首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Yan S  Wu YT  Zhang B  Yue XF  Liu K 《Science (New York, N.Y.)》2007,316(5832):1723-1726
The influence of vibrational excitation on chemical reaction dynamics is well understood in triatomic reactions, but the multiple modes in larger systems complicate efforts toward the validation of a predictive framework. Although recent experiments support selective vibrational enhancements of reactivities, such studies generally do not properly account for the differing amounts of total energy deposited by the excitation of different modes. By precise tuning of translational energies, we measured the relative efficiencies of vibration and translation in promoting the gas-phase reaction of CHD3 with the Cl atom to form HCl and CD3. Unexpectedly, we observed that C-H stretch excitation is no more effective than an equivalent amount of translational energy in raising the overall reaction efficiency; CD3 bend excitation is only slightly more effective. However, vibrational excitation does have a strong impact on product state and angular distributions, with C-H stretch-excited reactants leading to predominantly forward-scattered, vibrationally excited HCl.  相似文献   

2.
State-resolved gas-surface reactivity measurements revealed that vibrational excitation of nu3 (the antisymmetric C-H stretch) activates methane dissociation more efficiently than does translational energy. Methane molecules in the vibrational ground state require 45 kilojoules per mole (kJ/mol) of translational energy to attain the same reactivity enhancement provided by 36 kJ/mol of nu3 excitation. This result contradicts a key assumption underlying statistical theories of gas-surface reactivity and provides direct experimental evidence of the central role that vibrational energy can play in activating gas-surface reactions.  相似文献   

3.
Energy redistribution, including the many phonon-assisted and electronically assisted energy-exchange processes at a gas-metal interface, can hamper vibrationally mediated selectivity in chemical reactions. We establish that these limitations do not prevent bond-selective control of a heterogeneously catalyzed reaction. State-resolved gas-surface scattering measurements show that the nu1 C-H stretch vibration in trideuteromethane (CHD3) selectively activates C-H bond cleavage on a Ni(111) surface. Isotope-resolved detection reveals a CD3:CHD2 product ratio > 30:1, which contrasts with the 1:3 ratio for an isoenergetic ensemble of CHD3 whose vibrations are statistically populated. Recent studies of vibrational energy redistribution in the gas and condensed phases suggest that other gas-surface reactions with similar vibrational energy flow dynamics might also be candidates for such bond-selective control.  相似文献   

4.
High-resolution infrared laser spectroscopy was used to obtain rotationally resolved infrared spectra of adsorbate-metal complexes. The method involves forming the bare metal clusters in helium nanodroplets and then adding a molecular adsorbate (HCN) and recording the infrared spectrum associated with the C-H stretching vibration. Rotationally resolved spectra were obtained for HCN-Mg(n) (n = 1 to 4). The results suggest a qualitative change in the adsorbate-metal cluster bonding with cluster size.  相似文献   

5.
Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.  相似文献   

6.
BC Stipe  MA Rezaei  W Ho 《Science (New York, N.Y.)》1998,280(5370):1732-1735
Vibrational spectra for a single molecule adsorbed on a solid surface have been obtained with a scanning tunneling microscope (STM). Inelastic electron tunneling spectra for an isolated acetylene (C2H2) molecule adsorbed on the copper (100) surface showed an increase in the tunneling conductance at 358 millivolts, resulting from excitation of the C-H stretch mode. An isotopic shift to 266 millivolts was observed for deuterated acetylene (C2D2). Vibrational microscopy from spatial imaging of the inelastic tunneling channels yielded additional data to further distinguish and characterize the two isotopes. Single-molecule vibrational analysis should lead to better understanding and control of surface chemistry at the atomic level.  相似文献   

7.
Past efforts to achieve selective bond scission by vibrational excitation have been thwarted by energy thermalization. Here we report resonant photodesorption of hydrogen from a Si(111) surface using tunable infrared radiation. The wavelength dependence of the desorption yield peaks at 0.26 electron volt: the energy of the Si-H vibrational stretch mode. The desorption yield is quadratic in the infrared intensity. A strong H/D isotope effect rules out thermal desorption mechanisms, and electronic effects are not applicable in this low-energy regime. A molecular mechanism accounting for the desorption event remains elusive.  相似文献   

