首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
V. Lind 《Plant Breeding》1999,118(4):281-287
The effect of the gene Pch-1 on the resistance of wheat to Pseudocercosporella herpotrichoides was studied at four growth stages. The germplasm used consisted of adapted cultivars, genotypes provided by European plant breeders, near-homozygous lines and double haploid lines developed from our own breeding projects. The resistance was measured by ELISA. At all growth stages, genotypes carrying Pch-1 differed significantly in resistance. At early growth stages, there was a strong effect of the gene in most genotypes, but later the effect decreased and significant genotypes-environment interactions appeared. In addition, minor genes became more important and determined the level of adult plant resistance that proved to be inherited quantitatively. Pch-1 was of minor importance for this type of resistance. It is concluded that a high and long-lasting resistance level could be attained if the two genetically different sources of resistance were combined (resistance at juvenile stages, induced by Pch-1, and quantitative resistance at adult stages).  相似文献   

2.
V. Lind    S. Züchner    A. Spanakakis  A. Thiele 《Plant Breeding》1994,113(4):272-280
A total of 20 cultivars of winter wheat were tested by ELISA for resistance to Pseudocercosporella herpotrichoides in six environments and three growth stages. In a three-factor statistical analysis, the contribution of the different factors to their respective interactions was studied. The genotype × environment interactions exerted a considerable influence which could be reduced by increasing the number of test locations. Environments with a high disease level were less suited to measuring resistance than those environments with a medium level. Estimates of heritability from 0.54 to 0.78 show that successful selection may be possible using ELISA. Significant correlations of quantitative resistance at different environments were only obtained under similar environmental conditions (the same location, the same year) and with P. herpotrichoides populations of similar composition (the same inoculum). The contributions of the individual cultivars to the genotype/ environment interactions were not significantly different, except for ‘Roazon’ and ‘Rendezvous’. Due to high environmental effects in growth stage H5, the determination of quantitative resistance was more reliable in younger stages (65, 75). Nevertheless, the use of the values from that late stage did not reduce the genetic parameters (σ2, h2) if they were combined with the earlier measurements.  相似文献   

3.
Resistance to Pseudocercosporella herpotrichoides in five wheat cultivars, accession W6 7283 of Dasypyrum villosum, and ‘Chinese Spring’ disomic addition lines of the D. villosum chromosomes IV, 2V, 4V, 5V, 6V and 7V, was evaluated in seedlings by measuring disease progress 6 weeks after inoculation with a β—glucuronidase—transformed strain of the pathogen and by visual estimates of disease severity. D. villosum and the disomic addition line of chromosome 4V were as resistant as wheat cultivars ‘VPM—1’ and ‘Cappelle Desprez’, but less resistant than ‘Rendezvous’. Resistance of the chromosome 4V disomic addition line was equivalent to that of D. villosum.‘Chinese Spring’ and disomic addition lines of IV, 2V, 5V, 6V and 7V were all susceptible. These results confirm Sparaguee's (1936) report of resistance in D. villosum to P. herpotrichoides and establish the chromosomal location for the genes controlling resistance. The presence of chromosome 4V in the addition line and its homocology to chromosome 4 in wheat were confirmed by Southern analysis of genomic DNA using chromosome group 4-specific clones. This genetic locus is not homoeologous with other known genes for resistance to P. herpotrichoides located on chromosome group 7, and thus represents a new source of resistance to this pathogen.  相似文献   

4.
    
V. Lind 《Plant Breeding》2000,119(6):449-453
Two diallels were analysed for general combining ability (GCA) and specific combining ability (SCA) to study the resistance of crosses‐between wheat genotypes, advanced to the F5 generation, to Pseudocer‐cosporella herpotrichoides. The parents either carried the resistance‐gene Pch‐1 or had different levels of quantitative resistance, one genotype was susceptible. At medium milk‐ripening, significant effects were‐found for GCA and SCA. GCA effects were the more important. Diallel crosses between genotypes, all carrying Pch‐1, revealed interactions‐of the gene with the genotypic background. Some combinations had a‐higher level of resistance than the best parent. In these populations'CH‐75417’ was involved as a parent. Both ‘CH‐75417’ and ‘F–210.13.4.42’ had significant GCA effects. Crosses between quantitatively resistant parents yielded populations that transgressed both parents. The increased resistance level was associated with ‘Cappelle‐Desprez’, distinguished by its high GCA. In some crosses SCA contributed significantly to an increase in resistance level. Selection for resistance within the best advanced populations is recommended since it‐takes advantage of additive gene action and the high heritability estimates based on ELISA values in plant progenies.  相似文献   

