首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】比较河北省主栽山药品种的矿质养分累积特性及营养品质的差异,以期为山药生产提质增效制定科学的养分管理措施。【方法】田间试验在河北省蠡县进行,供试山药(Dioscorea oppositifolia L.)品种包括棒药、大和白玉、紫药和小白嘴,山药4个品种的施肥量和施肥方法均一致。在成熟期,取样测定了山药地上部、根茎生物量,以及9种矿质元素(氮、磷、钾、钙、镁、铁、锰、铜和锌)含量和累积量。【结果】4个主栽山药品种根茎的鲜生物量表现为大和白玉>棒药>紫药>小白嘴,而干生物量表现为紫药>大和白玉>小白嘴>棒药。大和白玉根茎的氮、钙、镁、锰、铜、锌累积量最高,且钾、钙、镁、锰、铜、锌分配系数最高,紫药根茎的磷、钾累积量最高,且氮分配系数较高,磷分配系数最高,棒药根茎的铁累积量及分配系数均为最高。4个山药品种形成1000 kg产量对大量营养元素的需求量均表现为钾>氮>磷,对中量营养元素的需求量均表现为镁>钙,对微量营养元素的需求量均表现为铁>锌>锰>铜。以《中国食物成分表》(标准版)中山药的9种矿质营养品质指标作为参...  相似文献   

2.
土壤-烤烟矿质营养元素相互关系的主组分分析   总被引:19,自引:2,他引:19       下载免费PDF全文
对云南五种植烟土壤上烤烟三个品种、六个生育期烟叶中钾、磷、硫、钙、镁、铁、锰、锌、铜、硼浓度和烟株根区土壤中AB/D联合提取的养分含量及土壤pH、有机质和碱解氮的测试数据,用主组分分析(PCA)方法,讨论土壤─烤烟系统矿质营养元素的相互关系及交互作用。结果显示:①烟叶矿质营养元素浓度随烤烟生育期有规律的变化,受根区土壤化学性质影响的变异大于品种间的差异;②烟叶钾、磷、铜、硼表现明显的稀释效应,钙、镁表现积累效应;③烤烟钾、磷、铜、硼营养存在相互协同作用,钙对钾、磷、铜、硼营养有明显的拮抗作用。④增加土壤有机质,利用钾、磷、铜、硼的协同作用,减轻钙对钾、磷、硼的拮抗是改善烤烟营养,提高烤烟产量品质的关键之一。  相似文献   

3.
采用营养液培养方法,以改良毛粉802F1番茄为材料, 研究外源一氧化氮(NO,SNP为供体)对铜(Cu)胁迫下番茄幼苗铁(Fe)、 锌(Zn)、 锰(Mn)吸收分配的影响。结果显示, 50 mol/ L的 Cu2+ 胁迫下,番茄幼苗的生物量和株高显著降低了33.7% 和23.1%,外施100 mol/L SNP可显著缓解这种抑制作用, 提高Cu 胁迫下番茄幼苗根系、 茎中Fe、 Mn含量及叶柄、 叶片中Fe、 Zn含量,降低茎中Zn含量及叶柄、 叶片中Mn含量; 根系、 茎、 叶柄、 叶片Fe、 Zn及根系和茎中Mn的累积相应增加; 根系吸收的Fe、 Zn、 Mn向地上部的转运降低。Cu 胁迫下, 外源NO可显著提高番茄液泡、 细胞器的Fe、 Zn 含量, 降低根系和叶片细胞壁Fe、 Zn、 Mn含量。在作为转运组织的茎和叶柄中,Mn主要分布在细胞壁上,而在叶柄和叶片液泡、 细胞器中也有增加。表明外源NO可以调控番茄幼苗各部位及亚细胞中Fe、 Zn、 Mn的合理分布,维持胞质离子稳态和矿质营养元素平衡,缓解铜胁迫,保证番茄幼苗正常的生理代谢。  相似文献   