8.
Alkanes, although plentiful enough to be considered for use as feedstocks in large-scale chemical processes, are so unreactive that relatively few chemical reagents have been developed to convert them to molecules having useful functional groups. However, a recently synthesized iridium (lr) complex successfully converts alkanes into hydridoalkylmetal complexes (M + R-H --> R-M-H). This is a dihydride having the formula Cp(*)(L)lrH(2), where Cp(*) and L are abbreviations for the ligands (CH(3))(5)C(5) and (CH(3))(3)P, respectively. Irradiation with ultraviolet light causes the dihydride to lose H(2), generating the reactive intermediate Cp(*)lrL. This intermediate reacts rapidly with C-H bonds in every molecule so far tested (including alkanes) and leads to hydridoalkyliridium complexes Cp(*)(L)lr(R)(H). Evidence has been obtained that this C-H insertion, or oxidative addition, reaction proceeds through a simple three-center transition state and does not involve organic free radicals as intermediates. Thus the intermediate Cp(*)lrL reacts most rapidly with C-H bonds having relatively high bond energies, such as those at primary carbon centers, in small organic rings, and in aromatic rings. This contrasts directly with the type of hydrogen-abstraction selectivity that is characteristic of organic radicals. The hydridoalkyliridium products of the insertion reactions can be converted into functionalized organic molecules-alkyl halides-by treatment with mercuric chloride followed by halogens. Expulsion (reductive elimination) of the hydrocarbon from the hydridoalkyliridium complexes can be induced by Lewis acids or heat, regenerating the reactive intermediate Cp(*)lrL. Oxidative addition of the corresponding rhodium complexes Cp(*)RhL to alkane C-H bonds has also been observed, although the products formed in this case are much less stable and undergo reductive elimination at -20 degrees C. These and other recent observations provide an incentive for reexamining the factors that have been assumed to control the rate of reaction of transition metal complexes with C-H bonds-notably the need for electron-rich metals and the proximity of reacting centers.  相似文献   

9.
10.
Wang F  Lin JS  Liu K 《Science (New York, N.Y.)》2011,331(6019):900-903
Exciting the CH-stretching mode of CHD(3) (where D is deuterium) is known to promote the C-H bond's reactivity toward chlorine (Cl) atom. Conventional wisdom ascribes the vibrational-rate enhancement to a widening of the cone of acceptance (i.e., the collective Cl approach trajectories that lead to reaction). A previous study of this reaction indicated an intriguing alignment effect by infrared laser-excited reagents, which on intuitive grounds is not fully compatible with the above interpretation. We report here an in-depth experimental study of reagent alignment effects in this reaction. Pronounced impacts are evident not only in total reactivity but also in product state and angular distributions. By contrasting the data with previously reported stereodynamics in reactions of unpolarized, excited CHD(3) with fluorine (F) and O((3)P), we elucidate the decisive role of long-range anisotropic interactions in steric control of this chemical reaction.  相似文献   

11.
Even in small molecules, the influence of electronic state on rotational and vibrational product energies is not well understood. Here, we use experiments and theory to address this issue in photodissociation of formaldehyde, H2CO, to the radical products H + HCO. These products result from dissociation from the singlet ground electronic state or the first excited triplet state (T1) of H2CO. Fluorescence spectra reveal a sudden decrease in the HCO rotational energy with increasing photolysis energy accompanied by substantial HCO vibrational excitation. Calculations of the rotational distribution using an ab initio potential energy surface for the T1 state are in very good agreement with experiment and strongly support dominance of the T1 state in the dynamics at the higher photolysis energies.  相似文献   

12.
Lasers are used in increasingly sophisticated ways to carry out reactions between molecules in selected vibrational, rotational, and electronic states and to probe the product states of chemical reactions. Such investigations are providing unprecedented insights into chemical reaction dynamics, the study of the detailed motions that molecules undergo in simple chemical reactions. In many cases it is possible to describe the influence that specific types of molecular excitation have on reactive events. Experiments are also being carried out to leam about chemical reactivity as a function of the alignment of reagents. There is increasing excitement concerning the potential of laser methods to interrogate the transition states of molecular reactions.  相似文献   

