首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
施肥量动态高精度测量是实施变量施肥的前提。针对目前测量肥料质量流量方法在田间应用时仍存在测量不准确和无法适应工作环境等问题,开发了一种基于微波法的颗粒肥料质量流量测量系统,提出了一种流量质量测量模型和测量方法。以农用颗粒状肥料史丹利15-15-15和撒可富15-15-15为实验对象,控制微波传感器距离和肥料的排肥速度,对数据采用卡尔曼滤波进行平滑处理。实验数据分析表明:颗粒肥料回波信号的主导频率仅与电动排肥装置和传感器的距离有关,而功率谱密度仅与肥料颗粒数有关;通过最小二乘法建立两种复合肥的实际质量流量和传感器输出值的响应关系,两种复合肥响应关系的决定系数R2均不小于0.9858,并对响应关系进行了验证。撒可富15-15-15的测量范围为1.1198~2.0659g/min,最大测量误差为6.35%;史丹利15-15-15的测量范围为1.0719~1.8779g/min,最大测量误差为4.85%,其测量性能符合作业需要。  相似文献   

2.
【目的】变量施肥具有节约肥料、保护土壤、提高肥料利用率等技术优点,为了实现变量施肥的闭环检测,使肥料的质量流量检测更为精准,课题组提出了一种基于毫米波雷达传感器的颗粒肥料质量流量测量方法。【方法】以颗粒肥料流量与毫米波雷达传感器响应信号的相关性为基础建立模型。搭设颗粒肥料流量检测试验台,选择大颗粒尿素和磷酸二铵作为试验材料,以排肥轴转速作为试验变量对以上理论进行验证,通过标定质量流量与毫米波雷达信号的关系,确定两者存在较强的线性相关性,在各个排肥轴转速下,相关系数均高于0.992;随后对每种肥料进行5组共25次试验,以达到模拟变量施肥过程中颗粒肥料目标施用量不断变化的工况,每次试验排肥轴转速进行一次改变,用电子天平称量实际排肥质量,通过积分毫米波雷达反馈的质量流量信号曲线和时间计算检测质量,采用SPSS 24.0软件对试验结果进行统计分析。【结果】磷酸二铵、大颗粒尿素的检测误差分别为4.99%、4.78%,对应标准差为5.92、5.69;尿素颗粒和磷酸二铵进行变量排肥得到的测量误差的结果分布基本符合正态分布;对于不同的肥料,在不同的质量流量下,检测系统都能够实现颗粒肥料质量流量的检测。...  相似文献   

3.
变量施肥具有提高肥料利用率、保护生态环境、节约农业生产成本等优点,但目前还没有得到广泛的应用,除了难以获得变量施肥的处方图之外,缺乏闭环检测也是原因之一。闭环控制是实现变量施肥的关键之一,与间接测量排肥轴的转速相比,实时检测肥料的质量流量更为准确。本文基于静电感应原理,设计了一种颗粒肥料质量流量传感器。由于颗粒肥料之间、颗粒肥料与空气、颗粒肥料与排肥管之间的摩擦和碰撞,颗粒肥料会携带一定量的电荷,因此本研究设计了环形电极来检测电荷强度,并利用电流放大电路输出感应电流。通过标定质量流量与感应电流的关系,获得了实时的肥料质量流量。搭建试验台对该颗粒肥料质量流量传感器进行检测,试验台主要包括动态信号采集系统、肥料箱、电流放大器和环形电极传感器。以大颗粒尿素(CO(NH2)2)、过磷酸钙(Ca(H2PO4)2·H2O)和氯化钾(KCl)为研究对象,其平均容重分别为0.7、1.2、1.1g/cm3。根据施肥装置的物理参数,通过调整排肥轴转速可获得近似的目标质量流量,目标质量流量的范围是3~15g/s,增量为1g/s。对于每个质量流量,进行了4次重复。每次重复30s,施肥装置与信号采集系统同时启动。利用平均感应电流和平均质量流量建立回归方程,采用插值法得到实时质量流量。随后,对每种肥料进行25次试验,从而检验本文中颗粒肥料质量流量传感器的测量精度,每次试验的目标质量流量由5个随机质量流量组成,每个质量流量下持续排肥6s,用天平称量30s内的实际质量,通过积分质量流量和时间曲线计算检测质量。采用SPSS 22.0软件对试验结果进行统计分析,分析表明,大颗粒尿素、过磷酸钙、氯化钾的检测误差分别为3.9%、5.1%、5.9%,相应的标准差分别为5.21、7.98、11.29。检测质量与实际质量无显著性差异(P>0.1),大颗粒尿素、过磷酸钙和氯化钾检测误差的数学期望值分别为3.74%、4.93%、5.22%。本文的研究结果表明,检测误差随颗粒肥料粒径的减小而增大。  相似文献   