4.
蒋倩  朱建国  朱春梧  刘钢  张继双  徐习 《土壤》2020,52(3):552-560
在开放式空气CO2浓度升高(free-air CO2 enrichment, FACE)条件下,研究了籼稻IIY084与粳稻WYJ23根际土壤矿质元素(Fe、Mn、Cu、Zn、Ca和Mg)有效态含量及其在水稻各组织中的吸收与分配,结合前期稻米矿质元素含量下降的研究结果,探讨了其下降的机制。结果表明:大气CO2浓度升高,显著增加水稻穗、茎、根和整株生物量,两个品种平均增加19.4%、9.3%、23.4%、16.0%;根际土壤中矿质元素的有效态含量大体呈增加趋势;除Ca吸收量增加外,水稻其他矿质元素总吸收量未发生显著变化;显著促进大部分矿质元素在穗中的吸收与分配,而降低其在茎中的分配比;在穗内有增加大部分矿质元素在壳梗中滞留的趋势,相应地减少其在糙米中的分配比。品种效应分析显示,IIY084的茎和整株生物量,以及穗中Fe、Mn、Cu,叶中Zn、Mg,茎中Cu的吸收量与分配百分数均显著高于WYJ23,而叶中Mn、茎中Fe和根中Cu、Zn则呈相反趋势。可见,大气CO2浓度升高条件下,碳水化合物与矿质元素从植...  相似文献   

5.
An on-farm field experiment was conducted on an acidic soil to investigate the effects of combined use of lime and deficient nutrients on herbage yield of alfalfa (Medicago sativa L.). Omitting lime and limiting nutrients led to elevated concentrations of aluminium (Al), iron (Fe), and manganese (Mn) in alfalfa leaves and stems and caused severe reductions in herbage yield of alfalfa. Combined use of lime (2 t ha?1) and nutrients [phosphorus (P): 20 kg ha?1, sulfur (S): 20 kg ha?1, zinc (Zn): 4 kg ha?1, and boron (B): 2 kg ha?1] had the maximum increase in groundcover, root biomass, nodulation, leaf retention, leaf-to-stem ratio, herbage yield, crude protein, and nutrient composition of alfalfa. These beneficial effects were due to raised soil pH; improved calcium (Ca), P, S, Zn, and B nutrition; and reduced Al, Mn, and Fe toxicity. Aluminium and all the nutrients except copper (Cu) were more concentrated in alfalfa leaves than stems.

Aluminum concentration was about three times greater in the lower leaves than in upper leaves. Lower leaves also had much greater concentrations of Ca, Mg, K, S, Fe, Mn, Cu, and B compared with upper leaves. In contrast, P and Zn concentrations were greater in the upper leaves than in lower leaves. Results suggest that the combined use of lime and all the limiting nutrients may realize potential beneficial effects of alfalfa on acidic soils where more than one essential nutrient is deficient. This may increase growth potential, nitrogen contributions, and groundcover by alfalfa and reduce soil erosion and runoff.  相似文献   

6.
试验于2010~2011年连续2年以济源市4个早实核桃品种香玲、鲁光、中林1号、薄丰为试材进行了对比试验,研究了不同采样时期叶片中N、 P、 K、 Ca、 Mg、 Fe、 Cu、 Mn、 Zn 9种矿质营养元素的含量变化及其与产量的关系。结果表明,早实核桃叶片中9种元素的含量在年周期内呈规律性变化,含量高低依次为 Ca>N>Mg>P>K,Fe>Mn>Zn>Cu。不同品种各元素的含量变幅最大为127.69~169.53 mg/kg(Mn),最小为2.1~92.26 g/kg(K)。不同早实核桃品种叶片内矿质元素含量的年变化趋势表现为N、 P、 K总体上呈下降趋势,最高含量为展叶期(4月20日)分别为36.79、 5.54、 2.93 g/kg,最低在落叶前期(9月28日),分别为17.45、 2.66、 1.86 g/kg;Ca、 Mg、 Fe、 Mn 4元素含量的变化总体上表现为前期低后期高;Cu、Zn含量的变化有差异但差异不明显。总的来看, 5~7月份,即新梢速长期(5月20日)至硬核期(7月20日)是核桃树养分稳定的时期, 叶片中N、 P、 K含量之间呈极显著的正相关, N、 P与Ca、 Mg、 Mn、 Cu间呈极显著的负相关,可以认为N、 P、 K之间存在增效作用,Ca、 Mg、 Mn、 Cu 对N、 P 和 K 均存在一定的拮抗作用。元素含量与产量的相关分析表明,N、 P、 K在新梢速长期均与产量达(极)显著正相关,相关系数分别为0.819、 0.843和0.895。因此, 利用叶片进行营养诊断最佳,采样时间以新梢速长期(5月20日前后)为宜。  相似文献   

