首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyrenopeziza brassicae, cause of light leaf spot of oilseed rape, has a complex polycyclic life cycle. It can be difficult to control light leaf spot in winter oilseed rape in the UK since it is not easy to optimise fungicide application timing. Early autumn infections are usually symptomless and recognisable lesions do not develop until the epidemic has progressed further by the spring. Light leaf spot often has a patchy distribution in winter oilseed rape crops and estimation of disease incidence can be difficult. There is evidence that epidemics are initiated primarily by ascospores produced from apothecia that survive the summer inter-crop period on infected debris. Subsequent development of the epidemic during the winter and spring is maintained by rain-splashed conidia that spread light leaf spot from initial foci. Understanding the relative roles of ascospores and conidia in the light leaf spot life cycle is crucial for forecasting epidemic severity and developing control strategies. The current web-based regional forecast system provides an autumn forecast of the incidence of light leaf spot that can be expected the following spring. This is based on survey data which assesses the occurrence of disease the previous July, and weather factors, such as deviations from summer mean temperature and winter rainfall. The forecast can be updated throughout the autumn and winter and includes crop-specific elements so that growers can adjust risks by inputting information about cultivar, sowing date and fungicide use. Crop-specific forecasts can be confirmed by assessing the incidence of light leaf spot. Such assessments will become easier when immunodiagnostic methods for detection of the disease become available. Incorporation of information on spore biology (e.g. apothecial maturation, ascospore release and infection conditions) is considered as a component of the interactive, continuously updated, crop-specific, web-based forecasts which are needed in the future.  相似文献   

2.
Effects of pretreatment of Brassica napus leaves with ascospores of Leptosphaeria biglobosa or chemical defence activators [acibenzolar- S -methyl (ASM) or menadione sodium bisulphite (MSB)] on infection by ascospores of Leptosphaeria maculans (phoma stem canker) and development of disease were studied in controlled-environment (phoma leaf spot) and field (phoma leaf spot and stem canker) experiments. In controlled-environment experiments, pretreatment of oilseed rape leaves (cv. Madrigal) with L. biglobosa , ASM or MSB delayed the appearance of L. maculans phoma leaf spot lesions. These pretreatments also decreased the phoma leaf spot lesion area in both pretreated leaves (local effect) and untreated leaves (systemic effect). In winter oilseed rape field experiments in the 2002/03 and 2003/04 growing seasons, pretreatment with L. biglobosa or ASM in October/November decreased not only the number of phoma leaf spot lesions per leaf caused by L. maculans in autumn/winter, but also the severity of phoma stem canker in the subsequent spring/summer. Effects were greater in 2002/03 (when natural L. maculans ascospore release began in September 2002) than in 2003/04 (when ascospore release began in December following a period of dry weather in August/September 2003). These results suggest that pretreatment with biological or chemical defence activators can induce local and systemic resistance to L. maculans , with both short-term effects on the development of phoma leaf spotting and long-term effects on the development of stem canker 8 months later.  相似文献   

3.
Data from surveys of winter oilseed rape crops in England and Wales in growing seasons with harvests in 1987–99 were used to construct statistical models to predict, in autumn (October), the incidence of light leaf spot caused by Pyrenopeziza brassicae on winter oilseed rape crops the following spring (March/April), at both regional and individual crop scales. Regions (groups of counties) with similar seasonal patterns of incidence (percentage of plants affected) of light leaf spot were defined by using principal coordinates analysis on the survey data. At the regional scale, explanatory variables for the statistical models were regional weather (mean summer temperature and mean monthly winter rainfall) and survey data for regional light leaf spot incidence (percentage of plants with affected pods) in July of the previous season. At the crop scale, further explanatory variables were crop cultivar (light leaf spot resistance rating), sowing date (number of weeks before/after 1 September), autumn fungicide use and light leaf spot incidence in autumn. Risk of severe light leaf spot (> 25% plants affected) in a crop in spring was also predicted, and uncertainty in predictions was assessed. The models were validated using data from spring surveys of winter oilseed rape crops in England and Wales from 2000 to 2003, and reasons for uncertainty in predictions for individual crops are discussed.  相似文献   