4.
基于电容法的棉管籽棉质量流量检测   总被引:8,自引:0,他引:8  
针对传统平行板电容传感器易受环境干扰,设计了一种差分结构的电容传感器,以实现籽棉质量流量检测。研究了环境温度和棉花品种对传感器电容信号响应的影响,并在不同含水率条件下,确定了籽棉质量流量与电容响应关系,建立了基于籽棉含水率、籽棉质量流量与相对电容变化率的拟合回归模型,并对模型进行验证。试验结果表明:差分结构电容传感器能很好地消除环境温度干扰,所建立的回归模型针对籽棉质量流量检测的平均相对误差为5.16%。  相似文献   

5.
冲量式谷物流量传感器性能实验研究   总被引:11,自引:3,他引:8  
介绍了现有谷物流量传感器的种类、测产系统中所使用的冲量式流量传感器的基本结构和工作原理,对在升运器实验台上安装导流板和未安装导流板冲击式谷物流量传感器的输出信号值进行了比较分析,实验表明安装导流板后,传感器输出电压信号值平均提高30%左右,明显提高了传感器输出信号强度。  相似文献   

6.
为了提高液肥深施效率,设计了一种基于ZigBee的液肥变量深施系统.该系统采用远程电脑终端与STM32F103RET6控制器同步结合实现液肥输出监测与控制:监控液肥水位值的同时利用流量传感器采集当前流量值,并通过ZigBee无线通讯协议传输数据;根据流量预设值,利用增量式PID算法动态调整变频器频率,最终使试验系统能够精确控制液肥流量输出.在试验系统的基础上,通过液肥深施试验以探讨施肥深度、变频器频率、注肥压力、系统用泵的回水开度等参数对流量精确控制的影响,并利用试验数据建立精准控制流量的数学模型.果园试验结果表明,液肥变量深施系统整机施肥精度最高可达99.52%,单次施肥的液肥损耗量最大值为0.22 L/min;在改变施肥深度的情况下,系统液肥输出流量的最大差值为0.15 L/min,变频器频率的最大差值为0.79 Hz.在改变回水开度的情况下,确定了试验中系统的最佳工作参数,即回水开度在40%时,系统工作最为稳定,流量输出误差小,液肥损耗量少.  相似文献   

7.
基于ARM的变量施肥控制系统的研究   总被引:2,自引:1,他引:2  
介绍了一种新的精确农业变量施肥控制系统.该系统接收施肥和速度传感器输入信号,经过ARM嵌入式内核处理后,输出控制步进电机的脉冲信号,控制施肥机上排肥轴的转速,实现精确农业变量施肥.实践证明,该控制系统工作稳定,达到了精确农业变量施肥的要求.  相似文献   

8.
为了提高施药的精度和效率,将微波探测技术引入到了精确施药机的设计过程中,设计了一种具有自主定位能力的高精度施药机。该装置通过微波传感器获得植株标靶靶向信息和距离信息,通过速度传感器获得机器人移动速度,将两者综合处理后,输出控制信号,控制电磁阀的启闭,实现精确对靶施药。为了验证施药机的精确施药效果,采用调频连续三角波微波传感器,对同一植株靶,在不同实验条件下,对分辨率、探测范围与探测距离进行了实验。实验结果表明:以植株作为探测靶标时,探测分辨率与植株间距具有相关性,光照强度、温度和湿度对探测效果的影响不大。微波探测对环境的适应能力较强,因此可以将微波探测技术应用到高精度施药机的设计中,提高施药机施药的精确性和效率。  相似文献   