7.
【目的】旨在明确不同树龄骏枣树形成单位产量所需的各器官营养元素年吸收量的异同点,以期为骏枣生产中的科学均衡施肥提供理论依据。【方法】以新疆阿克苏地区4、 7和10年生骏枣树作为试材,从枣树地上部分各器官分别采样,测定N、 P、 K、 Ca、 Mg、 Mn、 Fe、 Zn和Cu含量。【结果】骏枣树形成地上部各器官单位生物量所需要的养分含量,不同树龄间相比差异均不显著,但其生物量在总生物量中所占的百分率有差异,4、 7、 10年生骏枣树果实占地上部年总生物量的百分率依次为72.9%、 73.7%、 75.7%,叶片依次为5.4%、 5.2%、 5.1%,花依次为1.3%、 1.5%、 1.4%,茎枝依次为20.4%、 19.5%、 17.6%,三个树龄骏枣树各器官生物量的大少顺序均为果实>茎枝>叶片>花。每形成1000 kg果实的总生物量随着树龄的增大而逐渐减少,茎枝保留和剪掉部分生物量均降低。采前落果率随树龄增加上升,叶片生物量减少,受精花生物量上升,而其掉落部分生物量表现先上升后下降。三个树龄骏枣地上部分生物量年增加量所需要的各营养元素量顺序均为K>N>Ca>Mg>P>Fe>Zn>Mn>Cu,每形成1000 kg果实所需要吸收的养分量非常接近,4年生骏枣树为N 22.8 kg、 P 1.7 kg、 K 34.0 kg、 Ca 7.4 kg、 Mg 5.0 kg、 Mn 54.5 g、 Fe 916.9 g、 Zn 202.8 g、 Cu 42.5 g; 7年生骏枣树为N 22.7 kg、 P 1.7 kg、 K 33.9 kg、 Ca 7.3 kg、 Mg 4.9 kg、 Mn 53.9 g、 Fe 907.2 g、 Zn 204.5 g、 Cu 42.0 g; 10年生骏枣树N 22.1 kg、 P 1.7 kg、 K 33.4 kg、 Ca 6.8 kg、 Mg 4.7 kg、 Mn 51.8 g、 Fe 871.3 g、 Zn 204.8 g、 Cu 40.4 g。【结论】3种树龄骏枣树地上部年总生物量中果实生物量与其余生物量的比例约为3∶1,且形成1000 kg果实所需的养分量也基本一致。由于总生物量和果实产量随树龄的增加而增加,因此,对养分的总需求量增加。但是由于果实生物量所占比例有所增加,测算单位产量所需要的各营养元素年吸收量时,也应考虑果实以外器官的年生物量所需要的养分吸收量,才能得到较准确的肥料施入量和各营养元素的比例。  相似文献   

8.
温州蜜柑叶片黄化果园土壤及叶片的养分含量特征   总被引:4,自引:0,他引:4  
弄清叶片黄化柑橘园土壤与叶片的养分含量特征,为改善柑橘园营养状况,提高柑橘产量和品质提供理论与技术支撑。通过对黄化和无黄化温州蜜柑园土壤、叶片的养分含量进行分析,研究影响温州蜜柑叶片黄化的关键因子。结果表明,温州蜜柑叶片的钙、镁、硼含量与SPAD值呈显著或极显著正相关,叶片黄化是由叶片中钙、镁、硼含量不足所造成的,属于综合缺素型,同时叶片中钾、铁、锰含量较高,叶片对钙、镁、硼的吸收与对钾、铁、锰的吸收之间存在相互拮抗的关系;土壤酸化是叶片黄化的主要驱动因子,pH值较低一方面降低了土壤中钙、镁、硼的有效性,另一方面,土壤中较高的铁、锰含量抑制了柑橘对钙、镁、硼的吸收,最终导致叶片因缺钙、缺镁、缺硼而出现黄化。喷施含钙、镁、硼的叶面肥料,防止土壤酸化是改善温州蜜柑叶片黄化的有效措施。  相似文献   