4.
ABSTRACT In microplot experiments in 1998-99 and 1999-2000, the start of light leaf spot epidemics could be predicted from weather data, using empirical equations for Pyrenopeziza brassicae apothecial (ascospore) development, ascospore infection criteria, and the latent period of P. brassicae. The dates when P. brassicae sporulation was first observed fitted predictions and initial spread of light leaf spot from an inoculum source was mostly in the prevailing wind direction, with differences between the two growing seasons attributable to differences in wind patterns. Subsequent secondary spread of disease could be predicted using temperature and rainfall data, and observations fitted predicted dates. In both 1998-99 and 1999-2000, initial spatial patterns of observed disease in January were random, because data were not significantly different from a binomial distribution (P = 0.18). Analysis of spatial data from samples in February and March indicated aggregation, because data fit was significantly different from a binomial distribution (P 相似文献   

5.
In controlled environment experiments, ascospores of Leptosphaeria maculans (stem canker) infected oilseed rape (cv. Nickel) leaves and caused phoma leaf spots at temperatures from 8°C to 24°C and leaf wetness durations from 8 h to 72 h. The conditions that produced the greatest numbers of leaf spot lesions were a leaf wetness duration of 48 h at 20°C; numbers of lesions decreased with decreasing leaf wetness duration and increasing or decreasing temperature. At 20°C with 48 h of leaf wetness, it was estimated that one out of four spores infected leaves to cause a lesion whereas with 8 h of leaf wetness only one out of 300 spores caused a lesion. As temperature increased from 8°C to 20°C, the time from inoculation to the appearance of the first lesions (a measure of the incubation period) decreased from 15 to 5 days but leaf wetness duration affected the length of the incubation period only at sub-optimal temperatures. Analyses suggested that, within the optimal ranges, there was little effect of temperature or wetness duration on incubation period expressed as degree-days; the time until appearance of 50% of the lesions was ca. 145 degree-days. A linear regression of % leaves with lesions (Pl) (square-root transformed) on % plants with lesions (Pp) accounted for 93% of the variance: Pl=1.31+0.061Pp. This relationship was also investigated in winter oilseed rape field experiments in unsprayed plots from October to April in 1995/96 (cv. Envol), 1996/97 (cv. Envol), 1997/98 (cvs Bristol and Capitol) and 1998/99 (cvs Apex, Bristol and Capitol) seasons. The linear regression of % leaves with lesions (square-root transformed) on % plants with lesions accounted for 90% of the variance and had a similar slope to the controlled environment relationship: Pl=0.81+0.051Pp. These results were used to examine relationships between the development of phoma leaf spot on plants in winter oilseed rape crops, the incubation period of L. maculans and the occurrence of infection criteria (temperature, rainfall) in the autumns of 1996, 1997 and 1998.  相似文献   

6.
Pyrenopeziza brassicae (anamorph Cylindrosporium concentricum) is an ascomycete fungus that causes light leaf spot (LLS) disease of brassicas. It has recently become the most important pathogen of winter oilseed rape (Brassica napus) crops in the UK. The pathogen is spread by both asexual splash‐dispersed conidia and sexual wind‐dispersed ascospores. Such inoculum can be detected with existing qualitative and quantitative PCR diagnostics, but these require time‐consuming laboratory‐based processing. This study describes two loop‐mediated isothermal amplification (LAMP) assays, targeting internal transcribed spacer (ITS) or β‐tubulin DNA sequences, for fast and specific detection of P. brassicae isolates from a broad geographical range (throughout Europe and Oceania) and multiple brassica host species (B. napus, B. oleracea and B. rapa). Neither assay detected closely related Oculimacula or Rhynchosporium isolates, or other commonly occurring oilseed rape fungal pathogens. Both LAMP assays could consistently detect DNA amounts equivalent to 100 P. brassicae conidia per sample within 30 minutes, although the β‐tubulin assay was more rapid. Reproducible standard curves were obtained using a P. brassicae DNA dilution series (100 ng–10 pg), enabling quantitative estimation of amounts of pathogen DNA in environmental samples. In planta application of the β‐tubulin sequence‐based LAMP assay to individual oilseed rape leaves collected from the field found no statistically significant difference in the amount of pathogen DNA present in parts of leaves either with or without visible LLS symptoms. The P. brassicae LAMP assays described here could have multiple applications, including detection of symptomless host infection and automated real‐time monitoring of pathogen inoculum.  相似文献   