9.
为适应我国农业灌溉施肥的需要,开发了新型的全水动控制施肥装置.该装置仅以供水管道中的较低压力为能量,在未使用电器元件的条件下,完成整个装置的自动控制,实现农业灌溉中所需肥料或药液吸入的加压输出,并可精确调节输出流量.  相似文献   

10.
针对目前液体施肥机的不足,设计了可以定量控制施肥量的注肥控制系统。系统采用电机带动离心泵输送液态肥料,通过计算注肥器管道中流量传感器的脉冲信号,获取系统实际排出的液体体积,根据实际施肥量与设定值的差值控制电机运转,从而实现根据实际需要精确控制施肥量。实际运行结果表明,该系统运行可靠,系统对施肥控制量误差相对比较小,可以在一定程度上实现精准注肥,减少肥料浪费。  相似文献   

11.
沼液沼渣暗灌施肥机设计与试验   总被引:3,自引:0,他引:3  
沼液沼渣既是速效与迟效兼备、速效多于迟效的有机肥,又是防治病虫害的无污染、无残毒、无抗药性的"生物农药"。但由于没有沼液沼渣这种液态沼肥的机械化施肥技术和装备,无法施用于田间。同时,由于大中型沼气工程缺乏沼液沼渣的消纳途径,制约了沼气产业的发展。为此本文设计出一种液态沼肥暗灌施肥机械,该机械采用分配器对沼肥进行分配和防堵,一次进地能完成开沟、松土、施肥、起垄及镇压多道工序,减少了拖拉机及罐车进出耕地的次数。同时分析了分配器中沼液沼渣在管道中的流动性,发现其能集中沼液沼渣从总管到分管的瞬时流体能量。最后对施肥机进行了田间试验,结果表明所设计机具通过拖拉机配套牵引能进行沼肥运输、抽排工作。  相似文献   

12.
液态肥穴播深施是利用高压液柱冲击土壤,通过精确控制流体喷射进行肥料定向深施的一种农机农艺新方法。为此,设计并研制了一种轮盘式液态肥穴播深施机,并通过土槽试验研究了液态肥穴播深施的可行性、成穴的基本规律及合适的工作参数范围。设计的开穴施肥轮上分布着多个导流开穴器,当导流开穴器插入土壤后,端面凸轮控制其开启,经过增压的高压液态肥沿导流开穴器射入土壤,解决了液态肥施肥过程中作业速度低、喷肥孔易堵塞及施肥量调节复杂等问题。研制了施肥机工作参数的试验测试系统,通过正交试验确定了其工作压力、流量和转速的最佳参数。试验表明:当压力取0.3MPa、节流阀开度为50%、转速为30r/min(对应机具速度0.86m/s)时,施肥量可满足设计要求。田间试验表明:轮盘式液态肥穴播深施机对覆膜、秸秆覆盖地、免耕地等作业环境有很强的适应性,比普通喷洒施肥节约肥料42%、提高作业效率30%以上。本研究为液态肥的深施肥作业机具研究和田间追肥农艺改进提供了参考。  相似文献   

13.
针对我国水资源短缺、水溶性肥料溶解度较低以及灌溉施肥中水肥混合的均匀性问题,设计了一种高效混肥器,并利用ANSYS仿真计算软件,对该混肥器的搅拌装置进行模态和应力应变仿真分析。同时,基于Fluent模块对混肥器搅拌过程的流场、速度场进行模拟计算分析。结果表明:计算分析得到搅拌器的安全系数为11.95,最低阶模态主频率为19.13Hz,各阶频率远大于混肥器的激励源频率,表现出良好的振动特性,完全满足工业设计要求。由分析得到的不同搅拌速度的流场分布图可知,混肥器在大于临界搅拌速度的旋转搅拌过程中速度矢量分布较为复杂,混肥器内部产生较多的扰流和湍流,可有效提高混肥效果,同时发现,转速大于临界搅拌速度时,搅拌速度的增加对于混肥器内部流场分布的影响较小,最佳搅拌速度为600r/min,此时在得到良好的搅拌效果的同时降低了能耗。  相似文献   