9.
The mineral concentration of flowers and the seasonal fluctuation of macro- [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] and micronutrients [iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu)] in leaves of male, female, and hermaphroditic carob trees (Ceratonia siliqua L.) were studied. The nutrient dynamics were linked not only to phenological events, but also to the gender of the trees. The females were able to allocate more nutrients to leaves than male trees, even though male flowers were richer in particular elements such as N and Zn. The hermaphrodites supported the development of both inflorescences and fruits with a lower seasonal variation and a lower leaf nutrient concentration, as compared to the other genders, which may indicate a more efficient use of resources. Flowers had, in general, a higher concentration of N, P, and K, and a lower Mn concentration than in leaves. Flowers of the females had a lower nutrient concentration compared to males or hermaphrodites.  相似文献   

10.
Productivity and sustainability of cacao (Theobroma cacao L.) in tropical soils are affected by levels of iron. Information is lacking on the cacao response to various sources of iron (Fe). A greenhouse experiment was conducted to evaluate the effects of five iron sources iron sulfate heptahydrate, ferric ethylenediamine-N,N’-bis(2-hydroxyphenylacetic acid), ferric diethylenetriaminepentaacetic acid, ferric ethylenediaminetetraacetic acid, fiesta herbicide (FeSO4 · 7H2O, FeEDDHA, FeDTPA, FeEDTA,) at 10 mg Fe kg?1 soil on growth, photosynthesis, content of photosynthetic pigments and starch and macro- and micronutrient nutrition of cacao. The various iron sources had significant effects on shoot and root dry biomass accumulation, leaf chlorophyll a and b content, carotenoid levels, SPAD index and PN. These parameters were significantly correlated with concentration, uptake, influx, and transport and use efficiency of Fe. In cacao net photosynthesis, stomatal conductance, internal carbon dioxide (CO2), and transpiration in leaf level responded differently to the sources of Fe. Invariably, macro and micronutrient uptake, influx, transport, and use efficiency showed differential responses to sources of iron but significant effects were only observed for copper (Cu), Fe, manganese (Mn), and zinc (Zn). Overall, FeDTPA, FeEDTA and FeHEDTA could be the best sources of Fe in improving, growth, photosynthesis and macro and micro nutrition of cacao.  相似文献   

11.
Evidence clearly shows that cationic micronutrients in spray solutions reduce the herbicidal effectiveness of glyphosate for weed control due to the formation of metal-glyphosate complexes. The formation of these glyphosate-metal complexes in plant tissue may also impair micronutrient nutrition of nontarget plants when exposed to glyphosate drift or glyphosate residues in soil. In the present study, the effects of simulated glyphosate drift on plant growth and uptake, translocation, and accumulation (tissue concentration) of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were investigated in sunflower (Helianthus annuus L.) plants grown in nutrient solution under controlled environmental conditions. Glyphosate was sprayed on plant shoots at different rates between 1.25 and 6.0% of the recommended dosage (i.e., 0.39 and 1.89 mM glyphosate isopropylamine salt). Glyphosate applications significantly decreased root and shoot dry matter production and chlorophyll concentrations of young leaves and shoot tips. The basal parts of the youngest leaves and shoot tips were severely chlorotic. These effects became apparent within 48 h after the glyphosate spray. Glyphosate also caused substantial decreases in leaf concentration of Fe and Mn while the concentration of Zn and Cu was less affected. In short-term uptake experiments with radiolabeled Fe (59Fe), Mn (54Mn), and Zn (65Zn), root uptake of 59Fe and 54Mn was significantly reduced in 12 and 24 h after application of 6% of the recommended dosage of glyphosate, respectively. Glyphosate resulted in almost complete inhibition of root-to-shoot translocation of 59Fe within 12 h and 54Mn within 24 h after application. These results suggest that glyphosate residues or drift may result in severe impairments in Fe and Mn nutrition of nontarget plants, possibly due to the formation of poorly soluble glyphosate-metal complexes in plant tissues and/or rhizosphere interactions.  相似文献   