7.
Experiments to investigate the factors affecting the incubation period of dark leaf and pod spot (Alternaria brassicae) on leaves and pods of oilseed rape (Brassica napus) were done in controlled environment (constant temperatures) and glasshouse conditions (fluctuating temperatures). The length of the incubation period of dark leaf and pod spot decreased as infection and incubation temperatures increased from 6 to 20 °C. The incubation period decreased as wetness period increased from 2 to 12 h, as inoculum concentration increased from 80 to 2 × 103 spores ml–1 and as leaf age increased from 4 to 10 days. Asymptotes of leaf age and inoculum concentration, above which the length of the incubation period did not decrease, were 10 days and 2 × 103 spores ml–1, respectively. The shortest and longest incubation periods were 1 and 11 days. The mechanism by which the infection conditions influenced the incubation period of dark leaf and pod spot on oilseed rape seemed to be linked to lesion density. Usually, the length of the incubation period decreased greatly with increasing lesion density.  相似文献   

8.
The effects of temperature on the development of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape were investigated in controlled-environment experiments. The proportion of conidia which germinated on leaves, the growth rate of germ tubes, the severity of light leaf spot and the production of conidia increased with increasing temperature from 5 to 15 C. The time to 50% germination of conidia and the incubation and latent periods of light leaf spot lesions decreased when temperature increased from 5 to 15°C. At 20°C, however, light leaf spot severity and production of conidia were less and the incubation and latent periods were longer than at 15 C. There were differences between P brassicae isolates and oilseed rape cultivars in the severity of light leaf spot, the production of conidia and the length of the incubation period but not in the length of the latent period. The responses to temperature for lesion severity and incubation and latent periods appeared to be approximately linear over the temperature range 5-15°C and could be quantified using linear regression analysis.  相似文献   

9.
Apothecia of a species of Unguicularia were found on fallen leaves of oilseed rape from November 1989 to April 1990, and from January to July 1991. On the basis of the limited literature on this genus, these apothecia were tentatively identified as Unguicularia cfr. raripila, a species not previously reported in the UK, or on oilseed rape. Although saprophytic, it is of significance in oilseed rape crops, as its ascospores are similar in size and shape to those of the important pathogen Pyrenopeziza brassicae, the cause of light leaf spot. The ascospores of both species can be dispersed either as single spores or in groups, although those of U. cfr. raripila are more often dispersed in groups. Due to confusion in distinguishing the ascospores of these two species, it is likely that studies of the epidemiology of light leaf spot using spore samplers have overestimated the numbers of ascospores of P. brassicae dispersed, and hence their potential contribution to epidemics. Apothecia of U. cfr. raripila were abundant in the spring of both 1990 and 1991, but those of P. brassicae were much more rare. The species of Unguicularia is described.  相似文献   

10.
Near-isogenic isolates of Leptosphaeria maculans differing at the AvrLm4 avirulence locus (AvrLm4 or avrLm4) were produced in vitro. Methods for inoculation of leaves of oilseed rape with ascospores or conidia were compared. The ‘ascospore shower’ inoculation was the most efficient method for use when inoculum is limited (e.g. ascospores produced in vitro). It was used in controlled environments to compare fitness of AvrLm4 and avrLm4 isolates at 5, 10, 15, 20 or 25 °C on leaves of oilseed rape cultivars Eurol and Darmor lacking the resistance gene Rlm4, which corresponds to AvrLm4. At all temperatures tested, AvrLm4 ascospores produced more lesions than avrLm4 ascospores. The diameters of lesions produced by AvrLm4 ascospores were greater than those of lesions produced by avrLm4 ascospores. At 15–20 °C, more lesions initiated by AvrLm4 ascospores produced pycnidia than did lesions initiated by avrLm4 ascospores. However, there were no differences between AvrLm4 and avrLm4 isolates in incubation period (from inoculation to appearance of lesions) or rate of mycelial growth in leaves from lesions towards the stems. In field experiments with winter oilseed rape cultivars lacking Rlm4, the frequency of AvrLm4 isolates increased from 5.7% at the phoma leaf lesion stage (autumn) to 20.5% at the stem canker stage (summer) during 2002/2003 and from 7.9 to 11.5% during 2003/2004 growing seasons. Results of controlled environment and field experiments indicate that avrLm4 isolates have a fitness cost compared to AvrLm4 isolates.  相似文献   