14.
基于EDEM-Fluent耦合的颗粒肥料悬浮速度测定试验   总被引:1,自引:0,他引:1  
为提供气力施肥装置的设计参考依据,以大颗粒尿素、磷酸二铵和硫酸钾3种颗粒状化肥为试验对象,通过计算流体动力学和离散元法耦合的方法对物料悬浮速度进行数值模拟,采用Lagrangian模型进行气固两相流耦合仿真,试验结果表明,大颗粒尿素悬浮速度7. 21~12. 97 m/s,磷酸二铵悬浮速度7. 68~12. 48 m/s,硫酸钾悬浮速度11. 09~18. 15 m/s。通过台架试验测定大颗粒尿素悬浮速度6. 68~12. 48 m/s、磷酸二铵悬浮速度7. 22~11. 96 m/s、硫酸钾悬浮速度9. 46~17. 81 m/s,相对误差分别为5. 3%、5. 1%、7. 2%。在颗粒肥料体积分数1. 0%、3. 5%、6. 0%、8. 5%时,分别测定肥料颗粒群的悬浮速度,结果表明,颗粒群悬浮速度随着体积分数的增加而减小,在不同颗粒肥料体积分数下,仿真结果与试验结果相对误差近似为常数,其原因为颗粒球形度对悬浮速度的影响,标定得出大颗粒尿素悬浮速度修正系数0. 90、磷酸二铵悬浮速度修正系数0. 96、硫酸钾悬浮速度修正系数0. 84。基于流固耦合的颗粒悬浮速度仿真具有较高的准确度,验证了基于EDEM-Fluent气固两相流耦合仿真测定物料悬浮速度方法的可行性。  相似文献   

15.
变量施肥技术是实施科学施肥的重要手段,可使施肥更精准、更有针对性,有效减少农田污染。在水稻高速插秧与同步施肥作业时,施肥量的调节主要采用提前标定方式调控,其调控费时、精度不稳定。为快速准确地调节施肥量,实现变量施肥作业,本文设计了一种自动控制的固体颗粒肥料变量施肥装置,阐述了变量施肥装置总体结构和工作原理,进行了关键部件设计与试验;以单片机STM32为控制核心,构建了施肥量在线检测及智能调控系统。采用试验设计优化方法,对肥料流量在线检测系统性能与主要影响因素进行试验,确定了最佳因素组合;通过试验分别构建了3种主要固体颗粒肥料检测流量与压电片电压之间的关系模型、3种主要固体颗粒肥料实际流量与排肥轴转速之间的关系模型、排肥轴转速与电动推杆工作长度和插秧机前进速度之间的关系模型,并对模型进行试验验证与分析。开展了排肥轴转速分别为20、25、30 r/min肥料质量检测精度试验,当插秧机前进速度为1 m/s匀速条件下,3种肥料总体质量检测精度平均值分别为94.45%、93.85%和93.15%;进行了复合肥施肥量为200、250、300 kg/hm2和尿素施肥量为165、...  相似文献   

16.
颗粒料质量流量测量误差动态估算方法   总被引:1,自引:0,他引:1  
提出了一种利用冲量原理测量固体颗粒物料实时物料速度和质量流量的方法,同时给出了一种可动态估算速度和质量流量测量误差的方法.利用自行设计的实验装置,并采用大豆作为实验材料进行了测量误差估算的实验,实验结果表明:在所设计的实验条件下,估算的质量流量相对误差最大值为4.00%,平均相对误差为1.44%;估算的速度相对测量误差最大值为9.69%,平均相对误差为5.03%,动态测量精度和总质量计量精度之间有较好的相关性.  相似文献   