12.
The leaf nutrient concentrations and the N‐to‐nutrient ratios were analyzed to evaluate the nutritional status of holm oaks (Quercus ilex L.) experiencing various anthropogenic pressures. Leaves (1 year old) of Q. ilex and surface soil (0–5 cm) surrounding the trees were collected at seven natural and seven urban sites in Campania Region (Southern Italy) and analyzed for the concentrations of macro (C, N, P, S) and micronutrients (Mn, K, Na, Cu, Mg, Ca, Fe, Zn). The available soil fraction of micronutrients was also evaluated. The nutrients showed different concentration ranges for the natural and the urban sites in the soil (total and available) and in the leaves, that we reported separately. Organic‐matter content and macronutrient concentrations were higher in the natural soils, while the highest leaf N, S, and P concentrations were found at some urban sites. Concentrations of Cu, Na and Zn both in leaves and soil, and Mg and Fe in leaves from the urban sites appeared to be affected by air depositions. Manganese was the only micronutrient to show higher concentrations at the natural than at the urban sites, both in soil and leaves. For this nutrient, in addition, a relationship between leaf and available soil concentrations was found at the natural sites. The ratios between the concentrations of N and each studied nutrient in the leaves highlighted a different nutritional status between the plants from the natural and urban sites.  相似文献   

13.
钙、 硼对常山胡柚叶片养分、 果实产量及品质的影响   总被引:2,自引:0,他引:2  
【目的】研究叶片矿质营养元素含量的季节性变化,对探明植物体中营养元素的丰缺状况、 调控养分代谢、 提高果实产量和改善品质具有重要意义。本研究结合常山胡柚园土壤养分状况,通过连续4年施用钙肥和硼肥,研究钙、 硼对常山胡柚叶片矿质营养元素含量的季节变化、 果实产量及品质的影响。【方法】采用田间定位试验,以13年生枳砧常山胡柚为试验材料,设4个处理,1)CK(对照); 2)Ca(每株0.5 kg生石灰粉); 3)B(每株25 g 硼砂); 4)Ca+B(每株0.5 kg生石灰粉+ 25 g 硼砂)。于试验的第4年采集常山胡柚不同生长期当年生春梢叶片及成熟期果实样品,并对常山胡柚叶片矿质营养元素含量的季节变化、 果实品质进行分析。【结果】常山胡柚叶片各矿质养分在果实逐渐成熟过程中总体呈现先增后降的变化规律,其中叶片氮(N)、 钾(K)、 镁(Mg)和锌(Zn)在果实坐果期达到最大值,磷(P)在果实膨大前中期(8月份)到达最大值,钙(Ca)、 硼(B)、 铁(Fe)、 锰(Mn)和铜(Cu)在果实膨大后期(9月份)出现最高值。钙、 硼肥施用均可提高常山胡柚果实各发育时期叶片Ca、 B、 N、 K、 Fe、 Mn和Cu含量,但明显抑制叶片Zn的吸收,其中钙、 硼配施对成熟叶片(8~9月份)Ca含量存在显著正交互效应,但对提高叶片B含量无显著交互作用。施钙、 硼肥可不同程度提高常山胡柚2年平均产量,增产率达到1.8%~21.4%,其中各处理增产率顺序为Ca+B>B≥Ca,且单施硼可显著提高2年累积产量,钙硼配施对单年产量、 2年平均产量均存在显著正交互效应。钙、 硼肥单施对果实品质无显著性影响,但钙硼配施可显著降低可滴定酸含量,显著提高固酸比。【结论】常山胡柚坐果期(4月份)为叶片N、 P、 K、 Mg和Zn吸收的关键时期,果实膨大期(8~9月份)为叶片Ca、 B、 Fe、 Mn和Cu吸收的重要时期。钙、 硼配施既可明显提高常山胡柚叶片中矿质营养元素含量(P和Zn除外),又能显著提高果实产量和品质。  相似文献   