5.
Marker-based selection of Ep-D1b has been used successfully to incorporate Pch1, the gene for eyespot resistance on chromosome 7D, into commercial wheat. However, attempts to transfer resistance conferred by Pch1 (on chromosome 7A) through selection for Ep-A1b have not always been successful. Linkage relations among eyespot resistance gene Pch2, a gene encoding for an isozyme of endopeptidase, Ep-A1b, and RFLP marker Xpsr121 on chromosome 7A were determined using 80 homozygous recombinant substitution lines. The recombinant lines were derived from eyespot susceptible ‘Chinese Spring’ hybridized with a resistant disomic substitution line of ‘Cappelle Desprez’ that has chromosome 7A substituted into ‘Chinese Spring’. Segregations of Pch2, Ep-A1b and Xpsr121 fit an expected 1:1 single-locus ratios based on χ2 tests. Linkage analysis revealed that Pch2 was not tightly linked to Ep-Alb (15% recombination). However, close linkage (3.8% recombination) existed between Ep-A1b and Xpsr121. The order of these loci is Pch2-Xpsr121-Ep-A1b. Unlike Pch1 and Ep-D1b, where little or no recombination is found, Pch1 and Ep-A1b showed considerable recombination and therefore linkage cannot be utilized efficiently in marker-based selection.  相似文献   

6.
    
A. Thiele    E. Schumann    A. Peil  W. E. Weber 《Plant Breeding》2002,121(1):29-35
In wheat, eyespot caused by PseudoCercosporella herpotrichoides, is one of the main foot‐rot diseases. Yield losses up to 40% occur in some years. Plant protection by fungicide application is possible, but a better way is through resistance breeding. Two resistance sources are currently used: Aegilops ventricosa and the old French variety ‘Cappelle Desprez’. A new source of resistance has been found in the accession AE120 of Ae. kotschyi from the Gatersleben gene bank with the genome constitution UUSvSv. This accession has been crossed and backcrossed twice to susceptible wheat varieties, and in each generation, plants with a relatively high level of resistance have been selected. From this material, lines have been developed and tested in F6 to F8. Finally, several lines could be classified as moderately resistant, such as the French variety ‘Cappelle Desprez’ after resistance determination during milk ripeness (DC75). No line reached the high resistance level achieved with Pch‐1 from Ae. ventricosa. The yield of these lines under infection conditions was higher compared with ‘Cappelle Desprez’. The line 6018‐96‐3 showed a high yield of 64.3 dt/ha compared with 59.6 dt/ha, on the average, in combination with the best expression of eyespot resistance in the adult growth stage over 3 years.  相似文献   

7.
V. Lind 《Plant Breeding》1992,108(3):202-209
From the total soluble protein of Pseudocercosporella herpotrichoides (Fron) Deighton, specific proteins were isolated and used as antigens. One antiserum proved to be highly sensitive and was used for quantitative determination of eyespot severity in 16 wheat cultivars. The detection limit in ELISA was calculated as 2.2 μg total fungus protein per ml plant sap. From anthesis, genotypes showed the most characteristic and reliable differentiation for a longer period of time, viz. at growth stages 60 and 75. These quantitative differences could be more successfully demonstrated with ELISA than with eye-spot scoring. There was, however, a close correlation between both traits. The most resistant genotypes carried the gene Pch-1 with the resistance originating from ‘Capelle Desprez’. Some genotypes originating from this cultivar showed rather low levels of susceptibility, which might be explained by additional effects of the genotypic background.  相似文献   

8.
Cultivar ‘Thatcher’, and ‘Thatcher’ lines with Lr 21 and Lr 22 were studied against a number of races of Puccinia recondita for seedling and adult plant reaction. The study has established that Lr 21 and Lr 22 are genes effective against P. recondita at adult plant stage. It has also shown that these genes confer resistance against all races when plants are inoculated at boot leaf stage.  相似文献   