11.
Methods to assess light leaf spot ( Pyrenopeziza brassicae ) on winter oilseed rape cultivars were compared in laboratory, controlled-environment and field experiments. In controlled-environment experiments with seedling leaves inoculated at GS 1,4, the greatest differences in percentage area affected by P. brassicae sporulation were observed with inoculum concentrations of 4 × 103 or 4 × 104 spores mL−1, rather than 4 × 102 or 4 × 105 spores mL−1, but older leaves had begun to senesce before assessment, particularly where they were severely affected by P. brassicae . In winter oilseed rape field experiments, a severe light leaf spot epidemic developed in 2002/03 (inoculated, September/October rainfall 127·2 mm) but not in 2003/04 (uninoculated, September/October rainfall 40·7 mm). In-plot assessments discriminated between cultivars best in February/March in 2003 and June in 2004, but sometimes failed to detect plots with many infected plants (e.g. March/April 2004). Ranking of cultivar resistance differed between seedling experiments done under controlled-environment conditions and field experiments. The sensitivity of detection of P. brassicae DNA extracted from culture was greater using the PCR primer pair PbITSF/PbITSR than using primers Pb1/Pb2. P. brassicae was detected by PCR (PbITS primers) in leaves from controlled-environment experiments immediately and up to 14 days after inoculation, and in leaves sampled from field experiments 2 months before detection by visual assessment.  相似文献   

12.
Zymoseptoria tritici ascospores and pycnidiospores are considered the main forms of primary and secondary inoculum, respectively, in septoria tritici blotch epidemics. The pathogenicity of the two types of spores of the same genotypic origin were compared through a two‐stage inoculation procedure in controlled conditions. Adult wheat leaves were inoculated with ascospores collected from field sources, yielding 119 lesions; pycnidiospores collected from 12 lesions resulting from these ascospore infections were then used for inoculation. Lesion development was assessed for 5 weeks; latent period, lesion size, and pycnidium density were estimated for different isolates. The latent period was calculated as the maximum likely time elapsed between inoculation and either the appearance of the majority of the sporulating lesions (leaf scale) or the appearance of the first pycnidia (lesion scale). The latent period was significantly longer (c. 60 degree‐days, i.e. 3–4 days) after infection with ascospores than with pycnidiospores. No difference was established for lesion size and density of pycnidia. A comparison with other ascomycete fungi suggested that the difference in latent period might be related to the volume of spores and their ability to cause infection. Fungal growth before the appearance of lesions may be slower after inoculation with an ascospore than with a pycnidiospore. The mean latent period during the very beginning of epidemics, when first lesions are mainly caused by ascospores, may be longer than during spring, when secondary infections are caused by pycnidiospores. Disease models would be improved if these differences were considered.  相似文献   

13.
In controlled environment experiments, sporulation of Pyrenopeziza brassicae was observed on leaves of oilseed rape inoculated with ascospores or conidia at temperatures from 8 to 20°C at all leaf wetness durations from 6 to 72 h, except after 6 h leaf wetness duration at 8°C. The shortest times from inoculation to first observed sporulation ( l 0), for both ascospore and conidial inoculum, were 11–12 days at 16°C after 48 h wetness duration. For both ascospore and conidial inoculum (48 h wetness duration), the number of conidia produced per cm2 leaf area with sporulation was seven to eight times less at 20°C than at 8, 12 or 16°C. Values of Gompertz parameters c (maximum percentage leaf area with sporulation), r (maximum rate of increase in percentage leaf area with sporulation) and l 37 (days from inoculation to 37% of maximum sporulation), estimated by fitting the equation to the observed data, were linearly related to values predicted by inserting temperature and wetness duration treatment values into existing equations. The observed data were fitted better by logistic equations than by Gompertz equations (which overestimated at low temperatures). For both ascospore and conidial inoculum, the latent period derived from the logistic equation (days from inoculation to 50% of maximum sporulation, l 50) of P. brassicae was generally shortest at 16°C, and increased as temperature increased to 20°C or decreased to 8°C. Minimum numbers of spores needed to produce sporulation on leaves were ≈25 ascospores per leaf and ≈700 conidia per leaf, at 16°C after 48 h leaf wetness duration.  相似文献   