14.
The dry weight accumulation per leaf as well as the concentration per gram of dry weight and the accumulation of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) were determined in walnut tree leaves (Juglans regia L.) during a complete life cycle. Additionally, the dynamics of plant nutrient concentration in leaf petiole sap and carbohydrate accumulation in leaves were studied in relation to the main life cycle events of the walnut tree. Total N, P, K, Cu, and Zn concentrations decreased, whereas that of Ca, Mg, and Mn increased during the season. Iron concentration fluctuated around a mean value. Total N, P, K, Mg, and Cu concentrations detected in younger mature leaves were at the sufficient level, whereas Ca, Fe, Mn, and Zn concentrations were at higher levels as compared to those previously reported. All the detected nutrient accumulations increased abruptly during leaf ontogeny and leaf maturation until a maximum level was attained in the younger mature leaves. Similarly, sucrose, glucose, and fructose accumulation were observed at the same period. The rates of total N, P, Cu, and Zn accumulation were lower than the rates of the observed dry matter accumulation and nutrient concentration dilution. Potassium and Mn accumulation rates were almost equal, whereas those for Ca and Mg were higher as compared to the dry matter accumulation rate. The fast embryo growing phase resulted in a considerable decrease in dry weight, total N, P, K, Cu, Zn, and carbohydrate accumulation, and to a lesser degree in Ca, Mg, and Mn accumulation. Nutrient accumulation reduction in leaves by the influence of the growing fruits were estimated to be: total N 52%, K 48%, P 29.5%, Mg 16.3%, Ca 15%, Fe 51.2%, Cu 55.2%, Zn 37.3%, and Mn 5.4% of the maximum nutrient value of the younger mature leaves. Old leaves preserved nutrients before leaf fall as follows: total N 25.4%, P 45%, K 31%, Ca 74.8%, Mg 76.5%, Mn 89.2%, Fe and Zn 50%, and Cu 37%. Nutrient remobilization from the senescing old leaves before leaf fall were: total N 22.6%, P 25.5%, K 21%, Ca 10.2%, Mg 7%, Fe 3.2%, Mn 5.4%, Cu 8%, and Zn 13.3% of the maximum value in the younger mature leaves. In early spring, the absorption rates of N, P, and Ca were low while those of Mg, Fe, Mn, Cu, and Zn were high. During the fast growing pollen phase, the N, P, Fe, Mn, Cu, and Zn concentrations were reduced. Calcium concentration is supposed to be more affected by the rate of transpiration rather than during the growing of embryo. Calcium and Mg concentrations in the sap were negatively correlated. The detected K concentration level in the sap was as high as 33 to 50 times that of soluble N, 12 to 21 times to that of P, 5 times to that of Ca, and 10 to 20 times to that of Mg. The first maximum of starch accumulation in mature leaves was observed during the slow growing embryo phase and a second one after fruit ripening. Old senescing leaves showed an extensive carbohydrate depletion before leaf fall.  相似文献   

15.
The present investigation aimed to study the leaf mineral composition of sweet cherry trees on different rootstocks, since the literature data on uptake efficiency of different rootstocks is inconsistent. Results confirmed the different uptake efficiency of rootstocks. The efficiency of ‘GiSelA 6’ root is emphasized in uptake and supply of leaves with nitrogen (N), phosphorus (P), potassium (K), zinc (Zn), boron (B), and manganese (Mn), but trees on this rootstock tend to develop calcium (Ca), magnesium (Mg), and copper (Cu) deficiencies. The Prunus mahaleb rootstocks on calcareous sandy soil are efficient supplier of N, P, K, Ca, Mg, Fe, and Cu, but this root tends to develop Zn, B, and Mn deficiencies. Prunus avium seedling as rootstock proved to be less efficient in supply of leaves by N, P, K, Ca, and Cu. Prunus fruticosa ‘Prob’ root showed tendency in developing several leaf nutrient deficiencies. The applied fertilizer program led to low nutrient levels or even deficiency symptoms in leaves.  相似文献   

16.
《Journal of plant nutrition》2013,36(9):1505-1515
Abstract

The nutrient status [annual fluctuation of leaf nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), and zinc (Zn)], yield and fruit quality [soluble solids concentration (SSC), titratable acids (TA), SSS/TA and juice content] of “Encore” mandarin trees cultivated in two sites of the same orchard were studied. The trees were grafted on Carrizo citrange rootstock and grown under identical conditions, apart from some soil properties. Soil B (site B of orchard) contained more K, Ca, Mg, and organic matter than soil A (site A of orchard). The patterns of annual variation of leaf nutrient concentrations were similar in both soils, although leaf concentrations of Ca, Mg, Mn, and Fe in soil A were significantly higher than those of soil boron (B), while leaf K concentrations were significantly lower. The mineral analyses of the leaves revealed some interesting antagonisms between K–Mg, K–Ca, and K–Mn. Manganese deficiency was especially limited in the trees grown in soil B. The average fruit yield per tree in soil A, on two-year basis, was significantly higher than this in soil B. The significantly higher water infiltration rate in soil B, in contrast to soil A, seemed to be the dominant factor responsible for the differences among the two sites in yielding and leaf mineral composition.  相似文献   