17.
西瓜的内部品质与其振动特性紧密相关。激光多普勒测振(LDV)技术可以准确、非接触地测量农产品组织的真实振动,从而获取农产品的内部品质信息。基于激光多普勒测振系统开展了单因素试验,研究了加速度振幅、扫频速率、检测点位置3个因素对西瓜振动频谱响应特性的影响。然后,针对以上因素进行了3因素3水平的有交互作用的正交试验,共27个参数组合,每个组合重复3次。单因素试验结果表明,加速度振幅和扫频速率对西瓜振动频谱影响显著,但检测点位置影响不显著。有交互作用的正交试验结果表明,在各参数组合中加速度振幅 2.5 g 、 扫频速率1 000 Hz/min、阳面赤道检测点为较优的振动参数组合。本研究的结果为准确无损检测西瓜内部品质奠定了基础。  相似文献   

18.
针对液肥穴深施机具存在施肥位置不准确等问题,结合机械结构设计和自动控制技术,设计了一种深施型液肥对靶点施装置,该装置包括液肥深施开沟器和液肥对靶点施控制系统。设计液肥深施开沟器,构建了开沟器与土壤间力学接触模型和土粒质点运动学模型,确定了开沟器结构参数,解析了扰土和回土原理,应用EDEM软件建立开沟器-土壤离散元仿真模型,验证了液肥深施开沟器结构可行性。以单片机为核心开发一种液肥对靶点施系统,光电传感器感知作物植株位置,测速模块实时监测装置作业速度,单片机结合作物植株位置信息和作业速度控制电磁阀启闭,实现液肥对靶点施作业。通过田间试验验证了装置作业性能,在作业速度为0.4~1.0m/s时,平均回土深度52.8mm,平均对靶率84.03%,装置回土性能和对靶喷肥性能稳定,满足液肥深施农艺要求。  相似文献   

19.
支持种肥监测的变量施肥系统设计与试验   总被引:4,自引:0,他引:4  
目前国内变量施肥控制系统与排肥监测系统集成化程度低,电动机驱动变量施肥系统动态响应研究不够深入。为此设计了基于电动机驱动、支持多路播种施肥监测的变量施肥控制系统,主要包括触摸屏、中央控制器和数据采集器。控制器以MCU为核心,读取GPS测速模块获取的机具行进速度,监测排肥电动机实时转速,与数据采集器通讯获取多路排种或施肥状态,与触摸屏通讯设置作业参数和监测作业状态。搭建试验平台,测得排肥轴转速范围为12.5~125 r/min、监测灵敏度为3 s时,系统监测可靠性为100%。进行了系统排肥量变化响应时间试验,室内试验结果表明在0~11 500 g/min的排肥量变化范围内,系统响应时间最大为0.75 s。系统整机试验中,75~450 kg/hm~2的施肥量变化区间,公差以75 kg/hm~2递增,行进速度平均为3.79 km/h时,系统响应时间平均为1.08 s;在设定施肥量450、600、750 kg/hm~2下,改变不同行进速度的过程中,排肥量准确率平均值分别为95.92%、95.24%和98.26%,方差分别为3.01%、1.39%和1.36%。田间试验表明,施肥量分别为450、600、750 kg/hm~2时,系统排肥量准确率平均值为94.69%,方差为2.23%,多路排种、排肥监测故障报警准确率为100%。  相似文献   

20.
锥形撒肥圆盘中肥料颗粒运动模型优化与试验   总被引:3,自引:0,他引:3  
针对锥形撒肥圆盘存在抛施肥均匀性差、相关理论和解析模型研究较少等问题,建立了肥料颗粒在锥形撒肥圆盘上及空气中的运动模型。分析锥形撒肥圆盘结构和运动参数对肥料颗粒自旋性的影响,将肥料颗粒的自旋性充分考虑在整个运动过程中,进而得到影响抛撒均匀性及抛撒幅宽的主要因素。采用正交试验方案研究了叶片长度、叶片倾角、锥形撒肥圆盘转速对肥料颗粒抛撒的横向变异系数的影响。对正交试验结果进行方差和极差分析,结果表明:叶片长度为145 mm、叶片倾角为0°、锥形撒肥圆盘转速为1 200 r/min时,抛撒的横向变异系数为5.80%,满足抛施肥作业要求。该研究可提高马铃薯锥盘式撒肥机施肥作业效率,为锥盘式撒肥机的设计提供理论参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号