14.
In controlled environment experiments to study early development of light leaf spot, lesions developed with leaf wetness durations of 16 to 48 h after inoculation of oilseed rape with conidial suspensions of Pyrenopeziza brassicae at 12 or 18°C, but not with leaf wetness durations of 0 to 13h. The incubation period was 21 to 22 days at 12°C and 14 to 18 days at 18°C for leaf wetness durations of 16 to 48 h. The latent period was 21 to 23 days at 12°C and 18 to 19 days at 18°C, and the total number of lesions increased with increasing leaf wetness duration at both temperatures. In field experiments, light leaf spot always developed on oilseed rape with a leaf wetness duration of 48 h after inoculation in both 1990/1991 and 1991/1992, but the percentage leaf area affected was less on plants placed in an oilseed rape crop than on those placed in a glasshouse. Plants moved to an oilseed rape crop immediately after inoculation nearly always developed light leaf spot symptoms when they were inoculated between 19 October 1990 and 1 March 1991 or between 27 September 1991 and 14 February 1992, but plants inoculated between 31 August and 16 October 1990 or on 20 September 1991, when estimated leaf wetness duration was less than 16 h for several days after they were placed in crops, did not develop symptoms. The latent period of light leaf spot on plants transferred to the oilseed rape crop was 15 to 40 days, and there was an approximately linear relationship between 1 (latent period) and mean temperature during this period. The accumulated temperature during the latent period ranged from c. 150 to 250 day-degrees. The severity of lesions on these plants increased with increasing temperature from 5 to 15°C.  相似文献   

15.
Leptosphaeria maculans and L. biglobosa are damaging pathogens of oilseed rape. The infection of plants occurs predominantly in early autumn or spring by spores produced in pseudothecia. The aim of this study was to investigate whether pseudothecia formed in the autumn are still viable in the spring and to what extend they are destroyed by winter frosts. The studies presented here demonstrated that winter frosts can render pseudothecia unable to release spores. Nevertheless, ascospores present in pseudothecia unable to discharge ascospores, were fully capable of germination, regardless of the incubation temperature. No significant differences were found between the studied Leptosphaeria species in their response to frost. A multiple regression equation has been elaborated to forecast the ability of pseudothecia to release ascospores, based on winter temperatures. Considerable correlation was found between the ascospore release in the autumn and the ability of pseudothecia to release ascospores over the winter period and the subsequent symptoms of stem canker before harvest. We have demonstrated that the potential and the survival of inoculum can have a large impact on the success of the pathogen. This may be particularly important in the light of forecasted climate change. Higher winter temperatures may increase the ability of pseudothecia to release ascospores and the discharge of ascospores of L. maculans and L. biglobosa into the air, and cause early plant infections. This in turn will increase the number of infected plants, the disease incidence at harvest, and reduce the yield of oilseed rape.  相似文献   

16.
Quantitative resistance to Leptosphaeria maculans in Brassica napus was investigated in field and controlled environments using cultivars Darmor (with quantitative resistance) and Eurol (without quantitative resistance). In field experiments, numbers of phoma leaf spot lesions in autumn/winter and severity of stem canker the following summer were assessed in three growing seasons. There were no differences between Darmor and Eurol in number of leaf lesions in autumn/winter. However, stem cankers were less severe on Darmor than Eurol at harvest the following summer. In controlled-environment experiments, development of leaf lesions at different temperatures (5–25°C) and wetness durations (12–72 h) was investigated using ascospore inoculum; symptomless growth of L. maculans along leaf petioles towards the stem was quantified using quantitative PCR and visualized using GFP-expressing L. maculans ; growth of L. maculans within stem tissues was investigated using GFP-expressing L. maculans . There were more leaf lesions on Darmor than Eurol, although there was no difference between Darmor and Eurol in L. maculans incubation period. There were no differences between Darmor and Eurol in either distance grown by L. maculans along leaf petioles towards the stem or quantity of L. maculans DNA in leaf petioles, but L. maculans colonized stem tissues less extensively on Darmor than Eurol. It was concluded that quantitative resistance to L. maculans operates during colonization of B. napus stems by the pathogen.  相似文献   

17.
Ascospores can be collected from dried leaves of white cabbage from the previous season, carrying lesions of the fungus. Discharge of ascospores is stimulated by light and takes place within a broad temperature range (5–20 °C) under humid conditions. A method is described to isolate single ascospores, or to collect sufficient ascospores for small inoculation experiments. In order to screen large numbers of plants under controlled conditions, mycelial fragments can be used as inoculum. Using mycelial fragments requires a long (4–5 days) duration of leaf wetness necessary for infection. Ascospores infected the host plant with a much shorter duration of leaf wetness (<2 days). The results of this study show that the use of mycelial fragments as the inoculum type in infection studies may lead to erroneous conclusions and false recommendations. Results of inoculation with ascospores indicate that the minimum humidity requirement for infection in the field is lower (<2 days) than generally assumed, and that the temperature range for infection by ascospores is at least 10–20 °C.  相似文献   