17.
Abstract

The objective of this study was to investigate the effects of long-term application of ammoniacal N fertilizer for 43?years on the availability of 10 essential elements (B, N, Mg, K, Ca, Mn, Fe, Ni, Cu, and Zn) and Al in root-zone soils and their supply to ‘Jonathan’ apple trees. To achieve this objective, we used simultaneous multi-element analysis. To estimate the soil depth from which the apple trees took up these elements, we calculated the ratios of their concentrations in the N fertilized plot (N plot) to those in the no N plot (0?N plot) (N/0N ratio). Long-term N fertilization significantly increased the fruit and leaf N/0N ratios of N and Mn and significantly decreased that of K. These ratios in the fruits and leaves were similar to those in the 20–90?cm soil layer. This result suggests that N, K, and Mn in the fruits and leaves were supplied from the 20–90?cm soil layer. The N/0N ratios of all 11 elements in the fruits and leaves were significantly positively correlated with those in the 20–90?cm soil layer, but not in the 0–20?cm soil layer. Our findings indicate that long-term N fertilization altered the tree nutrition of not only N, but also K and Mn. These changes in the tree nutrition were ascribed to the fertilizer-induced changes in the availability of elements in the subsoils.  相似文献   

18.
利用根箱试验方法比较了生物质炭和果胶对再生水灌溉下土壤—植物系统养分和重金属迁移特征的影响及差异性。结果表明,再生水灌溉不利于植物的生长,果胶和生物质炭两个处理相比,虽然植株生长无显著差异,但果胶处理植株的生长状况优于生物质炭处理;再生水灌溉时,果胶处理地上部生物量比对照增加了59.32%。与蒸馏水灌溉相比,再生水灌溉增加了根际土壤pH;灌溉水源相同时,果胶处理根际土壤pH略低于生物质炭处理。生物质炭和果胶都增加了土壤养分的含量,果胶对土壤碱解氮、有效磷和有机质的增加效果优于生物质炭,生物质炭对土壤有效钾的增加幅度大于果胶。生物质炭增加了植株的养分含量,果胶提高了养分的转运能力。生物质炭降低了土壤有效态Fe、Mn、Cu、Ni的含量,果胶增加了土壤有效态Fe、Mn、Cu、Pb、Ni的含量。果胶处理植株根系重金属含量普遍高于生物质炭处理,如蒸馏水灌溉下果胶处理根系Fe、Mn、Cu、Zn、Pb、Cd、Ni含量分别比生物质炭处理增加了165.29%,113.01%,21.16%,92.74%,14.61%,26.86%和53.43%,但Cu、Zn、Pb、Cd、Ni等元素在果胶处理的转运系数最低。该研究可为再生水灌溉下生物质炭和果胶在北方碱性土壤的农业安全利用提供理论依据。  相似文献   

19.
Abstract

A nutritional survey was conducted by collecting coffee and cacao leaf samples from various ecological zones in Sierra Leone and analysing for various elementst Data obtained were compared with established leaf analysis standards used for assessing nutrient status of coffee and cacao leaves. Varying degrees of deficiencies of N, P, K, Mg, Mn and Cu were observed but excess levels of Fe were also recorded. Zinc and Ca levels were in the adequate range in coffee and cacao groves respectively.  相似文献   

20.
Abstract

The essential trace elements Fe, Mn, Zn, Cu, and B in high concentrations can produce phytotoxicities. Iron toxicity resulted from 5 × 10‐4 M and 10‐3 M FeSO4, but not from equivalent amounts of FeEDDHA (ferric ethylenediamine di (o‐hydroxyphenylacetic acid) ). Leaf concentrations in bush beans of 465 μg Mn/g, 291 μg B/g, and 321 μg Zn/g all on the dry weight basis resulted in 27%, 45%, and 34% reduction in yields of leaves, respectively. Zinc was concentrated in roots while Mn and B concentrated in leaves. Solution concentrations of MnS04 of 10‐3 and 10‐2 M depressed leaf yields of bush beans by 63% and 83%, respectively, with 5140 and 10780 μg Mn/g dry weight of leaves. Copper concentrations were simultaneously increased and those of Ca were decreased. Bush bean plants grown in Yolo loam soil with 200 μg Cu/g soil had a depression in leaf yield of 26% (with 28. 8 μg Cu/g leaf); plants failed to grow with 500 μg Cu/g soil. A level of 10‐3 M H2MoO4 was toxic to bush beans grown in solution culture. Leaves, stems, and roots, respectively, contained 710, and 1054, and 5920 μg Mo/g dry weight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号