9.
Inheritance of resistance in the wheat cultivar‘Arjun’(HD 2009) against leaf rust pathotype 77–1 revealed that its durable resistance is attributable to a novel dominant adult plant resistance (APR) gene. Lr13, another gene reported in the cultivar played no role. This new gene is established as different from Lr34, the only effective APR gene from Triticum aestivum known for durability.  相似文献   

10.
Chromosome 7D of the wheat line VPM1 derived from a cross of Aegilops ventricosa with wheat confers resistance to the facultative fungal parasite Pseudocercosporella herpotrichoides. To determine the number of genes responsible fur this resistance, homozygous recombinant lines were developed from an F1 between the wheat variety ‘Hobbit sib’ and a substitution line carrying chromosome 7D of VPM1 in a ‘Hobbit sib’ background. Resistance to Pseudocercosporella herpotrichoides is shown to be determined by a single gene located distally on the long arm of chromosome 7D. EpD1b, a unique allele of a gene encoding the readily detectable isoenzyme — endopeptidase, maps without recombination to Pch1 suggesting for two separate genes a maximum recombination value of 0.03 (P 0.05). Resistance to Pherpotrichoides could alter-natively be a product of Ep-D1b. Pch1 is also mapped against a gene for adult plant resistance to brown rust (Puccinia recondita), to Rc3 which confers coleoptile colour, and to α-Amy-D2, an isozyme that encodes α-amylase production.  相似文献   

11.
  总被引:14,自引:0,他引:14  
The objective was to study the genetic basis of adult plant resistance to powdery mildew of the winter wheat line RE714 by quantitative trait loci (QTL) analysis and to investigate the stability of the QTL detected in two different genetic backgrounds. Two DH populations from the crosses between RE714 and the susceptible parents ‘Festin’ and ‘Hardi’ were used. Reaction of the DH lines to powdery mildew was assessed in different environments in Belgium under natural disease infection. Considering both populations and according to the environment tested, one to seven QTL were detected. Among them, residual effects of the race‐specific resistance genes Pm4b and MIRE were found. Two major QTL were very stable (on chromosome 5D and at the MIRE locus), since they were detected in both populations and over all environments tested. The QTL detected varied according to the susceptible parent used, and a residual effect at the Pm4b gene was not observed with the genetic background of ‘Hardi’.  相似文献   

12.
    
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

13.
The wheat-rye translocation (IBL-IRS) that carries the tightly linked genes Lr26/Sr31/Yr9, has been widely exploited in the development of wheat cultivars worldwide. This resistance, however, has become ineffective owing to the evolution of new pathotypes of Puccinia recondita that neutralize the resistance of Lr26. Inheritance studies on ‘Federation4′/‘Kavkaz’ revealed complementary genes derived separately from ‘Federation’ and ‘Kavkaz’ for adult plant resistance. This previously undescribed source of resistance appears to be widely effective and could therefore be used to broaden the genetic base for resistance in India. Its effectiveness in other geographical areas is unknown.  相似文献   

14.
Biochemical marker endopeptidase EP-1 was used to determine that an eyespot resistance gene, transferred from Aegilops ventricosa to the hexaploid wheat line ‘H-93-70’ is located on the long arm of the chromosome 7D.  相似文献   

15.
    
Long-term resistance to rust diseases depends on the identification and use of durable resistance sources or on the continuing use of new resistances and combinations of genes for specific resistance. These studies include four Australian wheats with intermediate, but inadequate levels of resistance and a French wheat ‘Hybride-de-Bersée’ (‘Bersee’), with reputed durable resistance to stripe rust. Studies of F2 and F3 populations from crosses with the susceptible ‘Avocet’ indicated that intermediate levels of adult plant stripe rust resistance in cultivars ‘Harrier’, ‘Flinders’ and ‘M2435’ were inherited monogenically, whereas King possessed two genes for resistance. Cultivars Harrier and M2435 possessed the same gene. Similarly, cvs. King and Flinders carried a gene in common. Like ‘Harrier’ and ‘M2435’, ‘King’ and ‘Flinders’ share common parents. The higher level of resistance in ‘Bersee’ was controlled by four genes. This conclusion was based on conventional genetic analysis, tests on F2-derived F7 single-seed descent lines and testcross progenies.  相似文献   