13.
14.
White ET  Tang J  Oka T 《Science (New York, N.Y.)》1999,284(5411):135-137
Protonated methane, CH5+, has unusual vibrational and rotational behavior because its three nonequivalent equilibrium structures have nearly identical energies and its five protons scramble freely. Although many theoretical papers have been published on the quantum mechanics of the system, a better understanding requires spectral data. A complex, high-resolution infrared spectrum of CH5+ corresponding to the C-H stretching band in the 3.4-micrometer region is reported. Although no detailed assignment of the individual lines was made, comparison with other carbocation spectra strongly suggests that the transitions are due to CH5+.  相似文献   

15.
The vibrational dynamics of the retinal chromophore all-trans-to-13-cis photoisomerization in bacteriorhodopsin has been studied with mid-infrared absorption spectroscopy at high time resolution (about 200 femtoseconds). After photoexcitation of light-adapted bacteriorhodopsin, the transient infrared absorption was probed in a broad spectral region, including vibrations with dominant C-C, C=C, and C=NH stretching mode amplitude. All photoproduct modes, especially those around 1190 reciprocal-centimeters that are indicative for a 13-cis configuration of the chromophore, rise with a time constant of approximately 0.5 picosecond. The results presented give direct vibrational-spectroscopic evidence for the isomerization taking place within 0.5 picosecond, as has been suggested by previous optical femtosecond time-resolved experiments but questioned recently by picosecond time-resolved vibrational spectroscopy experiments.  相似文献   

16.
RN Zare 《Science (New York, N.Y.)》1998,279(5358):1875-1879
Experiments show how product pathways can be controlled by irradiation with one or more laser beams during individual bimolecular collisions or during unimolecular decompositions. For bimolecular collisions, control has been achieved by selective excitation of reagent vibrational modes, by control of reagent approach geometry, and by control of orbital alignment. For unimolecular reactions, control has been achieved by quantum interference between different reaction pathways connecting the same initial and final states and by adjusting the temporal shape and spectral content of ultrashort, chirped pulses of radiation. These collision-control experiments deeply enrich the understanding of how chemical reactions occur.  相似文献   

17.
A full quantum dynamical study of the reactions of a hydrogen atom with water, on an accurate ab initio potential energy surface, is reported. The theoretical results are compared with available experimental data for the exchange and abstraction reactions in H + D2O and H + H2O. Clear agreement between theory and experiment is revealed for available thermal rate coefficients and the effects of vibrational excitation of the reactants. The excellent agreement between experiment and theory on integral cross sections for the exchange reaction is unprecedented beyond atom-diatom reactions. However, the experimental cross sections for abstraction are larger than the theoretical values by more than a factor of 10. Further experiments are required to resolve this.  相似文献   

18.
Progress in the technology of picosecond spectroscopy in the past few years has made possible the generation of well-characterized pulses emitted by synchronously pumped tunable dye lasers. In addition, the development of sensitive emission and absorption detection methods and the advent of picosecond Raman and coherent anti-Stokes Raman spectroscopy make possible the direct observaton of picosecond transient spectra and lifetimes. The information obtained allows the complete determination of mechanisms through the identification of transient states, radicals, and ions that evolve during the course of a chemical or biological reaction.  相似文献   

19.
The reaction K + NaBr --> KBr + Na is probed during the reactive collision by a continuous wave laser tuned to frequencies not resonant with excitation in either reagents or products. Transient [K..Br..Na] absorbs a laser photon giving [K..Br..Na](*), which can decompose to Na(*) + KBr. Emission from excited Na(*) at the sodium D lines provides direct evidence of laser absorption during the reaction. Different excitation spectra were observed, depending on which sodium D line was monitored. This difference is explicable if, in the absence of the laser, the reaction flux partially bifurcates to a second potential energy surface during the reaction.  相似文献   

20.
Femtosecond time-resolved infrared spectroscopy was used to study the formation of cyclobutane dimers in the all-thymine oligodeoxynucleotide (dT)18 by ultraviolet light at 272 nanometers. The appearance of marker bands in the time-resolved spectra indicates that the dimers are fully formed approximately 1 picosecond after ultraviolet excitation. The ultrafast appearance of this mutagenic photolesion points to an excited-state reaction that is approximately barrierless for bases that are properly oriented at the instant of light absorption. The low quantum yield of this photoreaction is proposed to result from infrequent conformational states in the unexcited polymer, revealing a strong link between conformation before light absorption and photodamage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号