. To address this knowledge gap, two wood biochars (450 and 550 °C; δ13C −36.4‰) were incubated in four soils (Inceptisol, Entisol, Oxisol and Vertisol; δ13C −17.3 to −28.2‰) at 20, 40 and 60 °C in the laboratory. The proportions of biochar- and soil-derived CO2–C were quantified using a two-pool C-isotopic model.Both biochars caused mainly positive priming of native SOC (up to +47 mg CO2–C g−1 SOC) in the Inceptisol and negative priming (up to −22 mg CO2–C g−1 SOC) in the other soils, which increased with increasing temperature from 20 to 40 °C. In general, positive or no priming occurred during the first few months, which remained positive in the Inceptisol, but shifted to negative priming with time in the other soils. The 550 °C biochar (cf. 450 °C) caused smaller positive priming in the Inceptisol or greater negative priming in the Entisol, Oxisol and Vertisol at 20 and 40 °C. At 60 °C, biochar caused positive priming of native SOC only in the first 6 months in the Inceptisol. Whereas, in the other soils, the native SOC mineralisation was increased (Entisol and Oxisol) and decreased (Vertisol) only after 6 months, relative to the control. At 20 °C, the mean residence time (MRT) of 450 °C and 550 °C biochars in the four soils ranged from 341 to 454 and 732−1061 years, respectively. At 40 and 60 °C, the MRT of both 450 °C biochar (25−134 years) and 550 °C biochar (93−451 years) decreased substantially across the four soils. Our results show that biochar causes positive priming in the clay-poor soil (Inceptisol) and negative priming in the clay-rich soils, particularly with biochar ageing at a higher incubation temperature (e.g. 40 °C) and for a high-temperature (550 °C) biochar. Furthermore, the 550 °C wood biochar has been shown to persist in soil over a century or more even at elevated temperatures (40 or 60 °C).  相似文献   

19.
Here we selected eight types of feedstocks to assess the effects of pyrolysis temperature (300°C, 400°C, 500°C and 600°C) and residence time (0.5, 1, 2, 4, 8 and 24 h), respectively, on the physicochemical properties. The fixed-carbon content, pH value and amount of basic functional groups in biochars increased as the pyrolysis temperature increased from 300°C to 600°C; the opposite trend was found in the biochar yield, adsorption capacity and amount of acidic functional groups. Increasing the residence time at low pyrolysis temperature (300°C) resulted in a gradual reduction in the biochar yield and progressive increase in the pH and iodine adsorption number of biochars. However, increasing the residence time at high pyrolysis temperature (600°C) had little effect on the biochar yield or pH, while it decreased the iodine adsorption number of biochars. Given the effects of pyrolysis conditions on the pH and iodine adsorption number of biochars, low-ash agricultural wastes (e.g. wheat straw) can be pyrolysed at 300°C, 2 h to produce biochar for improving alkaline soils; high-ash agricultural wastes (e.g. sweet potato vine) and forest litter (e.g. fresh leaves of apricot tree) are preferably pyrolysed at 300°C, 4 h to produce biochar for use in acidic soils.  相似文献   

20.
This study was conducted to investigate the effect of pyrolysis temperature on chemical properties of poultry manure (PM) biochar over the range of 200–500°C. Chemical properties of biochar produced at 200°C were almost the same as PM, but significant changes were observed in higher-temperature-produced biochars. According to elemental and fourier transformation infrared analyses, the degree of carbonization in biochar was accelerated with increasing pyrolysis temperature. Biochar yield decreased, while its pH, cation exchange capacity, and P, K, Fe, Mn, Zn, and Cu contents increased with increasing pyrolysis temperature. The biochar produced at 400°C or 500°C was highly alkaline. Also, due to high electrical conductivity, these types of biochars may not be suitable for salt-sensitive crops. It was concluded that the pyrolysis temperature of more than 300°C reduces the quality of PM biochar for use in calcareous soils, although it may be suitable for acidic soils or environmental application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号