16.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), poses a serious threat to wheat (Triticum aestivum L.) production in many parts of the world. This research was initiated to evaluate wheat accessions for detection of resistance to the RWA. Over 12,000 wheat cultivars and plant introductions (PIs) from the USDA-ARS National Small Grains Collection were evaluated for reaction to RWA feeding damage. Twenty-nine PIs from Iran, Afghanistan, and the former Soviet Union, of various agronomic backgrounds were identified as having moderate to high levels of RWA resistance. This information is useful to wheat breeders searching for sources of resistance to the RWA to incorporate into their breeding programmes.  相似文献   

17.
To test for the association of the eyespot of wheat cv. ‘Cappelle-Desprez’ with the structural gene encoding the isozyme Ep-A1, F3, families from the cross ‘Cappelle-Desprez’ (resistant) X ‘Chinese Spring’ (susceptible) were selected on the basis of endopeptidase phenotype. Analysis of eyespot reaction showed that Ep-Alb homozygotes were associated with a higher level of resistance than Ep-Al a homozygotes. Thus selection of the Ep-Alb allelc should assure concurrent selection of at least a part of the eyespot resistance of ‘Cappelle-Desprez’.  相似文献   

18.
T. Miedaner    K. Flath 《Plant Breeding》2007,126(6):553-558
Powdery mildew in wheat (Blumeria graminis f. sp. tritici) is a major disease in Northern and Central Europe. The aim of the study was to analyse the effectiveness and environmental stability of quantitative powdery mildew resistance under high epidemic pressure in the field across years in the absence/presence of ineffective race‐specific resistances. Cultivars with and without Pm (major) genes were inoculated in three experiments with a genetically broad mildew population with all matching virulences. Resistance was measured three times by assessing the percentage of leaf area covered by powdery mildew on a plot basis (0–100%). Mean powdery mildew severity of the highly susceptible cv. ‘Kanzler’ varied across 10 years from 24% to 66% (Exp. 1). Means of three cultivars without Pm genes, ‘Ramiro’, ‘Miras’ and ‘Zentos’, and several cultivars with ineffective Pm genes varied quantitatively from 4% to 13%. Environmental stability of the quantitative resistances was on average higher than that of susceptible genotypes, as revealed by a regression approach. In the second experiment, all groups of cultivars with ineffective Pm gene(s) contained a large proportion of entries with a similar low mildew rating as the quantitatively resistant standard ‘Miras’. Mildew severity of pairs of cultivars with the same Pm gene(s) was significantly different across 6 years (Exp. 3) indicating the presence of additional quantitative resistances in some of these cultivars. In the analysis of variance, genotypic variance had a high impact (P < 0.01) with low importance of genotype × environment interaction. Consequently, heritabilites were high (0.95–0.97). In conclusion, breeders have already accumulated effective minor genes for powdery mildew resistance in many of the released German winter wheat cultivars. These quantitative resistances are long lasting, environmentally stable and provide a high level of protection to powdery mildew.  相似文献   

19.
    
D. R. Porter    C. A. Baker    M. El-Bouhssini   《Plant Breeding》2005,124(6):603-604
The Russian wheat aphid (RWA), is a serious threat to wheat production worldwide. The identification of a new RWA biotype in the USA virulent to all commercially grown winter wheats poses new challenges to wheat breeders. Wheat germplasm was evaluated to identify accessions resistant to the new virulent RWA isolate (biotype 2). Eleven biotype 1‐resistant wheats and one susceptible check were challenged with RWA biotype 2. Two resistant wheat entries were identified (one highly resistant and one moderately resistant). This information is useful to wheat breeders searching for sources of resistance to the new RWA biotype to incorporate into their breeding programmes.  相似文献   

20.
    
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a serious, perennial pest of wheat (Triticum aestivum L.) in many areas of the world. This study was initiated to determine the inheritance of RWA resistance in PI 140207 (a RWA-resistant spring wheat) and to determine its allelic relationship with a previously reported RWA resistance gene. Crosses were made between PI 140207 and ‘Pavon’ (a RWA-susceptible spring wheat). Genetic analysis was performed on the parents, F1, F2, backcross (BC) population and F2-derived F3 families. Analyses of segregation patterns of plants in the F1, F2, and BC populations, and F2-derived F3 families indicated single dominant gene control of RWA resistance in PI 140207. Results of the allelism test indicated that the resistance gene in PI 140207, while conferring distinctly different seedling reactions to RWA feeding, is the same as Dn 1, the resistance gene in PI 137739.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号