18.
Despite differences in climate and in timing of light leaf spot epidemics between Poland and the UK, experiments provided no evidence that there are epidemiological differences between populations of Pyrenopeziza brassicae in the two countries. Ascospores of Polish or UK P. brassicae isolates germinated on water agar at temperatures from 8 to 24°C. After 12 h of incubation, percentages of ascospores that germinated were greatest at 16°C: 85% (Polish isolates) and 86% (UK isolates). The percentage germination reached 100% after 80 h of incubation at all temperatures tested. The rate of increase in germ tube length increased with increasing temperature from 8 to 20°C but decreased from 20 to 24°C, for both Polish and UK isolates. Percentage germination and germ tube lengths of UK P. brassicae ascospores were less affected by temperature than those of conidia. P. brassicae produced conidia on oilseed rape leaves inoculated with ascospores or conidia of Polish or UK isolates at 16°C with leaf wetness durations from 6 to 72 h, with most sporulation after 48 or 72 h wetness. Detection of both mating types of P. brassicae and production of mature apothecia on leaves inoculated with mixed Polish populations suggest that sexual reproduction does occur in Poland, as in the UK.  相似文献   

19.
ABSTRACT Epidemics of early leaf spot of peanut (Arachis hypogaea), caused by Cercospora arachidicola, are less severe in strip-tilled than conventionally tilled fields. Experiments were carried out to characterize the effect of strip tillage on early leaf spot epidemics and identify the primary target of suppression using a comparative epidemiology approach. Leaf spot intensity was assessed weekly as percent incidence or with the Florida 1-to-10 severity scale in peanut plots that were conventionally or strip tilled. The logistic model, fit to disease progress data, was used to estimate initial disease (y(0)) and epidemic rate (r) parameters. Environmental variables, inoculum abundance, and field host resistance were assessed independently. For experiments combined, estimated y(0) was less in strip-tilled than conventionally tilled plots, and r was comparable. The epidemic was delayed in strip-tilled plots by an average of 5.7 and 11.7 days based on incidence and severity, respectively. Tillage did not consistently affect mean canopy temperature, relative humidity, or frequency of environmental records favorable for infection or spore dispersal. Host response to infection was not affected by tillage, but infections were detected earlier and at higher frequencies with noninoculated detached leaves from conventionally tilled plots. These data suggest that strip tillage delays early leaf spot epidemics due to fewer initial infections; most likely a consequence of less inoculum being dispersed to peanut leaves from overwintering stroma in the soil.  相似文献   

20.
In winter oilseed rape experiments at Rothamsted in 2000/01 to 2002/03 growing seasons, the severity of phoma stem canker epidemics in summer depended on the timing of phoma leaf spot epidemics in the previous autumn, and hence on the timing of Leptosphaeria maculans ascospore release. The first major release of L. maculans ascospores was earlier in 2000 (26 September) and 2001 (18 September) than in 2002 (21 October). Consequently, the autumn phoma leaf spot epidemic was also earlier in 2000 and 2001 than in 2002. The resulting stem canker epidemics were severe by harvest (July) in 2001 and 2002 but not in 2003. No correlation was found between the severity or duration of phoma leaf spotting (lesion days or lesion °C-days) and the subsequent severity of phoma stem canker epidemics. Rates of leaf production and loss were similar in the three growing seasons. Out of ca. 25 leaves produced on plants during each season, leaf numbers 10–14 generally remained on plants for the longest. Treatment with flusilazole + carbendazim in autumn decreased the severity of phoma leaf spotting for several weeks after treatment, decreased the severity of stem canker the following summer and increased yield significantly in 2001 and 2002 but not in 2003. The most effective timings for flusilazole + carbendazim application were when leaves 7–11 were present on most plants and at least 10% of plants were affected by phoma leaf spot. Two half-dose applications of fungicide reduced phoma stem canker and increased yield more than a single full dose application when phoma leaf spot epidemics were early (<800 °C-days after sowing).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号